首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
This paper presents a finite element program, for the modelling of rutting of flexible pavements. In its present version, the program incorporates a permanent deformation model for unbound granular materials based on the concept of the shakedown theory developed by Zarka for metallic structures under cyclic loadings and has been used to estimate the permanent deformations of unbound granular materials (UGM) subjected to traffic loading. The calculation is performed in two steps: the first step consists in modelling the resilient behaviour of the pavement in 3D, using non-linear elastic models, to determine the stress field in the pavement. Then stress paths are derived and used to calculate the permanent deformations and the displacements, using a Drucker–Prager yield surface. An application to the prediction of the permanent deformations of experimental pavements with an unbound granular base, tested on the LCPC pavement testing facility is presented.  相似文献   

2.
A double structure generalized plasticity model for expansive materials   总被引:1,自引:0,他引:1  
The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels. The distinction between the macro‐ and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The microstructure is associated with the active clay minerals, while the macrostructure accounts for the larger‐scale structure of the material. The model has been formulated considering concepts of classical and generalized plasticity theories. The generalized stress–strain rate equations are derived within a framework of multidissipative materials, which provides a consistent and formal approach when there are several sources of energy dissipation. The model is formulated in the space of stresses, suction and temperature; and has been implemented in a finite element code. The approach has been applied to explaining and reproducing the behaviour of expansive soils in a variety of problems for which experimental data are available. Three application cases are presented in this paper. Of particular interest is the modelling of an accidental overheating, that took place in a large‐scale heating test. This test allows the capabilities of the model to be checked when a complex thermo‐hydro‐mechanical (THM) path is followed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The frequent use of soils and earth materials for hydraulic capping and for geo‐environmental waste containment motivated our interest in detailed modelling of changes in size and shape of macro‐pores to establish links between soil mechanical behaviour and concurrent changes in hydraulic and transport properties. The objective of this study was to use finite element analysis (FEA) to test and extend previous analytical solutions proposed by the authors describing deformation of a single macro‐pore embedded in linear viscoplastic soil material subjected to anisotropic remote stress. The FEA enables to consider more complex pore geometries and provides a detailed picture of matrix yield behaviour to explain shortcomings of approximate analytical solutions. Finite element and analytical calculations agreed very well for linear viscous as well as for viscoplastic materials, only limited for the case of isotropic remote stress due to the simplifications of the analytical model related to patterns and onset of matrix‐yielding behaviour. FEA calculations were compared with experimental data obtained from a compaction experiment in which pore deformation within a uniform modelling clay sample was monitored using CAT scanning. FEA predictions based on independently measured material properties and initial pore geometry provided an excellent match with experimentally determined evolution of pore size and shape hence lending credence to the potential use of FEA for more complex pore geometries and eventually connect macro‐pore deformation with hydraulic properties. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a finite element procedure for the analysis of consolidation of layered soils with vertical drain using general one‐dimensional (1‐D) constitutive models. In formulating the finite element procedure, a Newton–Cotes‐type integration formula is used to avoid the unsymmetry of the stiffness matrix for a Newton (Modified Newton) iteration scheme. The proposed procedure is then applied for the consolidation analysis of a number of typical problems using both linear and non‐linear soil models. Results from this simplified method are compared with those from a fully coupled consolidation analysis using a well‐known finite element package. The average degree of consolidation, excess porewater pressure and average vertical effective stress are almost the same as those from the fully coupled analysis for both the linear and non‐linear cases studied. The differences in vertical effective stresses are tolerable except for the values near the vertical drain boundaries. The consolidation behaviour of soils below a certain depth of the bottom of vertical drain is actually one‐dimensional for the partially penetrating case. Therefore, there are not much differences in whether one uses a one‐dimensional model or a three‐dimensional model in this region. The average degree of consolidation has good normalized feature with respect to the ratio of well radius to external drainage boundary for the cases of fully penetrating vertical drain using a normalized time even in the non‐linear case. Numerical results clearly demonstrate that the proposed simplified finite element procedure is efficient for the consolidation analysis of soils with vertical drain and it has better numerical stability characteristics. This simplified method can easily account for layered systems, time‐dependent loading, well‐resistance, smear effects and inelastic stress–strain behaviour. This method is also very suitable for the design of vertical drain, since it greatly reduces the unknown variables in the calculation and the 1‐D soil model parameters can be more easily determined. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
An elastoplastic model has been developed for the finite elements modelling of repeated load triaxial tests. This model is based on the shakedown theory established by Zarka for metallic structures. To the previous works, which were based on the Drucker–Prager yield surface and the plastic potential of Von Mises, a compression cap has been added to each one. The model straightforwardly determines the purely elastic state or the elastic shakedown state or the plastic shakedown state and calculates the deviatoric and the volumetric plastic strains. The calibration of the elastoplastic model has been carried out with DEM simulations and an unbound granular material for roads under repeated load triaxial tests using finite element method. The calculations underline the capabilities of the model to take into account, with a unique formalism, the accumulation of the deviatoric and volumetric plastic strains along the loading cycles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
An elastoplastic constitutive model is proposed for saturated sands in general stress space using the middle surface concept (MSC). In MSC, different features of stress–strain response of a material are divided into different pseudo‐yield surfaces. The true‐yield surface representing the true response is established by using various links between the yield surfaces. In this MSC sand model, several well‐known features of sand response are represented by three different pseudo‐yield surfaces, which are developed in a simple and straightforward way. These features include the critical state behaviour, the effects of state parameter, unloading and reloading plastic deformation, the influence of fabric anisotropy, and phase transformation line related behaviour. Finally, the model predictions and test results are compared for two different types of sands under a variety of loading conditions and good comparisons are obtained. The application of MSC to saturated sand modelling shows the versatility of MSC as a general concept for modelling stress–strain response of materials. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
The general yield function in the hierarchical approach for constitutive modelling of materials is used with Perzyna's theory to characterize viscoplastic behaviour of geologic materials: a sand and rock salt. Particular attention is given to determination of the constants from laboratory quasistatic or short term, and creep tests. The proposed model is verified with respect to observed laboratory response of the sand and salt. It is implemented in a non-linear finite element procedure and applied to analyse time-dependent behaviour of a cavity in the rock salt.  相似文献   

8.
It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill‐posedness and mesh dependency. Therefore, a non‐local theory with internal length scales is needed to overcome such problems. The micropolar and high‐order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage‐coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non‐linear viscoelastic model for the rate‐independent and rate‐dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three‐dimensional (3D) linear and damage‐coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user‐defined material model for the asphalt mastic to predict global linear and damage‐coupled viscoelastic behaviour of asphalt mixture. For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression‐fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period. In regard to damage‐coupled viscoelastic behaviour, cyclic loading responses of linear and rate‐independent damage‐coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate‐independent damage‐coupled viscoelastic behaviour are also investigated with finite element simulations of asphalt numerical samples. Further study describes loading rate effects on the asphalt viscoelastic properties and rate‐dependent damage behaviour. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents a numerical model for the analysis of cone penetration in soft clay based on the finite element method. The constitutive behaviour of the soil is modelled by modifying an elastic, perfectly-plastic soil model obeying Von-Mises yield criterion to take into account the strain-softening, rate dependent behaviour of soft clay. Since this is a problem involving large soil deformations, the analysis is carried out using an Arbitrary Lagrangian Eulerian method where the quality of the mesh is preserved during penetration. The variation of cone resistance is examined with various parameters such as rigidity index of the soil, in situ stress anisotropy and roughness at the cone–soil interface, which influence the penetration resistance of the cone. A theoretical correlation has been developed incorporating these parameters and the results have been compared with previous correlations based on the cavity expansion theory, finite element method and strain path method. With the increase in strain-softening, relative brittleness of the soil increases and the penetration resistance is significantly reduced. With the rising strain-rate dependency, penetration resistance increases but this increase is independent of the degree of brittleness of the soil.  相似文献   

11.
黄立葵  贾璐  万剑平  万智 《岩土力学》2006,27(Z1):40-45
利用气象资料预估夏季高温季节沥青路面结构内温度场的分布状况,有助于合理地设计沥青路面结构,在不同结构层使用合适的沥青等级,以防止路面出现过量的车辙。根据传热学基本理论,分析了沥青路面在夏季高温季节的热能传导方式,建立了沥青路面显式格式二维非稳态温度场数值分析模型,并实现了基于有限差分的数值求解。为了解不同地域和气候条件对沥青路面高温温度场的影响,进行了温度场现场试验验证。试验观测结果与数值分析结果的对比,证明了本文数值计算模型的合理性和正确性。  相似文献   

12.
This paper presents a simplified finite element analysis technique, the ‘Press‐Replace’ technique, to model pile penetration problems in geotechnical engineering, particularly, pile jacking. The method is employed in standard finite element analysis software. The method involves a straining and a consequent geometry update phase. First, a cone penetration test in (undrained) clay is modelled and compared with the results of analytical, semi‐analytical and more advanced finite element techniques. The model sensitivity for the step size and mesh is investigated using a hypoplastic constitutive model. An optimum way of modelling based on the numerical performance is shown. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Summary. An approach for modelling fractured rock masses has been developed which has two main objectives: to maximise the quality of representation of the geometry of existing rock jointing and to use this within a loading model which takes full account of this style of jointing. Initially the work has been applied to the modelling of mine pillars and data from the Middleton Mine in the UK has been used as a case example. However, the general approach is applicable to all aspects of rock mass behaviour including the stress conditions found in hangingwalls, tunnels, block caving, and slopes. The rock mass fracture representation was based on a combination of explicit mapping of rock faces and the synthesis of this data into a three-dimensional model, based on the use of the FracMan computer model suite. Two-dimensional cross sections from this model were imported into the finite element computer model, ELFEN, for loading simulation. The ELFEN constitutive model for fracture simulation includes the Rotating Crack, and Rankine material models, in which fracturing is controlled by tensile strength and fracture energy parameters. For tension/compression stress states, the model is complemented with a capped Mohr-Coulomb criterion in which the softening response is coupled to the tensile model. Fracturing due to dilation is accommodated by introducing an explicit coupling between the inelastic strain accrued by the Mohr-Coulomb yield surface and the anisotropic degradation of the mutually orthogonal tensile yield surfaces of the rotating crack model. Pillars have been simulated with widths of 2.8, 7 and 14 m and a height of 7 m (the Middleton Mine pillars are typically 14 m wide and 7 m high). The evolution of the pillar failure under progressive loading through fracture extension and creation of new fractures is presented, and pillar capacities and stiffnesses are compared with empirical models. The agreement between the models is promising and the new model provides useful insights into the influence of pre-existing fractures. Further work is needed to consider the effects of three-dimensional loading and other boundary condition problems.  相似文献   

14.
The aim of this paper is to model numerically concrete flow inside formworks like the Lbox. For this purpose, we use a finite element method with Lagrangian integration points (FEMLIP). We are able to follow in time and space material motion with any type of material behaviour, including non‐linear and time‐dependent ones. We also can deal with free surfaces or material interfaces. Bingham's rheology is used for fresh concrete behaviour. In order to compare with experiments, we have considered three concretes (OC, HPC and SCC) with contrasted rheologies. Their yield stress is identified by experimental slump tests and also compared with the value given by a formulation concrete software. Experimental data are found to be quite close to numerical predictions. We have also made some experimental flow tests in a LBOX. We measured the flow speed and the flow shape in the final stage. The numerical modelling of these experiments is very encouraging and shows the capability of the FEMLIP using the Bingham's law to model concrete flow and filling properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This article presents the development of a J2 small strain plasticity model based on bounding surface concept, along with numerical examples to demonstrate model behaviors and identification of model parameter using laboratory test data. The model is motivated by the need for simulating permanent deformation accumulation of asphalt concrete mixtures, which leads to rutting in flexible pavements under repeated traffic loading. The proposed model accounts for the observation that rutting is mostly caused by shearing and takes advantage of the fact that bounding surface concept allows for the progressive accumulation of plastic deformation under constant amplitude loading condition. Analytical solutions are given for typical laboratory testing conditions. The model can be calibrated using repeated simple shear test data that are typically available for asphalt concrete mixtures. It is shown that the model is easy to use and provides a promising alternative for modeling permanent deformation accumulation in materials subjected to repetitive (cyclic) loading. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The governing equations for an elasto‐plastic constitutive model for frictional materials such as soil, rock, and concrete are presented, and the incremental form is indicated in preparation for implementation of the model in a user‐defined module for finite element calculations. This isotropic, work‐hardening and ‐softening model employs a single yield surface, it incorporates non‐associated plastic flow, and its capability of capturing the behaviour of different types of frictional materials under various three‐dimensional conditions has been demonstrated by comparison with measured behaviour, as presented in the literature. The incrementalization procedure is indicated and the resulting equations for the single hardening model are presented together with parameters for a dense sand. Following the implementation of the model, these parameters are used for evaluation of different integration schemes as presented in a companion paper by Jakobsen and Lade (Int. J. Numer. Anal. Meth. Geomech. 2002; 26 :661). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the effects of a non‐coaxial model on simulated stress–strain behaviour of granular materials subject to simple shearing under various initial conditions. In most cases, a significant difference of predictions between coaxial and non‐coaxial modelling is found during the early stage in shearing. With the increase in shearing, non‐coaxial simulations approach and tend to coincide with coaxial simulations. It is also found that the roles of non‐coaxial modelling in simulating simple shear behaviour are considerably influenced by hardening rules, flow rules, initial static lateral pressure coefficients. In some cases, the non‐coaxial modelling gives a similar simulation as the coaxial modelling. In other cases, the non‐coaxial modelling decreases the hardening response or softening response of materials, compared with the coaxial modelling. Under certain conditions, the predicted peak strength of materials with non‐coaxial modelling is larger than that for coaxial modelling. Some of these observations can be attributed to the amount of principal stress rotation in various cases analysed. Others can be attributed to the difference between the directions of the non‐coaxial plastic flow and those for coaxial plastic flow. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
19.
This paper sets forth the theoretical background and basic numerical expressions for the incorporation of elastic-plastic constitutive equations for ductile rock into a finite element computer code. The derivation of an expression for the total strain rate is performed both for a total stress formulation and for a formulation that employs the concept of effective stress for inelastic behaviour. Specific expressions for the incremental strain rate are presented for the case of a porous material having a quadratic initial yield surface and observing the associated flow rule with a special hardening law for subsequent plastic deformation. A final section of the paper summarizes the expressions required to insert the quadratic yield surface model into a finite element code.  相似文献   

20.
The finite‐element (FE) method is used for modeling geotechnical and pavement structures exhibiting significant non‐homogeneity. Property gradients generated due to non‐homogeneous distributions of moisture is one such example for geotechnical materials. Aging and temperature‐induced property gradients are common sources of non‐homogeneity for asphalt pavements. Investigation of time‐dependent behavior combined with functionally graded property gradation can be accomplished by means of the non‐homogeneous viscoelastic analysis procedure. This paper describes the development of a generalized isoparametric FE formulation to capture property gradients within elements, and a recursive formulation for solution of hereditary integral equations. The formulation is verified by comparison with analytical and numerical solutions. Two application examples are presented: the first describes stationary crack‐tip fields for viscoelastic functionally graded materials, and the second example demonstrates the application of the proposed procedures for efficient and accurate simulations of interfaces between layers of flexible pavement. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号