首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
塔中古生界储层中流体包裹体成分分析及其意义   总被引:2,自引:0,他引:2  
对塔中地区30个储层包裹体样品进行了MCI(包裹体成分)与单体烃同位素分析.观察到包裹油与储层油既有区别又有联系.共有6个包裹体特别是下奥陶统样品显示C28-甾烷丰度相对较高、甾烷异构化程度相对较低、低分子量甾萜类化合物丰度相对较高等寒武系的成因特征,指示寒武系源岩对塔中地区有成烃贡献.多数分析包裹油显示中上奥陶统成因生物标志物特征,以及介于寒武系与中上奥陶统成因原油之间的单体正构烷烃同位素特征,个别包裹油显示与中上奥陶统完全一致的单体同位素与生物标志物特征,指示中上奥陶统对塔中地区也具有成烃贡献.塔中部分包裹油与储层油间、包裹油间显著的地球化学性质差异,指示该区具明显的多期成藏特征.塔中储层包裹体成分分析可有效地用于识别端员油、多期充注与混源聚集、恢复生物降解、气侵等次生改造原油面貌.流体包裹体成分分析对于叠合盆地的油气成因与成藏过程研究有重要意义.  相似文献   

2.
塔中隆起原油特征与成因类型   总被引:21,自引:2,他引:19  
塔里木盆地塔中隆起油气性质多样、分布与成因复杂, 为揭示油气的特征与成因, 对塔中及外围104个原油样品进行了精细地球化学研究.依据单体烃碳同位素、特征生物标志物分析, 将塔中原油分为4种类型: (1) 寒武系成因原油, 具有较重正构烷烃单体烃碳同位素(-29.6‰~-29.1‰)、甲藻甾烷较发育及C27、C28、C29规则甾烷呈反“L”型或线型分布等特征; (2) 中、上奥陶统成因原油, 具有较轻的正构烷烃单体烃同位素(-34‰~-35.6‰)、甲藻甾烷等不太发育与C27、C28、C29规则甾烷呈“V”型分布等特征; (3) 富含含硫芳烃-二苯并噻吩原油, 主要分布于塔中4井区; (4) 混源油, 单体烃碳同位素特征界于Ⅰ、Ⅱ类原油之间, 是塔中最为主要的原油类型.油-油对比与油气性质分析表明, 塔中地区至少有两套主力烃源岩供烃.塔中部分原油生物标志物显示寒武系-下奥陶统成因特征, 而单体烃碳同位素却与中上奥陶统成因原油更为接近, 这种不同馏分的不一致现象系不同成因原油混源的结果, 反映单一应用生物标志物指标有其局限性.塔中油气性质具有分带、分块、分层特征, 反映叠合盆地多源、多期成藏、储层非均质性等多种特性.   相似文献   

3.
塔里木盆地塔中4油田位于塔中构造较高部位, 具有显著不同于周边原油的特征.采用高分辨率质谱、色谱-质谱等对原油成因进行了调查.GC/MS分析表明, 塔中4油田石炭系原油中链烷烃(指示未降解-轻度降解)极其发育, 同时检测到丰富的降解三环萜烷及25-降藿烷系列(指示强烈生物降解), 反映该区油气具有多期充注特征.高分辨率质谱分析显示, 塔中4油田原油中硫化物分布正常, 低等效双键数(DBE)硫化物不太发育, 天然气组成与碳同位素也未显示异常, 反映石炭系原油可能未受TSR作用影响.观察到塔中4油田原油中硫化物组成与分布特征多数与下奥陶统原油相近, 指示两者可能有一定成因联系.混源模拟实验显示, 下奥陶统原油混入可导致塔中4油田原油出现高芳香硫特征.地质地球化学综合研究认为, 塔中4油田原油中芳香硫异常与深源油气混合有关, 与TSR作用关系不明显.   相似文献   

4.
塔里木盆地海相油气源与混源成藏模式   总被引:3,自引:0,他引:3  
塔里木盆地油气源长期争论不休.采用单体烃同位素、包裹体成分与年代指示生物标志物等途径, 对塔里木盆地塔中、轮南典型油气藏进行了油气成因与混源成藏模式的研究.结果表明, 塔中、轮南绝大部分原油生物标志物与中上奥陶统烃源岩相似, 仅少部分原油显现与寒武系—下奥陶统烃源岩相近的特征, 但正构烷烃单体烃碳同位素分析表明, 原油绝大部分实质仍为混源油.塔中包裹烃成分分析进一步证实了原油的混源特性.利用同位素进行的混源定量结果表明, 塔中原油中寒武系—下奥陶统成因原油的混入量约为11%~100%(均值45%); 轮南地区约为11%~70%(均值36%), 表明寒武系—下奥陶统、中上奥陶统均为塔里木盆地的主力烃源岩.油气运移地化指标与地质条件的综合研究认为, 塔中地区断层是油气运移的重要通道, 塔中I号断层与斜交的走滑断层的交汇点是油气的主要注入点; 轮南地区侧向运移特征较明显.研究区存在调整型、多期充注型与原生型多种混源成藏模式.塔里木海相油气的普遍混源表明深层仍有油气勘探潜能.揭示海相混源油气成藏机制是指导塔里木海相油气勘探的关键.   相似文献   

5.
<正>近年来发现塔里木盆地典型来自于寒武系-下奥陶统烃源岩的原油具有富集13C的特征,其稳定碳同位素比值基本上集中在-28‰左右。比如:塔东2井寒武系储层中的原油明显具有寒武系-下奥陶统烃源岩成因原油的生标分布特征,被认为是寒武系自生自储的一个古油藏,其全油稳定碳同位素比值为-28.283‰,但相应的烃源岩干酪根同位素比值在-31‰左右;塔中62井志留系储层的原油被认为是一典型来自于寒武系烃源岩的透镜体油藏,其全油稳定碳同位素比值为-28.606‰;另外被认为来自于寒武系-  相似文献   

6.
塔里木盆地塔北、塔中地区四口井(库南1井,轮南46井,塔中12井和塔参1井)寒武-奥陶系12个碳酸盐岩烃源岩(泥灰岩,泥质灰岩和云岩)岩芯样品抽提物芳烃组分中的二苯并噻吩类化合物组成和丰度变化特征可分为三种类型:Ⅰ二苯并噻吩、甲基二苯并噻吩型;Ⅱ二苯并噻吩、甲基二苯并噻吩、二甲基二苯并噻吩+三甲基芴混合物型;Ⅲ二苯并噻吩、甲基二苯并噻吩、二甲基二苯并噻吩和三甲基二苯并噻吩型。研究的塔北、塔中隆起11个海相油二苯并噻吩类化合物分布类型均为二苯并噻吩、甲基二苯并噻吩、二甲基二苯并噻吩和三甲基二苯并噻吩型,和海相烃源岩二苯并噻吩类化合物第Ⅲ种分布类型完全相同。据此推断:塔北隆起8个海相油可能主要来源于塔北轮南地区下奥陶统;塔中隆起3个海相油可能来源于塔中地区中-上奥陶统。  相似文献   

7.
塔中421井和塔中402井石炭系油层2个原油样和8个油砂样连续抽提组分甾烷、萜烷分布特征和正构烷烃单体碳同位素组成具有明显的差异,具有不同的来源。塔中421井上石炭统3个油砂样自由态组分、束缚态组分和油气包裹体具有伽马蜡烷和C28甾烷相对含量高、正构烷烃单体碳同位素组成重的特征,划分为Ⅰ类原油,对比认为主要来源于寒武系-下奥陶统烃源岩。塔中421井和塔中402井上石炭统的2个油样具有伽马蜡烷和C28甾烷相对含量低、并且正构烷烃单体碳同位素组成轻的特征,划分为Ⅱ类原油,其来源尚不明确。塔中402井石炭系上、中和下统的5个油砂样各类组分具有介于Ⅰ、Ⅱ类原油之间的特征,为Ⅰ和Ⅱ类原油的混合物。5个油砂样从自由态组分、束缚态组分至油气包裹体Ⅰ类原油含量依次增高,Ⅱ类原油含量依次降低。2口井8个油砂样从自由态组分、束缚态组分至油气包裹体C23三环萜烷/(C23三环萜烷+C30藿烷)和C21/(C21+∑C29)甾烷比值都依次降低,反映了油气充注过程中,原油成熟度不断升高。塔中4井区储层油砂不同吸附态烃类分子与碳同位素的研究结果反映塔中4油田具有多种油气来源,经历长期油气充注过程,寒武系-下奥陶统烃源岩在地史上对该区具有成烃贡献。  相似文献   

8.
一个典型的寒武系油藏:塔里木盆地塔中62井油藏成因分析   总被引:32,自引:4,他引:28  
塔里木盆地志留系沥青砂岩广泛发育,主要原因是来源于寒武系的原油在进入志留系储层后区域性的抬升剥蚀使油藏遭到严重破坏,但到目前为止,究竟是寒武系烃源岩还是中上奥陶统烃源岩或是两者都对现今的志留系沥青砂岩中的有机质有贡献还不清楚.对塔中62井原油的化学组成和油源的分析表明,其甾萜类组成具有寒武系烃源岩的组成特征,反映该油藏原油主要来源于寒武系.另一方面,塔中62井砂岩透镜体被泥岩圈闭,油藏具有较好的保存条件,且后期中上奥陶统生成的烃类难以充注进入油藏.塔中62井志留系油藏破坏作用较弱、保存较好,是塔里木盆地在志留系发现的第一例来源于寒武系的油藏.  相似文献   

9.
塔里木盆地一类新海相原油的地球化学特征   总被引:1,自引:0,他引:1  
对塔中52等井奥陶系储层产出的原油进行的分析结果表明,它们的三环萜烷系列较为特殊,主要表现为其相对丰度呈C19>C20>C21>C23>C24>C25>C26阶梯状的模式,C24四环萜烷异常丰富,且其丰度远高于C26三环萜烷,这一分布模式一般出现在淡水沼泽相和浅湖相沉积地层与原油中。在三萜烷分布特征上,其伽马蜡烷含量很低,甾烷系列和藿烷系列的分布与组成特征与该地区来源于中上奥陶统烃源岩的海相原油十分接近,同时它们的全油均具有轻的碳同位素组成,其δ13C值都小于-30‰,具有海相成因原油的特征。而塔中12井上奥陶统良里塔格组4-5段烃源岩中生物标志物的分析结果进一步证实了该类原油与那些富含宏观藻残片,且有机质类型偏腐殖型的上奥陶统海相烃源岩关系密切,是该地区油气勘探中值得关注的对象。   相似文献   

10.
塔里木盆地塔东2井寒武系稠油地球化学特征与成藏   总被引:1,自引:0,他引:1  
唐友军 《沉积学报》2009,27(6):1208-1215
剖析塔东2井稠油的地球化学特征与形成过程,对深化塔里木盆地海相原油的成藏特征具有重要的意义。综合运用碳同位素、色谱、色谱—质谱等技术手段研究了塔东2井寒武系稠油的特征,研究结果揭示塔东2井寒武系稠油具高伽马蜡烷、高C28甾烷、低重排甾烷和高C27 三芳甾烷的特征,与寒武系—下奥陶统烃源岩的分子特征类似,说明塔东2井寒武系原油源自寒武系—下奥陶统烃源岩;塔东2井稠油中检出高丰度的稠环化合物(荧蒽、芘、苯并\[a\]蒽、屈、苯并荧蒽、苯并芘),及全油的碳同位素值明显偏重,揭示了原油烃类经热蚀变发生稠化;流体包裹体均一化温度和埋藏—热演化史分析确定了塔东2井原油的成藏期为450~440 Ma。  相似文献   

11.
A large amount of deep oil has been discovered in the Tazhong Uplift, Tarim Basin whereas the oil source is still controversial. An integrated geochemical approach was utilized to unravel the characteristics, origin and alteration of the deep oils. This study showed that the Lower Cambrian oil from well ZS1C (
1x) was featured by small or trace amounts of biomarkers, unusually high concentration of dibenzothiophenes (DBTs), high δ34S of DBTs and high δ13C value of n-alkanes. These suggest a close genetic relationship with the Cambrian source rocks and TSR alteration. On the contrary, the Middle Cambrian oils from well ZS1 (
2a) were characterized by low δ13C of n-alkanes and relatively high δ34S of individual sulfur compounds and a general “V” shape of steranes, indicating a good genetic affinity with the Middle–Upper Ordovician source rocks. The middle Cambrian salt rock separating the oils was suggested to be one of the factors responsible for the differentiation. It was suggested that most of the deep oils in the Tazhong Uplift were mixed source based on biomarkers and carbon isotope, which contain TSR altered oil in varied degree. The percentage of the oils contributed by the Cambrian–Lower Ordovician was in the range of 19–100% (average 57%) controlled by several geological and geochemical events. Significant variations in the δ34S values for individual compounds in the oils were observed suggesting a combination of different extent of TSR and thermal maturation alterations. The unusually high DBTs concentrations in the Tazhong-4 oilfield suggested as a result of mixing with the ZS1C oil (
1x) and Lower Ordovician oils based on δ34S values of DBT. This study will enhance our understanding of both deep and shallow oil sources in the Tazhong Uplift and clarify the formation mechanisms of the unusually high DBTs oils in the region.  相似文献   

12.
Unusually high dibenzothiophene (DBT) concentrations are present in the oils from the Tazhong-4 Oilfield in the Tazhong Uplift, Tarim Basin. Positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in combination with conventional geochemical approaches to unravel the enrichment mechanisms. Significant amounts of S1 species with relatively low DBE values (0–8), i.e., sulfur ethers, mercaptans, thiophenes and benzothiophenes, were detected in three Lower Ordovician oils with high thermal maturity, which were suggested to be the products of thermochemical sulfate reduction (TSR) in the reservoir. The occurrence of TSR was also supported by the coexistence of thiadiamondoids and abundant H2S in the gases associated with the oils. Obviously low concentrations of the DBE = 9 S1 species (mainly equivalent to C0–C35 DBTs) compared to its homologues were observed for the three oils which were probably altered by TSR, indicating that no positive relationship existed between TSR and DBTs in this study. The sulfur compounds in the Tazhong-4 oils are quite similar to those in the majority of Lower Ordovician oils characterized by high concentrations of DBTs and dominant DBE = 9 S1 species with only small amounts of sulfur compounds with low thermal stability (DBE = 0–8), suggesting only a small proportion of sulfur compounds were derived from TSR. It is thermal maturity rather than TSR that has caused the unusually high DBT concentrations in most of the Lower Ordovician oils. We suggest that the unusually high DBT oils in the Tazhong-4 Oilfield are caused by oil mixing from the later charged Lower Ordovician (or perhaps even deeper), with high DBT abundances from the earlier less mature oils, which was supported by our oil mixing experiments and previous relevant investigations as well as abundant authigenic pyrite of hydrothermal origin. We believe that TSR should have occurred in the Tazhong Uplift based on our FT-ICR MS results. However, normal sulfur compounds were detected in most oils and no increase of δ13C2H6–δ13C4H10 was observed for the gas hydrocarbons, suggesting only a slight alteration of the oils by TSR currently and/or recently. We suspect that the abnormal sulfur compounds in the Lower Ordovician oils might also be a result of deep oil mixing, which might imply a deeper petroliferous horizon, i.e., Cambrian, with a high petroleum potential. This study is important to further deep petroleum exploration in the area.  相似文献   

13.
<正>The Silurian stratum in the Tazhong uplift is an important horizon for exploration because it preserves some features of the hydrocarbons produced from multi-stage tectonic evolution.For this reason,the study of the origin of the Silurian oils and their formation characteristics constitutes a major part in revealing the mechanisms for the composite hydrocarbon accumulation zone in the Tazhong area.Geochemical investigations indicate that the physical properties of the Silurian oils in Tazhong vary with belts and blocks,i.e.,heavy oils are distributed in the TZ47-15 well-block in the North Slope while normal and light oils in the No.Ⅰfault belt and the TZ16 well-block,which means that the oil properties are controlled by structural patterns.Most biomarkers in the Silurian oils are similar to that of the Mid-Upper Ordovician source rocks,suggesting a good genetic relationship. However,the compound specific isotope of n-alkanes in the oils and the chemical components of the hydrocarbons in fluid inclusions indicate that these oils are mixed oils derived from both the Mid-Upper Ordovician and the Cambrian-Lower Ordovician source rocks.Most Silurian oils have a record of secondary alterations like earlier biodegradation,including the occurrence of "UCM" humps in the total ion current(TIC) chromatogram of saturated and aromatic hydrocarbons and 25-norhopane in saturated hydrocarbons of the crude oils,and regular changes in the abundances of light and heavy components from the structural low to the structural high.The fact that the Silurian oils are enriched in chain alkanes,e.g.,n-alkanes and 25-norhopane,suggests that they were mixed oils of the earlier degraded oils with the later normal oils.It is suggested that the Silurian oils experienced at least three episodes of petroleum charging according to the composition and distribution as well as the maturity of reservoir crude oils and the oils in fluid inclusions.The migration and accumulation models of these oils in the TZ47-15 well-blocks,the No.Ⅰfault belt and the TZ16 well-block are different from but related to each other.The investigation of the origin of the mixed oils and the hydrocarbon migration and accumulation mechanisms in different charging periods is of great significance to petroleum exploration in this area.  相似文献   

14.
Carbon isotopic compositions were determined by GC–IRMS for individual n-alkanes in crude oils and the free, adsorbed and inclusion oils recovered by sequential extraction from reservoir rocks in the Tazhong Uplift and Tahe oilfield in the Tabei Uplift of Tarim Basin as well as extracts of the Cambrian–Ordovician source rocks in the basin. The variations of the δ13C values of individual n-alkanes among the 15 oils from the Tazhong Uplift and among the 15 oils from the Triassic and Carboniferous sandstone reservoirs and the 21 oils from the Ordovician carbonate reservoirs in the Tahe oilfield demonstrate that these marine oils are derived from two end member source rocks. The major proportion of these marine oils is derived from the type A source rocks with low δ13C values while a minor proportion is derived from the type B source rocks with high δ13C values. Type A source rocks are within either the Cambrian–Lower Ordovician or the Middle–Upper Ordovician strata (not drilled so far) while type B source rocks are within the Cambrian–Lower Ordovician strata, as found in boreholes TD2 and Fang 1. In addition, the three oils from the Cretaceous sandstone reservoirs in the Tahe oilfield with exceptionally high Pr/Ph ratio and δ13C values of individual n-alkanes are derived, or mainly derived, from the Triassic–Jurassic terrigenous source rocks located in Quka Depression.The difference of the δ13C values of individual n-alkanes among the free, adsorbed and inclusion oils in the reservoir rocks and corresponding crude oils reflects source variation during the reservoir filling process. In general, the initial oil charge is derived from the type B source rocks with high δ13C values while the later oil charge is derived from the type A source rocks with low δ13C values.The δ13C values of individual n-alkanes do not simply correlate with the biomarker parameters for the marine oils in the Tazhong Uplift and Tahe oilfield, suggesting that molecular parameters alone are not adequate for reliable oil-source correlation for high maturity oils with complex mixing.  相似文献   

15.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

16.
Two oil families in Ordovician reservoirs from the cratonic region of the Tarim Basin are distinguished by the distribution of regular steranes, triaromatic steroids, norcholestanes and dinosteroids. Oils with relatively lower contents of C28 regular steranes, C26 20S, C26 20R + C27 20S and C27 20R regular triaromatic steroids, dinosteranes, 24-norcholestanes and triaromatic dinosteroids originated from Middle–Upper Ordovician source rocks. In contrast, oils with abnormally high abundances of the above compounds are derived from Cambrian and Lower Ordovician source rocks. Only a few oils have previously been reported to be of Cambrian and Lower Ordovician origin, especially in the east region of the Tarim Basin. This study further reports the discovery of oil accumulations of Cambrian and Lower Ordovician origin in the Tabei and Tazhong Uplifts, which indicates a potential for further discoveries involving Cambrian and Lower Ordovician sourced oils in the Tarim Basin. Dinosteroids in petroleum and ancient sediments are generally thought to be biomarkers for dinoflagellates and 24-norcholestanes for dinoflagellates and diatoms. Therefore, the abnormally high abundance of these compounds in extracts from the organic-rich sediments in the Cambrian and Lower Ordovician and related oils in the cratonic region of the Tarim Basin suggests that phytoplankton algae related to dinoflagellates have appeared and might have flourished in the Tarim Basin during the Cambrian Period. Steroids with less common structural configurations are underutilized and can expand understanding of the early development history of organisms, as well as define petroleum systems.  相似文献   

17.
Carbazole compounds in crude oils from the Tazhong uplift of the Tarim basin have been fractionated and detected and successfully used to study petroleum migration and trace source rocks in the study area. Alkylcarbazoles have been found in large amounts in the oil samples analyzed and alkylbenzocarbazoles detected in a small concentration only in part of the samples, but alkyldibenzocarbazoles have not been found in oils. Based on the distribution of G1, G2 and G3 of C2-alkylcarbazoles, the ratio of C3-carbazoles to C2-carbazoles and the relative amounts of alkylcarbazoles and alkylbenzocarbazoles, one can know that the vertical oil migration in the Tazhong uplift is generally from below upward, i.e. from the Ordovician through the Silurian to the Carboniferous. Evidently, source rocks in the uplift should be lower Palaeozoic strata (Ordovician and Cambrian). This study shows that carbazoles are of great importance in the study of petroleum migration and source rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号