首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 397 毫秒
1.
班公湖—怒江缝合带作为青藏高原拉萨地块和羌塘地块的重要缝合带, 具有比较复杂的构造演化史, 然而其深部结构和俯冲极性仍存在较大争议。本文利用横穿班公湖—怒江缝合带中段的近南北向大地电磁测线, 处理和分析大地电磁测深曲线和相位张量特征, 并通过三维大地电磁反演获得了班公湖—怒江缝合带两侧的深部电性结构。三维大地电磁反演结果显示, 沿测线分布显著的中下地壳高导异常。大致以班公湖—怒江缝合带为界, 可将中下地壳高导异常分为两部分, 北拉萨地块近水平展布的高导异常层和南羌塘地块下方明显北倾的高导异常。结合早期的研究资料, 分析认为中下地壳高导异常应该为地壳部分熔融所致, 且深部电性结构符合沿测线观测的大地热流值变化。同时, 中下地壳高导异常可能指示了中生代班公湖—怒江洋的俯冲闭合痕迹, 北倾的中下高导异常支持大洋向北俯冲至羌塘地块之下, 而北拉萨地块下方的高导异常层可能为低角度俯冲的小洋盆。  相似文献   

2.
青藏高原西缘札达至泉水湖剖面大地电磁探测结果表明, 研究区被雅江缝合带、班公-怒江缝合带划分为3个构造区域, 由南至北分别为喜玛拉雅地体、冈底斯地体和羌塘地体.研究区内普遍存在中下地壳高导层, 高导层的顶面埋深起伏较大, 冈底斯内的高导层埋深大, 羌塘和喜玛拉雅地体内的高导层埋深较浅.在班公-怒江缝合带南侧高导层埋深最大, 班公-怒江缝合带南北两侧高导层埋深存在一个约20km的错动.冈底斯地体内的地壳高导层呈北倾形态, 南羌塘的地壳具有双高导层.沿剖面的上地壳存在多组规模不等、产状不同的电性梯度带或畸变带, 反映了沿剖面地区的缝合带与断裂带分布情况.根据电性结构特征, 推断了雅江缝合带、班公-怒江缝合带以及龙木措、噶尔藏布等主要断裂的构造特征与空间分布.   相似文献   

3.
根据2004年在青藏高原东南部完成的下察隅—昌都(1000线)宽频带大地电磁探测剖面数据研究高原东南部地壳导电性结构及断裂构造特征,这有助于推进印度与亚洲岩石圈碰撞、俯冲构造模式的研究。研究结果表明,沿剖面上地壳大范围分布的是规模不等的高阻体,电阻率大约在90~3000Ω.m,厚度由南向北增加,底界面的深度大约在5~30km变化。高阻层之下发现由不连续高导体构成的中地壳低阻层,其电阻率小于10Ω.m;其结构与青藏高原中、西部的壳幔高导体相似,但规模小得多,底面埋深也浅得多。沿剖面的上地壳存在多组规模不等、产状不同的横向电性梯度带或畸变带,它们反映了沿剖面地区地壳的断裂分布。通过与该区高精度重力资料对比,在重要的电性梯度带上,均存在布格重力低异常和负重力均衡异常。结合区域地质资料分析推断了嘉黎—然乌、班公—怒江和甲桑卡—赤布张错等主要断裂构造带的空间格局。  相似文献   

4.
西藏高原中南部地壳与上地幔导电性结构   总被引:2,自引:0,他引:2  
叶高峰  金胜  魏文博 《地球科学》2007,32(4):491-498
根据2001年国土资源部"十五"青藏专项研究计划项目"西藏高原南部岩石圈电性结构的大地电磁研究"所完成的吉隆-措勤剖面(800线)以及2004年教育部重大项目"藏南雅鲁藏布江缝合带地区地壳三维电性结构及其构造地质学与动力学意义的研究"所完成的定日-措迈剖面(900线)超宽频带大地电磁测深数据,研究西藏高原中南部地壳及上地幔电性结构特征及雅鲁藏布江缝合带导电性结构特征:800线和900线上地壳范围内主要为高阻区,电阻率在200~3000Ω.m之间,顶面大范围出露,底面一般在15~20km深度处,整体上,高阻区底面由南向北逐渐加深,再向北又逐渐变浅,900线高阻体底界深达30km,而800线高阻体底界更深达38km;地下15~45km深度范围内存在一组电性梯度带,该电性梯度带之下存在一组硕大的高导层,其电阻率小于5Ω.m,高导层由规模不等且不连续的高导体构成.雅鲁藏布江以南的中地壳高导体,规模较小,厚度在10km左右,产状略向北倾;雅鲁藏布江以北的高导体,规模较大,厚度在30km左右,产状向北缓倾;相比之下,900线的高导体厚度较小,顶面深度较浅.通过对岩石电阻率影响因素的讨论,推测高导体的成因是部分熔融或含水流体,判断藏南巨厚的中、下地壳的物质状态是热的、软弱的、塑性的.  相似文献   

5.
喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据   总被引:4,自引:0,他引:4  
2009~2010年在南迦巴瓦地区进行了宽频带地震和大地电磁探测,分别处理获得东构造结及其邻区的地下300km以上的P波速度图像和两条大地电磁电阻率剖面。通过资料的对比和综合解释,发现电阻率分布与地震波速有较好的对应关系。研究结果表明:南迦巴瓦变质体的上地壳部分呈现明显高速高阻特征,为两侧的雅鲁藏布江缝合带所夹持;中下地壳具有不均匀性,且普遍呈低速低阻特征;印度板块在藏东南向欧亚板块的俯冲前缘越过嘉黎断裂,抵达班公湖-怒江缝合带;在拉萨地体的高速俯冲板片以下100km至200km深度范围内存在大规模的低速异常带,其上盘中下地壳也广泛发育低速高导体,指示青藏高原东南缘可能存在韧性易流动的物质向东、东南逃逸的通道,为印度板块在南迦巴瓦的深俯冲动力学模式提供了地球物理证据。  相似文献   

6.
揭示班公湖- 怒江(班怒)缝合带Moho(莫霍面)结构对于认识中特提斯洋壳俯冲和南羌塘坳陷成因具有重要地球动力学意义。基于横跨班怒缝合带的深反射地震数据(88°30′E),本文采用了中长波长静校正、噪声压制、优化叠加和叠前深度偏移(PSDM)等地震处理技术,获得了深度域地震反射偏移剖面、层速度场和高分辨率Moho结构。由深度域剖面显示,班怒缝合带Moho位于地表以下65~80 km,呈不连续北向抬升趋势,指示在拉萨地块与南羌塘地块之间存在岩石圈上地幔断阶,最大阶步可达15 km。综合分析缝合带两侧的Moho形态认为,这些断阶受南侧拉萨地体的岩石圈上地幔以19. 5°北倾俯冲与北侧南羌塘地块的上地壳抬升驱动,可能与深部存在局部熔融相关。班怒缝合带下的Moho结构表明,随着晚侏罗世—早白垩世中特提斯洋闭合,南羌塘地体由边缘海沉积向前陆盆地转换,形成南羌塘坳陷。  相似文献   

7.
为了较全面、客观地认识南京(宁)-芜胡(芜)地区岩石圈深部结构,探讨岩石圈热结构和壳、幔物质状态等重要科学问题,为矿集区成矿作用和成矿规律的研究提供依据,我们完成了6条宽频大地电磁测深剖面。通过分析各剖面电性成像结果,讨论了研究区地壳-上地幔导电性的"拟三维"结构,发现测区普遍存在连续的下地壳-上地幔低阻层,仅在巢湖冲褶体断开。结合区域热流结果,我们认为下地壳-上地幔有较好的导电性,可能存在局部"熔融体"或"含水剪切断裂",其物质状态很可能是热的、软弱的。此外,我们通过物质状态和电性界面推断了上地幔隆起的位置和长江深断裂带的分布范围,认为长江断裂带不但存在,而且由多条北深南浅的断裂组成,较为复杂。  相似文献   

8.
青藏高原地热资源与地壳热结构   总被引:3,自引:0,他引:3  
青藏高原具有独特的地壳结构和高热背景。南部的喜马拉雅地块属于"热壳冷幔"型,拉萨-冈底斯地体属于"热壳热幔"型地块,该区域内中地壳范围内存在一低速高导层,可能为部分熔融岩浆囊,形成了规模宏伟的地热带。高原水热活动带主要出露在喜马拉雅-冈底斯-念青唐古拉之间,>25℃的水热区有283处,>80℃的沸、热泉有近40处。著名的羊八井高温热储地热田,已经建成装机容量达25.18 MW的地热电站,为拉萨输送了大量电力,地热资源在高原能源结构中占有重要的地位,具有巨大的开发前景和价值。   相似文献   

9.
为了揭示粤北地区岩石圈深部结构、深大断裂性质及花岗岩分布规律等科学问题,布设了乳源-潮州宽频带大地电磁探测剖面。由二维反演得出的电性结构,讨论了粤北地区岩石圈导电性结构特点。沿剖面存在3个花岗岩分布区,呈现不同的类型,可能代表不同的成因模式。沿剖面划分3条北东向断裂带:吉安-四会断裂、赣江断裂于韶关东形成宽度近20km的低阻区域,其间形成断陷盆地;河源-邵武断裂带,其两侧发育壳幔高导层并发育壳幔混合型花岗岩,深部电性结构复杂,可能为壳幔剧烈作用的场所;丽水-海丰断裂带,控制了燕山晚期花岗岩的分布。韶关、连平之间和龙川、丰顺之间50~150km存在2个巨大的低阻体,可能是地幔物质底侵作用的"通道";且底侵方向指向连平和龙川之间的区域,由于底侵作用力贡献,发育了一系列的壳内和上地幔高导层。粤北地区岩石圈从西向东逐渐减薄,从100余km减薄到60km,反映了太平洋板块对欧亚板块的消减作用。潮州100km深度以下的中-低阻特征,推断为太平洋板块俯冲作用留下的"洋壳"物质。  相似文献   

10.
青藏高原电性结构及其对岩石圈研究的意义   总被引:4,自引:0,他引:4       下载免费PDF全文
在西藏近南北向布设了横跨青藏高原的3条大地电磁测深剖面(亚东-雪古拉、达孜-巴木错、那曲-格尔木),采用超宽频带大地电磁测深方法进行了地壳、上地幔电性结构探测研究,发现该剖面具有的主要电性结构特征为:①那曲以南地段,电性层比较薄,低阻体多呈串珠状断续分布,产状明显北倾,倾角为20°~30°。②那曲—雁石坪地段,电性层厚度有所增加,低阻体或高阻体呈近于水平薄板状分布。③雁石坪以北地段,电性层厚度较大,低阻体呈大透镜体状较连续地向南倾,倾角40°左右。④3个地段的电性层差异明显,与构造背景和岩浆活动性关系密切。以上电性特征为研究印度板块和欧亚大陆碰撞机制提供了地球物理依据。  相似文献   

11.
The magnetotelluric (MT) survey along the Zhada (札达)-Quanshui (泉水) Lake profile on the western margin of the Qinghai (青海)-Tibet plateau shows that the study area is divided into three tectonic provinces by the Yalung Tsangpo and Bangong (班公)-Nujiang (怒江) sutures. From south to north these are the Himalayan terrane, Gangdise terrane, and Qiangtang (羌塘) terrane. For the study area, there are widespread high-conductivity layers in the mid and lower crust, the top layers of which fluctuate intensively. The high-conductivity layer within the Gangdise terrane is deeper than those within the Qiangtang terrane and the Himalaya terrane, and the deepest high-conductivity layer is to the south of the Bangong-Nujiang suture. The top surface of the high-conductivity layer in the south of the Bangong-Nujiang suture is about 20 km lower than that in the north of it. The high-conductivity layer within the Gangdise terrane dips toward north and there are two high-conductivity layers within the crust of the southern Qiangtang terrane. In the upper crust along the profile, there are groups of lateral electrical gradient zones or distortion zones of different scales and occurrence indicating the distribution of faults and sutures along the profile. According to the electrical structure, the structural characteristics and space distribution of the Yalung Tsangpo suture,Bangong-Nujiang suture, and the major faults of Longmucuo (龙木错) and Geerzangbu are inferred.  相似文献   

12.
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

13.
《Gondwana Research》2010,17(3-4):545-562
This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1–1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However, one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.  相似文献   

14.
印度—亚洲俯冲带结构——岩浆作用证据   总被引:31,自引:4,他引:31  
在印度与亚洲大陆碰撞之后 ,两个大陆之间是否存在大陆俯冲是关系到高原地壳加厚、隆升等构造演化模式的重要问题。近 2 0年来以各种地球物理方法为主的深部探测结果揭示了青藏高原的岩石圈结构 ,表明印度向亚洲下部的俯冲是存在的 ,但是其俯冲的规模仍存在争议。不同观点认为印度岩石圈前缘已经到达班公—怒江缝合带的下部约 2 0 0km深度、俯冲在整个西藏岩石圈深部、或者仅仅越过雅鲁藏布江断裂。地热泉He同位素、碰撞后岩浆作用的年代学、岩石学与地球化学研究结果表明冈底斯带与高原北部地区具有相同的岩石圈地幔源区 ,并且存在印度板块在 13~ 2 5Ma之前就俯冲在冈底斯带西部的岩石学和地球化学证据 ,考虑到印度板块的持续向北运动 ,则岩浆作用支持印度岩石圈现今已经达到或者越过班公—怒江缝合带的俯冲模式。  相似文献   

15.
王刚  方慧  仇根根  黄继民 《中国地质》2019,46(4):795-806
长江中下游地区经历了多期次的地质构造演化具有丰富的矿产资源,对重要矿集区及其邻区的深部电性结构进行研究具有重要意义。通过对穿过安庆—贵池矿集区的一条宽频带大地电磁测深长剖面数据进行分频段以及分区反演,构建了覆盖大别造山带至下扬子地块东缘的二维电性结构模型。发现矿集区的深部电性结构与邻区的构造单元具有显著差异,大别造山带和江南隆起带与浙赣凹陷之间的地壳整体表现为高阻特征,而下扬子坳陷和江南隆起带之间存在岩石圈上地幔尺度的高导电异常体并且与地壳浅部的高导体相连。安庆—贵池矿集区的成矿机制主要为燕山期陆内俯冲以及早白垩时期的伸展作用,矿集区下地壳加厚、拆沉和上地壳丰富的断裂系统起到了重要的控矿作用。  相似文献   

16.
班公湖—怒江缝合带是青藏高原内一条重要的缝合带,其俯冲极性和闭合时限一直存在着争议,这无疑限制了我们对青藏高原演化历史的认识。本文对仲岗安山玄武岩和一套新发现的晚白垩世安山岩进行研究,获得了其锆石U-Pb年龄分别为123.75±0.92 Ma和74.23±0.76 Ma。仲岗安山玄武岩锆石的ε_(Hf)(t)值为-7.3~+4.4,具有岛弧玄武岩特征,指示班公湖—怒江洋盆在该地区仍然继续向北俯冲;晚白垩世安山岩锆石的ε_(Hf)(t)值为+3.1~+11.1,其可能是亏损地幔混熔了部分的陆壳物质而形成的,且不整合在蛇绿岩之上。结合区域资料本文认为班公湖—怒江洋盆在改则地区的闭合时限在100~75 Ma之间。  相似文献   

17.
班公湖-怒江中特提斯洋的俯冲极性和俯冲时间一直存在争议。作者通过野外地质调查、岩相学、锆石U-Pb年代学及岩石地球化学研究,从西藏班公湖蛇绿混杂岩带中识别出一套早白垩世SSZ型蛇绿岩,岩石组合上主要由辉长岩和玄武岩组成,还有少量的硅质岩和超基性岩。本文对辉长岩进行了全岩主、微量元素地球化学及LA-ICP-MS锆石U-Pb年代学研究。地球化学组成特征显示,辉长岩富集轻稀土元素,重稀土元素平坦,相对富集大离子亲石元素,高场强元素存在一定亏损;Th/Ta比值与岛弧玄武岩相似(Th/Ta1.6),Ta/Hf比值较高(0.1),显示其既保留了俯冲环境的地球化学特征,也提供了伸展构造环境的信息。辉长岩中锆石U-Pb加权平均年龄为129.2±0.4 Ma(MSWD=0.36),该年龄是班公湖-怒江缝合带中迄今报道的最年轻蛇绿岩年龄。结合区域地质背景,认为这套蛇绿岩形成于班公湖-怒江古洋盆西段向南俯冲形成的弧前盆地,而班公湖-怒江古洋盆北向俯冲可能始于早侏罗世,晚侏罗世形成双向俯冲格局,直到早白垩世洋盆关闭,晚白垩世进入陆内构造环境。  相似文献   

18.
The features of the faults in the central and northern Tibetan plateau are discussed, based on two super-wide band magnetotelluric (MT) sounding profiles belonging to the INDEPTH (III)-MT project, which were finished between 1998 and 1999: one is from Deqing to Longweicuo (named line 500), the other is from Naqu to Golmud (line 600). This work assists research on the collision and subduction mode between the India and Asia plates. The MT results show that there is a series of deep faults, F1 to F10, in the central and northern Tibetan plateau. Of these faults, F2 is an earlier main fault which leans to the north, and F1 is a later main overriding fault. The Jiali deep fault zone, which has a very complex space structure, is composed of these two faults. F3, F4 and F5 are super-deep faults. They are high-angle faults and lean a little to the south. The main fault zone of the Bangong-Nujiang suture is composed of these three faults. Because of later activity in the structure, several shallow faults formed in the upper crust within the Bangong-Nujiang suture. The Tanggula fault zone is composed of two main faults, F6 and F7, and a series of sub-faults. The shallow segments of the main faults are in high angles and the deep segments of main faults are in low angles. These two faults generally lean to the south and extend into the lower crust. The Jinshajiang suture is composed of the Jinshajiang fault (F8) and the Kekexili fault (F9), and there is a series of sub-faults in the upper crust between these two faults. The Jinshajiang suture is a very wide suture caused by continent-continent collision. The Middle Kunlun fault (F10), which is the main structure of the Kunlun fault zone, is a high angle, super-deep fault. It is the north boundary of the Songpan-Ganzi-Kekexili block. Based on the conductive structure of the profile, the southern part of the Middle Kunlun fault belongs to the Tibetan plateau, but it is not certain whether the northern part of the Middle Kunlun fault belongs to the Tibetan plateau. There are conductive bodies stretching from the crust into the upper mantle below the Bangong-Nujiang suture and Jinshajiang suture. This may suggest heat exchange between the crust and mantle. Translated from Earth Science—Journal of China University of Geosciences, 2006, 31(2): 257–265 [译自: 地球科学—中国地质大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号