首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近百年海螺沟冰川退缩区域土壤CO2排放规律   总被引:1,自引:0,他引:1  
罗辑  李伟  廖晓勇  何祖慰 《山地学报》2004,22(4):421-427
贡嘎山东坡海螺沟冰川退缩地植被原生演替系列的样地调查基础上,用光合作用测定仪(美国产CI-301PS)的闭路方法测定土壤呼吸,并测定相关的生态因子。对植被原生演替过程中草本群落,川滇柳,冬瓜杨小树林,冬瓜杨中龄林,冬瓜杨成熟林,针阔混交林,云冷杉中龄林和云冷杉成熟林7个阶段的土壤呼吸速率进行连续3a的测定,它们的土壤CO2排放通量分别是51 67、39 70、56 45、58 89、85 22、120 26和158 65kgCO2/hm2·d-1。建立了7个阶段的土壤呼吸速率与温度的相关关系,认为未来大气温度升高将对同一气候区内的草地土壤呼吸影响最大,对演替过程中的落叶阔叶林土壤呼吸影响次之,对云冷杉林土壤呼吸影响最小。样地的形成年龄、生物量和净初级生产力这些与演替进程植物群落新陈代谢水平呈正相关的因素,才是决定样地土壤呼吸速率的主要因素,也是各样地之间土壤呼吸速率存在差异的主要原因。并将植被原生演替序列土壤CO2排放通量与国内外测定不同类型土壤呼吸速率的结果进行比较,认为Raich等人对温带针叶林土壤排放CO2通量的估测值偏低,对全球不同生态系统类型土壤排放CO2通量的差异估测不足。  相似文献   

2.
以短期的植被更替如何影响土壤剖面的13C富集以及这些富集现象揭示的土壤碳循环机理为目的,采集云南省曲靖地区发生植被演替的山地土壤剖面5组,分别测定了稳定碳同位素比值(δ13C)、总有机碳含量(TOC)和碳密度,并比较了它们之间的差异。研究发现:短期植被改变(约10年)对土壤剖面中0~30 cm层的δ13C值具有显著影响,其中对0~10 cm层土壤影响最大。灌木更替为森林和草地后土壤有机质的δ13C变化分别达2.28‰和5.08‰。30~50 cm层土壤δ13C值对植被改变不敏感,该层可以作为土壤剖面的基准剖面层。大气δ13C值变化不是森林土壤0~50 cm剖面层中13C随深度减小而富集的主要原因。10年间,植被从灌木演替为人工种植的麻栎乔木或从灌木植被退化为草本植被,0~30 cm层土壤剖面的有机碳密度改变量分别为2.30 kg/m2和-1.00 kg/m2。而植被从灌木到人工种植麻栎的碳密度改变率为0.230 kg/m2/a,这对改变山地土壤的碳密度、短期增加碳储量具有重要意义。δ13C在C3植被的短期演替过程中具有很好的辨识力,可以作为土壤碳库更替和碳循环的研究工具。  相似文献   

3.
粗木质残体(coarse woody debris,CWD)是森林生态系统的重要组成部分,在森林生态系统的结构性和功能性方面有着重要的作用.以福建三明米槠(Castanopsis carlesii)天然林为研究对象,采用样方法调查了样地内粗木质残体的分解等级和径级分布,研究米槠天然林粗木质残体的储量特征.结果表明:(1...  相似文献   

4.
鼎湖山木荷(Schima Superba)粗死木质残体的分解研究   总被引:1,自引:0,他引:1  
以鼎湖山国家自然保护区季风常绿阔叶林优势种之一木荷的粗死木质残体为研究对象,采用目前国际较认可的腐解等级划分方法,对木荷粗死木质残体3个腐解等级(Ⅰ、Ⅱ、Ⅲ)的密度及养分含量进行测定分析.结果表明:①木荷粗死木质残体的密度随腐解等级的增加从0.58 g/cm3下降到0.16 g/cm3,分解速率常数K值为0.144 7/a,在自然状态下,木荷粗死木质残体分解95%所需时间约为21 a;②粗死木质残体C/N比值随分解的进行先降后升而N/P则相反;③K、Ca、Na、Mg离子浓度随腐解等级的增加出现不同程度的增加,但增幅不明显.研究结果旨在为系统评估粗死木质残体的分解行为在生态系统养分循环中的作用提供基础数据.  相似文献   

5.
耕地弃耕后植被次生演替过程中土壤微生物碳的大小和活性的研究结果表明,与耕地相比,各种演替阶段的弃耕地均有较高的有机碳和微生物碳含量,在26 a限弃耕地中,有机碳和微生物碳的含量达到天然植被的64.56%和48.69%,而且有机碳和微生物碳与演替的时间表现为显著正相关(P<0.01),而微生物碳和有机碳的比值却随着演替没有显示明显的变化趋势。有机碳和微生物碳的大小顺序为:自然植被>各种演替阶段的弃耕地>小麦地。代谢熵(qCO2)随着演替的进程没有明显的变化趋势。与各种弃耕地和耕地相比,自然植被有较低的qCO2。这说明耕地弃耕后植被的自然演替有利于提高土壤微生物碳,改善土壤肥力。  相似文献   

6.
对福建省南平市安曹下87年生的杉木人工林碳库及其分配进行研究.采用分层切割法和相对生长方程计算乔木层生物量,样方收获法测定林下植被生物量、枯枝落叶层和粗木质残体现存量,CN元素分析仪测定碳含量,研究结果表明:老龄杉木人工林生态系统碳库为287.89t·hm^-2,其中乔木层碳库占生态系统碳库的68.18%,矿质土壤层碳库占26.39%,而林下植被层、枯枝落叶层和粗木质残体碳库所占比例之和不超过6%。老龄杉木林的干材(干+皮)碳库占乔木层碳库的79.61%。87年生与40年生杉木人工林碳库很接近,前者比后者仅高出7.15%,主要是因为两者占生态系统主体的乔木层碳库和土壤层碳库很接近,前者分别仅高出后者的4.51%和10.39%,前者林下植被层和粗木质残体碳库较大,分别是后者的2.05倍和2.80倍,而枯枝落叶层碳库则低于后者。因此,老龄阶段杉木人工林生态系统碳库增幅不大,但在碳库分配上变化明显。  相似文献   

7.
为阐明祁连山青海云杉(Picea crassifolia)林分布带对其土壤碳、氮含量的影响,以分布在祁连山东段和西段的典型青海云杉林为研究对象,通过野外取样和室内分析,论述了青海云杉林浅层土壤碳、氮含量特征及其相互关系。结果表明:(1)祁连山东、西段土壤剖面有机碳含量均随土壤深度的增加而减小,但不同土层差异显著性不同,0~40cm含量分别为73.57±17.17g·kg-1和45.85±11.93g·kg-1;东、西段土壤剖面有机碳储量没有明显的变化规律,0~40cm有机碳储量分别为205.51±39.44t·hm-2和134.93±25.80t·hm-2。(2)祁连山东、西段土壤全氮含量随土层深度变化和不同土层差异显著性变化规律同土壤有机碳含量,0~40cm全氮含量分别为4.56±0.88g·kg-1和2.81±0.66g·kg-1;东、西段土壤全氮储量亦同土壤有机碳储量变化规律,0~40cm储量分别为12.77±2.08t·hm-2和8.38±1.56t·hm-2。(3)祁连山东、西段土壤剖面不同土层C/N比差异显著性变化规律相同,其C/N值分别为15.92±1.24和16.10±2.07;C/N比值大小主要取决于有机碳含量;线性分析表明,土壤有机碳与全氮含之间呈极显著的正相关关系,可用乘幂曲线模型Y=aXb较好地描述(p0.01)。上述研究结果可为祁连山水源涵养林建群种青海云杉林的经营和管理提供理论依据和数据支撑。  相似文献   

8.
土壤碳氮储量对陆地生态系统碳氮循环及全球变化研究具有重要意义。为了阐明乌拉特梭梭(Haloxylon ammodendron)林国家级自然保护区土壤碳氮储量分布与变化规律,利用相关性分析、随机森林与SHAP解释方法确定影响土壤碳氮储量的关键因子。本研究采用可通行路线网格布点法,在保护区内布设61个调查点,采集表层土壤(0~20 cm),测定土壤碳氮储量,分析其主要影响因素。结果表明:乌拉特梭梭林保护区内土壤全碳和全氮储量在空间上均呈现西高东低、北高南低的特点,其中核心区的全碳储量(1429.91 g·m^(-2))显著高于缓冲区(1194.09 g·m^(-2))和试验区(986.36 g·m^(-2));不同区域的全氮储量差异不显著(P>0.05),核心区、缓冲区、试验区分别为76.79、62.39、51.28 g·m^(-2);pH、电导率、梭梭树高度、物种丰富度、植被盖度和草本生物量在3个区域差异显著(P<0.05)。影响梭梭林保护区表层土壤全碳储量的关键因子为土壤全碳、土壤全氮、土壤含水率、电导率、容重、梭梭树高度、植物密度和pH,SHAP分析表明土壤容重、pH与土壤全碳储量呈负相关,其余因子与土壤全碳储量均呈显著性正相关;影响土壤全氮储量的关键因子为土壤全氮、土壤全碳、电导率、容重、土壤含水率、梭梭树高度、植被盖度、碳氮比和植物密度,SHAP分析表明土壤容重、碳氮比与土壤全氮储量呈负相关,其余因子与土壤全氮储量均呈显著性正相关;基于SHAP值计算的平均因子贡献率表明,保护区内较低的植物密度是限制土壤碳氮储量的关键因素。本研究同时发现,当梭梭树的平均高度高于2 m时对土壤碳氮储量的贡献有显著提升,因此加强对保护区内梭梭林的管理对提升土壤质量具有积极作用。  相似文献   

9.
三峡库区草地群落净生态系统生产力(NEP)的核算对于碳源/汇功能评价和生态屏障功能诊断具有重要理论意义。本文选取三峡库区的三种典型草地群落(雀梅藤群落、芒草群落、扭黄茅群落)为研究对象。基于气象数据和基础数据(高程、植被类型、土壤质地等),利用BIOME-BGC模型模拟并分析了1999—2013年库区草地群落植被NPP、NEP的变化特征及其与水热因子的相关性,分析了碳储量的变化特征及储存分布差异。结果表明:三种草地群落的植被NPP、NEP的年内变化规律均呈现倒U型,其中7—8月数值最大,呈现出明显碳源—碳汇—碳源的变化特征;三种草地群落多年NEP的平均值分别为6.63、4.85、4.17 g C·m~(-2)·a~(-1),碳汇功能明显。不同草地群落NPP、NEP对水热因子响应差异明显,其中雀梅藤群落NPP与温度呈显著正相关,与降水量呈负相关;芒草群落、扭黄茅群落NPP与温度均呈负相关,与降水量呈正相关;三个草地群落的NEP与温度均呈正相关,与降水量均呈负相关。三种草地群落碳储量丰富,多年累计值分别为33 979、50 750、29 236 kg C·m~(-2),且85%~90%储存在土壤中,植被碳储量最少约为3%~4%。  相似文献   

10.
北京森林碳储量海拔梯度上的变化趋势(英文)   总被引:2,自引:0,他引:2  
像北京这样的中国城市化地区的快速人口和GDP增长已经导致了来自化石燃料的大量CO2排放。森林被认为是最重要的碳汇,可以中和碳排放。本研究基于2009年森林清查数据和森林植被碳含量,采用生物量扩展因子(BEFs)方法评价了北京森林植被碳储量,利用森林凋落物与森林生物量的比例以及凋落物碳含量计算了凋落物碳储量,利用土壤厚度、容重和SOM含量计算了土壤碳储量。我们总结得出,阔叶林是北京森林主要碳库,森林碳储量主要分布在海拔60m的平原地区和60-600m的低山地区。北京森林碳密度几乎随着海拔增加而增加,但是在海拔200-400m地区略有下降,其中植被碳密度在60m的平原地区相对较高,这主要是由于碳密度较高的杨树和落叶松人工林的比例较高以及灌溉、施肥等促进植物碳累积的人工管理措施较多;森林土壤碳密度几乎随着海拔增加而增加,这主要是由于土壤碳输出随着海拔增加而逐渐下降,因为林下种植、灌溉和施肥加速了低海拔地区的土壤异氧呼吸但随着海拔增加而下降,同时海拔200-800m的低山地区常见的土壤侵蚀也会随着林下种植等干扰措施的减少而下降。本研究可以为区域森林生态系统管理者提供保护森林生态系统和改善森林碳储量提供科学知识。  相似文献   

11.
老龄杉木人工林生态系统碳库及分配   总被引:7,自引:3,他引:4  
对福建省南平市安曹下87年生的杉木人工林碳库及其分配进行研究.采用分层切割法和相对生长方程计算乔木层生物量,样方收获法测定林下植被生物量、枯枝落叶层和粗木质残体现存量,CN元素分析仪测定碳含量,研究结果表明:老龄杉木人工林生态系统碳库为287.89 t·hm-2,其中乔木层碳库占生态系统碳库的68.18%,矿质土壤层碳库占26.39%,而林下植被层、枯枝落叶层和粗木质残体碳库所占比例之和不超过6%.老龄杉木林的干材(干 皮)碳库占乔木层碳库的79.61%.87年生与40年生杉木人工林碳库很接近,前者比后者仅高出7.15%,主要是因为两者占生态系统主体的乔木层碳库和土壤层碳库很接近,前者分别仅高出后者的4.51%和10.39%,前者林下植被层和粗木质残体碳库较大,分别是后者的2.05倍和2.80倍,而枯枝落叶层碳库则低于后者.因此,老龄阶段杉木人工林生态系统碳库增幅不大,但在碳库分配上变化明显.  相似文献   

12.
《干旱区地理》2021,44(3):718-728
植被总初级生产力(Gross primary productivity,GPP)是陆地生态系统碳循环的关键环节,对维持全球碳平衡至关重要。基于Google Earth Engine平台,利用NASA LP DAAC发布的MOD17A2H产品,研究分析了塔里木河生态输水期间陆地生态系统生长季的GPP变化。结果表明:(1)生态输水后,塔里木河生态环境整体得到改善。输水前期,塔里木河生长季GPP平均为3675.51 g C·m~(-2)·季~(-1),输水中期,生长季GPP增加到4024.09 g C·m~(-2)·季~(-1),输水后期,该值跃升为4896.61 g C·m~(-2)·季~(-1)。2000—2020年塔里木河生长季GPP表现出明显的增加趋势,增长幅度约为每个生长季增加90.25 g C·m~(-2)。2010年后,上、中、下游日GPP增加幅度亦更明显,分别为每10 a增加2.54 g C·m~(-2)、2.17 g C·m~(-2)和1.74 g C·m~(-2)。(2)塔里木河陆地生态系统生长季(5—10月)的日GPP变化在不同区域存在明显差异。上游区日GPP变化总体上表现出先增加后减小的单峰趋势,下游区则以双峰变化趋势为主。(3)塔里木河生态输水工程有益于生长季GPP的变化,其中对6、8月的GPP变化影响更显著。  相似文献   

13.
在黄河三角洲潮间带盐沼采集土壤样品,研究了黄河三角洲潮间带盐沼土壤碳、氮含量和储量的分布特征,分析了碳、氮含量和储量与土壤理化因子的关系。结果表明,研究区0~40 cm土壤总碳和有机碳质量比为11.8~19.2 g/kg和0.5~5.2 g/kg,土壤全氮和有机氮质量比为0.08~0.15 g/kg和0.076~0.136 g/kg,其主要分布在0~20 cm深度土层,且有机氮、全氮和有机碳含量变化规律一致。除无机碳和无机氮外,采样带A的土壤碳、氮含量随着土壤深度增加而下降;在采样带B,各土层的碳、氮含量差异不明显。采样带A表层土壤(0~10 cm深度)的全氮和有机氮含量高于采样带B表层土壤。两采样带土壤无机氮含量主要以铵态氮含量为主,无机氮和铵态氮含量随着土壤深度增加先增加后减少,在10~20 cm土层累积;硝态氮含量随土壤深度增加而下降。在两采样带0~40 cm深度土壤中,全碳储量为9 489~12 239 g/m2,有机碳储量为4 321~8 738 g/m2,全氮储量为33~121 g/m2,除全碳储量外,有机碳和全氮储量主要分布在0~20 cm深度土层中。相关分析结果表明,土壤中全氮含量、硝态氮含量、全氮储量与有机碳含量显著相关(n=24,p0.05),土壤碳氮比与容重、p H、硝态氮含量、全碳含量、全氮含量和全氮储量显著相关(n=24,p0.05)。  相似文献   

14.
政策总是通过对土地利用/土地覆被的强烈影响而影响陆地碳平衡。本研究旨在探讨环境保护政策(主要是退耕还林)政策对我国陆地碳平衡的影响,从而为政府部门等相关政策制定者提供环境保护和应对气候变化的决策支持。利用DLS(Dynamics Land System)模型对2000-2025年环境保护政策情景下的土地利用变化模拟结果和前人对碳密度的研究成果,运用碳密度法估算了该政策情景对中国陆地碳储量的影响。研究结果表明,在整个阶段,林地将增加23%,耕地和草地将分别减少37%和11%,由此会引起我国森林碳储量每年增加66.0 Tg C,土壤碳储量每年增加13.3 Tg C,而草地碳储量则每年减少5.7 Tg C。总体而言,在环境保护政策情景下,2000-2025年中国整个陆地生态系统的碳储量将增加1.8 Pg C,年均增加量为0.074 Pg C,而这种变化89.6%的原因源于森林碳储量的增加。  相似文献   

15.
张平究  潘根兴 《地理研究》2010,29(2):223-234
为了探讨植被恢复对喀斯特土壤生化特性的影响,对云南石林景区植被恢复演替下土壤养分、微生物群落结构及活性进行了比较研究。结果表明,相对于裸露地,植被恢复显著地提高了土壤养分、微生物量碳、微生物活性、微生物商、细菌种丰富度及基因多样性;相对于对照原始林,植被恢复演替下土壤总有机碳、总氮、微生物量碳、基础呼吸和诱导呼吸的恢复程度分别为32%~83%、36%~70%、54%~89%、58%~82%和35%~51%;对照林与植被恢复演替下土壤细菌群落结构之间的相似性遵循如下趋势:裸露地(稀)草地灌丛。总体上,自然恢复方式(草地和灌丛)提高土壤质量效果优于人工恢复方式(柏树林);从裸露地到稀草地恢复过程中,土壤质量提高尤为迅速,为退化喀斯特土壤生态系统进一步恢复改善了条件。  相似文献   

16.
1980s-2010s中国陆地生态系统土壤碳储量的变化   总被引:6,自引:2,他引:4  
徐丽  于贵瑞  何念鹏 《地理学报》2018,73(11):2150-2167
土壤作为陆地生态系统有机碳库的主体,在全球碳循环中起着重要作用。然而,当前区域土壤有机碳储量的变化情况及其碳源/汇功能仍然不清楚。利用中国1980s (1979-1985年)第二次土壤普查数据,同时收集整理2010s(2004-2014年)已发表的有关中国土壤有机碳储量(0~20 cm和0~100 cm)的文献数据,综合评估了1980s-2010s中国土壤有机碳储量的变化情况,并分析森林、草地、农田和湿地等生态系统土壤碳源/汇功能;同时结合现有的中国植被碳储量变化研究,进一步探讨了1980s-2010s中国陆地生态系统的碳源/汇效应。研究发现:① 1980s-2010s中国土壤(0~100 cm)有机碳储量净增长3.04±1.65 Pg C,增长速率为0.101±0.055 Pg C yr-1,其中表层土壤(0~20 cm)的碳汇效应明显;② 森林土壤是固碳主体,净增长2.52±0.77 Pg C,而草地和农田土壤增长有限,分别为0.40±0.78和0.07±0.31 Pg C;③ 湿地有机碳储量净减少0.76±0.29 Pg C;④ 中国陆地生态系统的碳汇效应较强,总碳汇量相当于同期(1980-2009年)化石燃料和水泥生产排放CO2总量的14.85%~27.79%。随着中国森林和草地生态系统植被和土壤的进一步保护、恢复和重建,中国陆地生态系统具有较大的碳汇潜力,在未来全球碳平衡中将发挥更大的作用。  相似文献   

17.
通过对原生红树林、养殖虾塘和鸭塘、废弃虾塘表层土壤中全氮、全磷、全钾、土壤微生物总DNA以及土壤有机碳指标测定,得到养殖对红树林湿地土壤的影响以及红树林恢复对废弃虾塘土壤的修复作用。结果显示:原生红树林中的全氮和土壤有机碳含量较高;废弃虾塘A的全氮和废弃虾塘B的土壤有机碳最低;全磷含量在鸭塘最高,在废弃虾塘B最低;全钾在废弃虾塘A中的含量较其他4个样地高,最低值为鸭塘;土壤表层微生物总DNA浓度为鸭塘最高,废弃虾塘A最低;土壤C/N随着土壤微生物总DNA的升高而降低。植被恢复后,废弃虾塘土壤中土壤有机碳、全氮升高,全钾逐渐下降,而全磷变化较大,且这4个指标总体逐渐接近原生红树林中相应指标值。说明废弃虾塘植被恢复后,土壤性质逐步接近原生红树林土壤,红树林对废弃虾塘土壤有修复功能。  相似文献   

18.
为探究黄河北岸兰州段丘陵区土壤碳、氮、磷含量及化学计量比的空间变异特征,基于12个样地数据,采集1 m剖面内不同发生层土壤进行土壤含水率(SWC)、pH、有机碳(SOC)、全氮(STN)和全磷(STP)的测定。分析了研究区土壤碳、氮、磷含量及其生态化学计量特征在植被和土层上的差异及空间变异特征。结果表明:(1)研究区SOC、STN、STP均值分别为4.53、0.74、0.13 g·kg^(-1),C∶N、C∶P、N∶P均值分别为7.85、55.17、8.40;(2)研究区SOC、STN、C∶N和N∶P的块基比C_(0)/(C_(0)+C)<0.25,主要受气候、植被、地形等自然因素影响;STP、C∶P则C/(C+C)>0.75,主要受退耕还草等人为因素影响;(3)研究区土壤整体受到氮限制,与此同时有机碳更为匮乏,磷则在短期内不会成为限制因子。在黄河流域兰州段北岸丘陵区北岸的生态治理与恢复中,应重视有机肥和氮肥的配置与施加,同时需减少人为干扰,这对于植被的快速恢复与养分的固定具有重要意义。  相似文献   

19.
鳞毛蕨天山云杉林粗死木质残体贮量及其分解动态   总被引:6,自引:0,他引:6  
为了丰富我国森林粗死木质残体研究的对象类型,并为探讨粗死木质残体在天山云杉天然更新中的生态作用奠定基础,借助粗死木质残体5级分类系统,采用临时标准调查法对西天山国家级自然保护区原始鳞毛蕨天山云杉纯林粗死木质残体的贮量、养分含量及其分解动态进行了研究.结果表明:(1)鳞毛蕨天山云杉林粗死木质残体体积贮量为337.61 m3/hm2,生物量为87.98mg/hm2;倒木树干是粗死木质残体的主体组成部分,占总体积的98.09%;(2)以基本密度(比重)为衡量指标,倒木腐朽等级越高,其密度越小,倒木分解符合单项指数衰减模型,分解常数为0.01174.5个不同腐朽等级倒木的平均滞留时间依次为4年、18年、38年、68年和92年.在自然状态下,倒木分解50%、90%和95%所需时间分别为59年、196年和255年;(3)倒木有机碳、全N、全P、全K、Na+的平均含量依次为55.93%±1.42%、0.34%±0.07%、0.12%±0.01%、0.06%±0.01%和0.03%±0.002%,Ca2+、Mg2+的平均含量分别为56.74±4.87 g/kg和34.89±3.66 g/kg,不同养分的变化趋势不同,但同一养分在不同腐朽等级倒木之间的差异不显著.  相似文献   

20.
闽江河口区盐—淡水梯度下芦苇沼泽土壤有机碳特征   总被引:1,自引:0,他引:1  
为了阐明盐—淡水梯度下河口潮汐沼泽土壤有机碳特征,对闽江河口盐—淡水梯度下芦苇(Phragmites australis)沼泽土壤有机碳含量、储量及其影响因子进行了测定与分析。结果表明,随着芦苇沼泽由淡水向半咸水沼泽演替,沼泽土壤粘粒和粉粒组成都在增加,土壤pH、容重和砂粒组成则在减小;尤溪洲湿地、蝙蝠洲湿地和鳝鱼滩湿地上分布的芦苇沼泽0~60cm土壤的有机碳含量分别为11.56~14.72g/kg、14.01~19.72g/kg和20.93~22.89g/kg,其平均值分别为12.47g/kg、16.62g/kg和21.97g/kg;3个采样点的0~60cm深度各层土壤有机碳储量范围分别为1408.71~1670.31t/km2、1328.44~1659.80t/km2和1319.93~1677.96t/km2,其平均值分别为1534.13t/km2、1548.12t/km2和1569.22t/km2;3块湿地芦苇沼泽0~60cm土壤的总有机碳储量分别为9204.79t/km2、9288.71t/km2和9415.35t/km2。在盐—淡水梯度下,芦苇沼泽土壤有机碳含量和储量都表现为随着盐度的增加而升高;盐—淡水梯度下沼泽土壤有机碳含量受到多个因子的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号