首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
非汛期不同重现期最大风速是沿海(江)岸堤防设计标准、工程安全性和投资成本估算的一个重要参数。文中基于上海崇明、宝山、南汇、奉贤和金山5个沿海(江)岸气象站历史风速观测资料和横沙岛测风塔10 m高度逐日最大风速资料,采用极值I型分布估算了上海地区沿海(江)岸非汛期(1—5月和10—12月)各风向不同重现期最大风速。结果表明,上海地区沿海(江)岸非汛期的最大风速以W风最大,SW风最小。沿海(江)岸非汛期50 a一遇最大风速为23.3—28.3 m/s,小于上海地区基准风速(30.0 m/s)。各地非汛期不同风向50 a一遇最大风速的最大差值为3.4—8.1 m/s,同一重现期各地沿海(江)岸10 m高度最大风速极值也相差较大。崇明区域非汛期沿海(江)岸最大风速最大,其次是南汇区域,宝山区域最小。上海地区最大风速一般都出现在沿海地带,其分布与上海实际地理、地表状况相符。  相似文献   

2.
利用陕西黄土高原地区6个气象站2006—2016年共11年逐日极大风速和同期10 min最大风速资料,确定推算极大风速与最大风速的回归方程,并对方程可靠性进行检验。结果表明:6站的极大风速超过最大风速44%以上,更能准确反映灾害性大风的实际情况;对极大风速与最大风速线性回归方程和多项式回归方程比较后,确定采用线性回归方程推算极大风速。各站拟合方程的显著性水平高于0.001,平均绝对误差均小于0.9 m/s, 2016年极大风速的推算值与观测值平均绝对误差在0.9~1.7 m/s之间,平均相对误差在15%以下,说明拟合方程可信。  相似文献   

3.
鄂东长江公路大桥设计风速推算研究   总被引:3,自引:0,他引:3  
利用黄石气象站年最大风速资料,在均一性检验基础上,利用极值Ⅰ型分布曲线,推算出气象站处基本风速,结合桥位处一年完整的对比观测,通过比值法把基本风速推算到设计风速。结果表明:(1)黄石气象站年最大风速在1990年前后突然减小,可能与周边建筑物增加以及全球气候变暖共同作用有关;(2)黄石气象站不同重现期(100、50、30、10 a)10 m高处10 m in平均年最大风速(基本风速)分别为25.1、23.3、22.0、19.1m/s;(3)确认气象站到桥位的风速放大系数为1.2;(4)桥位区不同重现期(100、50、30、10 a)10m高处10 m in平均年最大风速(设计风速)分别为30.1、28.0、26.4、22.9 m/s。  相似文献   

4.
利用1981-2010年安徽省61个站的逐日风速资料,结合卫星遥感台站分类方法,统计分析了城市化进程对年、季节平均风速、最大风速和小风日数的影响和贡献。结果表明:(1) 近30年安徽省年、季节平均风速和最大风速呈显著减少趋势,小风日数呈显著增加趋势。城市站的变化速率明显大于乡村站,郊区站基本介于二者之间。(2) 2000年开始安徽省城市化进程加快,导致城市站与乡村站平均风速及小风日数距平的差异有明显增大趋势。(3) 城市站与乡村站年平均风速的趋势系数之差为-0.10 (m/s) /10a,城市化对年平均风速减弱的贡献率为40.0%,春季更明显;城市站与乡村站年小风日数的趋势系数之差为15.58 d/10a,城市化对年小风日数增多的贡献率为46.9%,秋、冬季更明显;城市化对年最大风速的影响不明显。  相似文献   

5.
基于安徽省1981~2012年近32 a风速、风向资料,利用常规气象统计方法,分析了安徽省平均风速、最大风速以及极大风速的空间分布特征,重点分析了最大风速易出现的方位、季节以及各重现期下的风速分布。结果表明:平均风速与最大风速的空间分布相似,大别山区和皖南山区低海拔地区为风速低值区,黄山以及大别山区以北和以东的平原和丘陵地区为风速大值区。除大别山区北部和皖南山区南部的部分地区外,近32 a全省大部风速普遍呈现显著减少趋势。长江以北地区的最大风速出现偏西风的频率最高,大别山区和皖南山区最大风速出现频率最高的方位空间差异明显。此外,最大风速出现在春季的频率最高。  相似文献   

6.
根据榆林气象站1961—2016年逐年及该地区某一风电观测场2007年逐时最大风速资料,在探讨最大风速突变点的基础上,利用极值Ⅰ型分析法及1 d、5 d设计风速取样法对风电观测场50 a一遇最大风速进行估算,同时参考《建筑结构荷载规范》,最终确定风电观测场最大风速的取值。结果表明:榆林气象站历年最大风速有下降趋势,并在1980年发生突变;利用突变点前风电观测场最大风速序列计算的50 a一遇风速修正后,得到的结果与建筑结构荷载规范的值相近,可以互相验证,最终确定50 a一遇最大风速为253 m/s,相应风压为04 kN/m2。  相似文献   

7.
分析了乌鲁木齐、达坂城、红雁池气象哨三站的大风资料知:红雁池与乌鲁木齐风速之间的线性关系较好,因此用乌鲁木齐气象站大风资料,订正红雁池气象哨大风序列。又根据风随高度变化的规律及极值I型分布函数,计算出红雁池气象哨10m、15m高度处不同重现期10min平均最大风速和瞬间极大风速,从而进一步推出工程区构筑物所能承受的设计风速。  相似文献   

8.
根据榆林气象站1961—2016年逐年及该地区某一风电观测场2007年逐时最大风速资料,在探讨最大风速突变点的基础上,利用极值Ⅰ型分析法及1d、5d设计风速取样法对风电观测场50a一遇最大风速进行估算,同时参考《建筑结构荷载规范》,最终确定风电观测场最大风速的取值。结果表明:榆林气象站历年最大风速有下降趋势,并在1980年发生突变;利用突变点前风电观测场最大风速序列计算的50a一遇风速修正后,得到的结果与建筑结构荷载规范的值相近,可以互相验证,最终确定50a一遇最大风速为25.3m/s,相应风压为0.4kN/m^2。  相似文献   

9.
以陕北沙漠边缘区6个气象站自建站至2013年的年平均风速和最大风速序列为研究对象,分析了各序列的线性倾向趋势,采用t-检验法以及对台站历史沿革的详查,对各站点风速序列进行均一性检验,并对非均一序列应用方差法和比值法等数理方法进行订正,分析了重现期最大风速变化和序列的频率分布。结果表明:陕北沙漠边缘区各气象站年最大风速全部呈显著递减趋势;定边站、靖边站、横山站和榆阳区站年平均风速于2003—2004年间分别出现了间断,并且与其更换测风仪器时间同步;订正后年最大风速在间断点后较原始序列都有较大幅度的增大,定边站订正前、后年最大风速主要分布区间增大,主要集中在(18,22]m/s区间;订正的序列与原始序列的50年一遇风速差别不大,但是在大型工程设计和工程气象专题评估时,应考虑适合工程应用的气象站测风资料和订正方法。  相似文献   

10.
深圳湾公路大桥设计风速的推算   总被引:5,自引:2,他引:5       下载免费PDF全文
从资料的完整性和合理性、方法的规范性等几方面着手,对深圳湾公路大桥设计风速进行推算。利用深圳市气象站1954~2001年逐年年最大风速资料,通过时距、高度、地形等订正后得到相当于开阔平地上方10 m高度10 min年最大风速48年序列,使之符合建筑抗风指南或规范的要求。再利用极值Ⅰ型计算出不同重现期的基本风速,同时用耿贝尔的参数估算法和修正后的矩法参数估计法计算出不同重现期(200、120、100、60、50、30、10年)的基本风速。研究发现桥位区自动气象站与深圳市气象站最大风速正相关显著,前者是后者的1.1倍,从而可将基本风速外推到桥位区,进一步根据规范将该值放大1.11/2(1.049)倍至海面上,最终得到设计风速。还利用近地层风的指数和对数曲线推算出150 m内每10 m高度层的最大风速。  相似文献   

11.
海面风速对航运及海上生产作业影响重大,但数值模式对于海面的风速预报仍存在较大误差。为降低数值模式海面10 m风速预报的系统性误差,提高海上大风预报准确率,基于2017—2019年中国气象局地面气象观测资料对ECMWF确定性模式的10 m风场预报结果进行检验评估,并采用概率密度匹配方法对模式误差进行订正。分析结果表明,概率密度匹配方法可有效地改善数值模式10 m风速预报的系统性误差,订正后风速在各个预报时效和风速量级的平均误差均较订正前有所降低。对于大量级风速的预报,经概率密度匹配方法订正后的风速预报的漏报率可减少10%以上。订正后12 h预报时效的8、9级风速预报的平均绝对误差分别由4.15 m/s、5.61 m/s降低至3.12 m/s、4.08 m/s,120 h预报时效的8、9级风速预报的平均绝对误差由7.38 m/s、9.35 m/s减小至6.46 m/s、8.07 m/s。在冷空气、台风大风天气过程中,基于概率密度匹配方法订正后的风速与实况观测更接近,能够为我国近海洋面10 m风速的预报提供更准确的参考。   相似文献   

12.
基于2020年中国近海31个浮标的逐小时数据,使用统计分析方法对中国气象局高分辨率陆面数据同化系统(HRCLDAS-V1.0)和欧洲中期天气预报中心第5代全球大气再分析数据(ERA5)海面风场进行了系统的检验,检验结果表明:两者在我国近海均具有较高的可信度,风速平均绝对误差(MAE)分别为1.16 m/s和1.09 m/s,风向MAE分别为23 °和22 °。随着风力增大两者的风速准确度均有所降低,当风力等级≥10级时,前者准确度优于后者;对于风向而言,随着风力增大,两者准确度均升高。此外,选取2020年典型的两次冷空气过程和2008号台风“巴威”过程,检验两者在不同天气过程影响下的准确度,两类融合产品均能较好地再现冷空气过程引起的风向变化,而对不同强度的冷空气过程下的风速反映存在差异;对于台风引起的大风,在风速较低时两者风速均具有不错的表现,但HRCLDAS-V1.0对峰值强度的表现优于ERA5。   相似文献   

13.
为更好理解沿海区域近地面风速衰减规律及其内在机制并获取适用于业务观测风速数据的分析方法,通过引入内边界层厚度的发展机理,推导获得风速随离岸距离变化的数学解析拟合式。结合浙江省温州市境内一沿海区域6个自动气象站2014—2019年逐时风速观测数据应用该拟合式分析了风速随离岸距离的关系,结果表明不管是逐时风速还是逐日最大风速,其平均值均与离岸距离有着良好的负相关,并发现其衰减系数与风速有着密切关系。向岸流及离岸流的风速衰减特性均可以结合该拟合式用线性及幂数律拟合来体现,但后者可以更好地解释风速随离岸距离变化特征,并在较大风速(3~10 m/s)向岸流的背景条件下,获得合理可信的分析结果,说明该方法可以适用于近海岸区域风速观测数据的应用研究。   相似文献   

14.
长江下游百年一遇的极值风速分布   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2000-2006年长江下游沿江8个风速、风向观测点与邻近气象站同步对比观测资料和1971—2006年长江下游40个气象站风资料, 依据具99%置信水平的数理重构方案和极值Ⅰ型计算方法, 详细给出长江下游百年一遇风速分布状况。结果表明:长江下游沿江地区百年一遇极值风速为25~38 m/s, 较一般方法上限高3 m/s, 下限低2 m/s; 长江南京—镇江段和南通—崇明段, 是长江下游沿江地区的两个大风区, 百年一遇极值风速不低于29 m/s, 其在入海口附近可达34 m/s以上; 在长江常州—江阴段, 江南、江北对称分布两个风速相对低值区, 百年一遇极值风速为23~24 m/s。该结果充分考虑气象站风速资料和局地风速状况, 是沿江相关工程气象应用的重要补充。  相似文献   

15.
OBSERVATION AND ANALYSIS OF SEA SURFACE WIND OVER THE QIONGZHOU STRAIT   总被引:1,自引:1,他引:0  
The spatial variation and diurnal fluctuation of sea surface wind over the Qiongzhou Strait were described using verified datasets from automatic weather stations on board a ferry, buoys, and on the coast. Results are as follows: (1) On average, sea surface wind speed is 3–4 m/s larger over the Qiongzhou Strait than in the coastal area. Sea surface wind speeds of 8.0 m/s or above (on Beaufort scale five) in the coastal area are associated with speeds 5–6 m/s greater over the surface of the Qiongzhou Strait. (2) Gust coefficients for the Qiongzhou Strait decrease along with increasing wind speeds. When coastal wind speed is less than scale five, the average gust coefficient over the sea surface is between 1.4 and 1.5; when wind speed is equal to scale five or above, the average gust coefficient is about 1.35. (3) In autumn and winter, the diurnal differences of average wind speed and wind consistency over the strait are less than those in the coastal area; when wind speed is 10.8 m/s (scale six) or above, the diurnal difference of average wind speed decreases while wind consistency increases for both the strait and the coast.  相似文献   

16.
为降低风电场短期预报风速误差,减少风电场短期风功率偏差积分电量,提高风电场发电功率预测准确率,分季节研究了相似误差订正方法对ECMWF单台风机预报风速的订正效果。结果表明:相似误差订正后不同风机预报风速的误差差距减小;预报风速的平均绝对偏差和均方根误差明显降低,其中夏季和秋季华能义岗风电场两个指标降低幅度均超过0.1 m/s、会宁丁家沟风电场均超过0.2 m/s;订正风速削减了原始预报的极值,可反映大部分时段实况风速3 h内的趋势变化,个别时段订正风速与实况趋势相反;订正后预报风速在风功率敏感区的平均绝对偏差明显降低,华能义岗风电场四季降低幅度在0.112~0.242 m/s之间、会宁丁家沟风电场四季降低幅度在0.131~0.430 m/s之间,有效降低了原始预报误差带来的短期风功率偏差积分电量扣分值;订正风速较原始预报更多分布在风功率敏感区。该方法实际应用灵活,对提高风电场短期预报风速准确率有可观的效果,并可有效减少短期风功率偏差积分电量考核。   相似文献   

17.
蒋承霖 《气象科学》2023,43(6):847-852
采用泊松耿贝尔分布,基于中国气象局发布的《CMA-STI热带气旋最佳路径数据集》资料来估算海上极端风速,并以上川岛气象站多年实测资料通过概率评估来加以验证。结果表明,采用泊松耿贝尔分布可以得到较为保守的海上极值风速取值。对于海上的小面积区域的重现期风速估算,采用50 km半径区域进行评估,可以得到较为合理的估算结果,当评估区域较大时,则需考虑适当扩大评估半径。  相似文献   

18.
利用玉屏核电站厂址周围3个经纬度区域范围内1950-2021年期间的龙卷风调查资料,采用富士达F等级划分法评定龙卷风级别,按照《核电厂厂址选择的极端气象事件(HAD101/10)》的规定,估算出核电站设计基准龙卷风相关参数和设计基准等级。结果表明:玉屏核电站厂址区域设计基准龙卷风最大风速估算值为63.9m/s(对应10-7概率值),总压降为29.5hPa,压降速率为7.1hPa/s,最大旋转风速为51.8m/s,最大平移速度为12.1m/s,设计基准等级为F2。计算结果为项目设计和建设提供重要理论参考依据。  相似文献   

19.
风电场不同高度的50年一遇最大和极大风速估算   总被引:6,自引:0,他引:6       下载免费PDF全文
风电场50年一遇最大和极大风速是决定风电机组极限载荷的关键指标, 也是风电项目开发中机组选型和经济评估的关键指标之一。该文重点从气象学角度, 结合我国风电项目开发的实际情况, 提出5 d最大10 min平均风速取样法, 用Ⅰ型极值概率分布来估算风电场不同高度50年一遇最大风速; 以附近气象站长期的历年最大风速及与风电项目内测风塔同期的逐日最大风速资料, 修正所得结果。再以实测到的大风速段的最大阵风系数, 推算风电场不同高度50年一遇的极大风速。并利用内蒙古巴彦淖尔市乌兰伊力更风电场300 MW项目1年的实测风资料及内蒙古乌拉特中旗气象站的测风资料, 估算乌兰伊力更风电场内不同高度上50年一遇的最大和极大风速。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号