首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A binary mixture of humic acid and geothite was prepared and used to modify kaolinite to produce geothite–humic acid (GHA)-modified kaolinite adsorbent useful for the adsorption of Pb2+, Cd2+, Zn2+, Ni2+ and Cu2+ from Single and Quinary (5) metal ion systems. The cation exchange capacity (CEC) and specific surface area of GHA-modified kaolinite clay adsorbent were found to be 40 meq/100 g and 13 m2/g, respectively, with the CEC being five times that of raw kaolinite clay (7.81 meq/100 g). The Langmuir–Freundlich equilibrium isotherm model gave better fit to experimental data as compared with other isotherm models. In Quinary metal ion system, the presence of Zn2+ and Cu2+ appears to have an antagonistic effect on the adsorption of Pb2+, Cd2+ and Ni2+, while the presence of Pb2+, Cd2+ and Ni2+ shows a synergistic effect on the adsorption of Zn2+ and Cu2+. The GHA-modified kaolinite showed strong preference for the adsorption of Pb2+ in both metal ion systems. Brouers–Weron–Sotolongo (BWS) kinetic model gave better fit to kinetic data compared with other kinetic models used. Data from BWS kinetic model indicate that adsorption of metal ions onto GHA-modified adsorbent in both metal ion systems followed strictly, diffusion-controlled mechanism with adsorption reaction proceeding to 50 % equilibrium in <2 min in the Single metal ion system and <1 min in the Quinary metal ion system. Adsorption of metal ions onto GHA-modified kaolinite is fairly spontaneous and endothermic in nature in both metal ion systems although the rate of metal ion uptake and spontaneity of reaction are reduced in the Quinary metal ion system.  相似文献   

2.

Background

The coexistence of Cd2+ and Zn2+ ions in nature has a significant influence on their environmental behaviors in soils and bioavailability for plants. While many studies have been done on the mutual toxicity of Cd2+ and Zn2+, few studies can be found in the literature focused on the interaction of Cd2+ and Zn2+ on soil clay fractions especially in terms of energy relationship.

Results

The binding energies of Cd2+ on boggy soil (Histosols) particles and Zn2+ on yellow brown soil (Haplic Luvisols) particles were the highest, while those of Cd2+ and Zn2+ on paddy soil (Inceptisols) particles were the lowest. These results indicated that Cd2+ and Zn2+ have a strong capacity to adsorb in the solid phase at the soil–water interface of boggy soil and yellow brown soil, respectively. However, both Cd2+ and Zn2+ adsorbed on paddy soil particles easily release into the solution of the soil suspension. Unlike the binding energy, the higher adsorption energies of ions in boggy and yellow brown soils showed a weak binding force of ions in boggy soil and yellow brown soil. A 1:1 ratio of Cd2+ to Zn2+ promotes the mutual inhibition of their retentions. Cd2+ and Zn2+ have high mobility and bioavailability in paddy soil and yellow drab soil (Ustalfs), whereas they have high potential mobility and bioavailability in boggy soil and yellow brown soil.

Conclusion

In the combined system, Zn2+ had preferential adsorption than Cd2+ on soil clay fractions. Boggy soil and yellow brown soil have a low environmental risk with lower mobility and bioavailability of Cd2+ and Zn2+ while paddy soil and yellow drab soil present a substantial environmental risk. In the combined system, Cd2+ and Zn2+ restrain each other, resulting in the weaker binding force between ions and soil particles at a 1:1 ratio of Cd2+–Zn2+.
  相似文献   

3.
Removal of Lead,Copper, Zinc and Cadmium from Water Using Phosphate Rock   总被引:2,自引:0,他引:2  
Removal of Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from aqueous solutions by sorption on a natural phosphate rock (FAP) was investigated. The effects of the contact time and initial metal concentration were examined in the batch method. The percentage sorption of heavy metals from solution ranges generally between 50% and 99%. The amount of sorbed metal ions follows the order Cu〉Pb〉Cd〉Zn. Heavy metal immobilization was attributed to both surface complexation of metal ions on the surface of FAP grains and partial dissolution and precipitation of a heavy metal-containing phosphate. The very low desorption ratio of heavy metals further supports the effectiveness of FAP as an alternative and low-cost material to remove toxic Pb^2+, Cu^2+, Zn^2+ and Cd^2+ from polluted waters.  相似文献   

4.
Heavy metal ions (Pb2+, Cd2+, Ni2+, and Zn2+) were biosorbed by brown seaweed (Hizikia fusiformis), which was collected from Jeju Island of South Korea. The metal adsorption capacity of H. fusiformis improved significantly by washing with water or by base or acid treatments. The maximum sorption by NaOH-pretreated biomass was observed near a slightly acidic pH (pH 4?6) for Pb2+, Cd2+, Ni2+, and Zn2+. This result suggests that the treatment of H. fusiformis biomass with NaOH helped increase the functional forms of carboxylate ester units. Kinetic data showed that the biosorption occurred rapidly during the first 60 min, and most of the heavy metals were bound to the seaweed within 180 min. The maximum metal adsorption capacities assumed by a Langmuir model were on the order of Pb2+ > Cd2+ > Ni2+ > Zn2+. Equilibrium adsorption data for the heavy metal ions could fit well in the Langmuir model with regression coefficients R 2 > 0.97.  相似文献   

5.
Adsorption of divalent metal ions, including Cu2+, Pb2+, Zn2+, Cd2+ and Ni2+, on quartz surface was measured as a function of metal ion concentration at 30°C under conditions of solution pH= 6. 5 and ion strength I = 0. 1mol/L. Results of the experimental measurements can be described very well by adsorption isotherm equations of Freudlich. The correlation coefficients (r) of adsorption isotherm lines are > 0. 96. Moreover, the experimental data were interpreted on the basis of surface complexation model. The experimental results showed that the monodentate-coordinated metal ion surface complex species (SOM+) are predominant over the bidentate-coordinated metal ion surface complex species [(SO)2M] formed only by the ions Cu2+, Zn2+ and Ni2+. And the relevant apparent surface complexation constants are lgKM = 2.2–3.3 in order of KCd≥KPb > KZn > KNi≥KCu, and lgβM = 5.9-6.8 in order of βNi > βZn > βCu. Therefore, the reactive ability of the ions onto mineral surface of quartz follows the order of Cd > Pb > Zn > Ni> Cu under the above-mentioned solution conditions. The apparent surface complexation constants, influenced by the surface potential, surface species and hydrolysis of metal ions, depend mainly on the Born solvation coefficient of the metal ions. This project was financially supported by the National Natural Science Foundation of China (No. 49572091).  相似文献   

6.
The problem associated with multi-metals contaminated soils has generated increasingly more attention. Thus, it is necessary within the field to study the mutual influence of environmental factors on competitive adsorption. The majority of studies carried out to date have concentrated on the variation of adsorption capacity or the removal efficiency, with only a single factor changed (including pH, ionic strength, and metal concentration). However, the interaction effect among various environmental factors was ignored in these studies. The purpose of this study was mainly aimed toward the investigation of the interaction of two influential factors, as well as the influential degree of each factor (such as the initial pH, ionic strength, initial metal concentration, and the competitive metal concentration) on competitive adsorption using the response surface method. These results demonstrated that the influential degree of each factor studied on the competitive adsorption of Zn2+ and Cd2+ followed the trend of having the initial concentration of the target metal?>?initial pH?>?concentration of competitive metal?>?ionic strength. When the metal concentration was held constant, we found that the competitive adsorption of Zn2+ initially increased, followed by a decrease with increasing initial pH. However, this was found to change minimally with increasing ionic strength. When the initial pH or ionic strength was held constant, the competitive ability was observed to increase with increasing Zn2+ concentration. However, with increasing Zn2+ or Cd2+ concentrations, the variation degree of the competitive adsorption was found to become smaller. These results provide novel information toward a better understanding of the effect of multifactors on the competitive adsorption of Zn2+ and Cd2+.  相似文献   

7.
Nile Rose Plant was used to study adsorption of several cations (Cu2+, Zn2+, Cd2+ and Pb2+) from wastewater within various experimental conditions. The dried leaves of Nile Rose Plant were used at different adsorbent/ metal ion ratios. The influence of pH, contact time, metal concentration, and adsorbent loading weight on the removal process was investigated. Batch adsorption studies were carried out at room temperature. The adsorption efficiencies were found to be pH dependent, increasing by increasing the pH in the range from 2.5 to 8.5 exept for Pb. The equilibrium time was attained within 60 to 90 min. and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 g/50 mL mixed ions solution. Isothermal studies showed that the data were best fitted to the Temkin isotherm model. The removal order was found to be Pb2+> Zn2+> Cu2+> Cd2+. The surface IR-characterization of Nile rose plant showed the presence of many functional groups capable of binding to the metal cations.  相似文献   

8.
The interaction between minerals and heavy metals has been a hot object of study in environmental science,mineralogy and soil science,Through the selective adsorption experiment of Ca-montomorillonite,illite and kaolinite to Cu2 ,Pb^2 ,Zn^2 ,Cd^2 ,and Cr^3 ions at certain conditions,it could be concluded that Cr^3 is most effectively sorbed by all the three minerals.Also,it can be found that Pb^2 shows a strong affinity for illite and kaolinite while cu^2 for montmorillonite .Based on the adsorption experiment at varying pH of solution,it can be found that the amount of heavy etals sorbed by minerals increases with increasing pH of the solution.  相似文献   

9.
The impacts of common ions on the adsorption of heavy metal   总被引:1,自引:0,他引:1  
Researches on the impact of common ions onto sediments are of great importance for the study of the heavy metal adsorption mechanisms. Considering the surface sediments from the relatively clean reach in the Baotou section of the Yellow River as the adsorbent, this work presents the impacts of common ions (Na+, Mg2+, K+, Ca2+, Cl, SO4 2−, and NH4 +) on heavy metals (Cu2+, Zn2+, Cd2+, and Pb2+) adsorption. The experimental results reveal that the adsorptive capacities of the heavy metals are controlled by different adsorption mechanisms in different ion concentration ranges. With the increase of the ionic strength, the adsorption of the heavy metals increases for the compression of the electric double layer, whereas decreases for the decreasing of the ionic activities of the heavy metals. The competitive adsorption and complexations between the heavy metals and common ions are also important factors controlling the heavy metal adsorption. According to the experimental results and the real concentration of common ions in the Baotou section of the Yellow River, the increase of the concentrations of Na+, Mg2+, K+, and Ca2+ would cause the increase of Zn2+ adsorption and reduce the Zn pollution. The NH4 + from the industrial discharge of the tributaries has a strong impact on the heavy metal adsorption.  相似文献   

10.
设施农业中土壤重金属污染问题日趋严重。由于土壤中矿物、腐植酸、微生物等多相组分之间存在交互作用,重金属与土壤单组分体系中所获得的结合机制并不能真实有效地评价其在自然条件下的转化与归趋。本研究以蒙脱石(Mont)和高岭石(Kao)为辽宁蔬菜大棚及农田土壤层状硅酸盐代表矿物,选取胡敏酸(HA)为有机质代表,土著微生物革兰氏阳性枯草芽孢杆菌(Bacillus subtilis,B.s)、革兰氏阴性恶臭假单胞菌(Pseudomonas putida,P.p)为细菌微生物代表,以此三元体系为主要供试蔬菜大棚土壤组分,以Cd~(2+)、Cu~(2+)为目标元素,借助宏观吸附实验,结合X射线衍射(XRD)、衰减全反射-傅立叶变换红外光谱(ATR-FTIR)、扫描电镜(SEM)测试分析了Cd~(2+)、Cu~(2+)在矿物-腐植酸-细菌三元混合物上的吸附机理以及Cd~(2+)、Cu~(2+)在复合体上的结合机制。研究结果表明,蒙脱石/高岭石-腐殖酸、蒙脱石/高岭石-B.s及蒙脱石/高岭石-P.p二元复合体对Cd~(2+)及Cu~(2+)的吸附具有加和性,矿物-腐植酸-微生物三元复合体之间表现为拮抗作用。吸附动力学研究表明矿物、有机质、微生物复合体对重金属的吸附动力学符合准二级动力学模型。体系对Cu~(2+)的吸附能力由强到弱为:B. s P. p Mont/Kao-B. s Mont/Kao-P. p Mont/KaoHA-P.p Mont/Kao-HA Mont/Kao。  相似文献   

11.
This paper investigates the potential of alginate-immobilised Chlorella sorokiniana for removing Cu2+, Ni2+ and Cd2+ ions from drinking water solutions. The effects of initial metal concentrations, contact times and temperatures on the biosorptions and removal efficiencies of the tested metals were investigated at initial pH values of 5, and pH effects were studied within the range of 3–7. When studying the effects of initial metal concentrations, the highest experimental removal yields achieved for Cu2+, Ni2+ and Cd2+ ions were 97.10, 50.94 and 64.61 %, respectively. The maximum biosorption capacities obtained by the Langmuir isotherm model for the biosorptions of Cu2+, Ni2+ and Cd2+ ions by alginate-immobilised C. sorokiniana were found to be 179.90, 86.49 and 164.50 mg/g biosorbent, respectively. The experimental data followed pseudo-second-order kinetics. At an initial metal concentration of 25 mg/L, immobilised algae could be used in at least 5 successive biosorption–desorption cycles. SEM and EDS analyses revealed that the metals bonded to the biosorbent. Bi- and multi-metal systems of Cu2+, Ni2+ and Cd2+ were investigated at initial metal concentrations of 30, 50 and 100 mg/L. The removal of Cd2+ as well as Ni2+ in such systems was negatively affected by the presence of Cu2+. The removal efficiency for Cu2+ in multi-metal systems decreased by 5–7 %, whilst in the cases of Cd2+ and Ni2+ the efficiencies decreased by up to 30 %. Nevertheless, the results obtained show that alginate-immobilised C. sorokiniana can efficiently remove the metals tested from polluted drinking water sources.  相似文献   

12.
Homogenized samples of raw clays resulting from two (2) different lots of natural clays from Maghnia (Algeria) have been assessed for their potential use in the removal of Pb2+ and Zn2+ ions from industrial liquid wastes (LW). Raw and acid-activated samples have been characterized by powder X-ray diffraction, FT-IR spectroscopy, electron microscopy (SEM), and X-ray fluorescence (XRF) and used as adsorbents for the removal of Pb2+ and Zn2+ ions from aqueous system using adsorption method under different conditions. The effect of factors including contact time, pH, and dosage on the adsorption properties of Pb2+ and Zn2+ ions onto clays was investigated at 25 °C. The obtained results revealed that the removal percentages of Pb2+ and Zn2+ ions, from both aqueous solution (AS) and LW, were varying between 90 and 98% for 40 min and optimal pH values ranged from 5 to 6 for Pb2+ and Zn2+ ions, respectively. The kinetics of both Pb2+ and Zn2+ ion adsorption fitted well with the pseudo-second-order model. Langmuir, Freundlich, and Temkin adsorption isotherms were used, and their constants were evaluated. The values of thermodynamic parameters, ΔH°, ΔS°, and ΔG° indicated that the adsorption of Pb2+ and Zn2+ ions was spontaneous and exothermic process in nature. The adsorption and desorption isotherms indicated that Pb2+ and Zn2+ adsorption to raw clays was reversible. The experimental results obtained showed that the raw clays from Maghnia (Algeria) had a great potential for removing Pb2+ and Zn2+ ions from industrial liquid wastes using adsorption method.  相似文献   

13.
Tetraethylenepentamine-modified sugarcane bagasse (SCB) was prepared to improve its adsorption capacity and selectivity toward Cu2+. Adsorption performances of the modified sorbent for Cu2+ were studied in batch system. Separation of Cu2+ from Pb2+ by the modified sorbent fixed-bed column were studied under dynamic system with initial molar concentration ratio \(\left( {C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} } \right)\) ranging from 1:1 to 1:100. The amount of Cu2+ and Pb2+ adsorbed on the saturated column was calculated by the elution curve. Batch experimental results showed that the adsorption capacity of the sorbent for Cu2+ increased from 0.12 to 0.21 mmol g?1 after modification. Dynamic adsorption results showed that the modified SCB had higher adsorption affinity toward Cu2+ than Pb2+. 0.07 mmol g?1 of adsorbed Pb2+ was pushed off by Cu2+ during the competitive adsorption process at \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}} = {\text{1:1}}.\) The breakthrough curves and adsorption kinetics of Cu2+ in the column could be fitted well by the Yoon–Nelson and modified Yoon–Nelson model, respectively. According to the elution curve, the amount of Cu2+ adsorbed on the fixed-bed column were 0.16, 0.16 and 0.15 mmol g?1, while that of Pb2+ were 0.0016, 0.0051 and 0.0094 mmol g?1 when \(C_{0}^{\text{Cu}} /C_{0}^{\text{Pb}}\) increased from 1:1 to 1:10 and 1:100. Cu2+ could be selectively adsorbed and separated from Pb2+ by using the modified sorbent fixed-bed column.  相似文献   

14.
Adsorption of copper and zinc by oil shale   总被引:8,自引:0,他引:8  
 Oil shale is able to remove appreciable amounts of copper and zinc ions from aqueous solutions. It was noted that an increase in the adsorbent concentration with constant copper or zinc concentration resulted in greater metal removal from solution. An increase in the copper or zinc concentration with a constant sorbent concentration resulted in higher metal loading per unit weight of sorbent. For both metals, copper and zinc, equilibrium was attained after 24-h contact time. Increase in the initial pH or temperature of the metal solution resulted in an increase in the metal uptake per unit weight of the sorbent. Freundlich isotherm model was found to be applicable for the experimental data of Cu2+ and Zn2+. The results showed that oil shale could be used for the adsorption of the Cu2+ and Zn2+ with higher affinity toward Zn2+ ions. Addition of sodium salt to the metal solution influenced copper removal positively, but inhibited zinc removal. Received: 3 January 2000 · Accepted: 27 June 2000  相似文献   

15.
In this study, the speciation of Zn2+, Pb2+, and Cu2+ ions sorbed at the calcite surface was monitored during a 2.5-year reaction period, using extended X-ray absorption spectroscopy to characterize metal speciation on the molecular scale. Experiments were performed using pre-equilibrated calcite-water suspensions of pH 8.3, at metal concentrations below the solubility of metal hydroxide and carbonate precipitates, and at constant metal surface loadings. The EXAFS results indicate that all three metals remained coordinated at the calcite surface as inner-sphere adsorption complexes during the 2.5-year ageing period, with no evidence to suggest slow formation of dilute metal-calcite solid solutions under the reaction conditions employed. All three divalent metals were found to form non-octahedral complexes upon coordination to the calcite surface, with Zn2+ adsorbing as a tetrahedral complex, Cu2+ as a Jahn-Teller distorted octahedral complex, and Pb2+ coordinating as a trigonal- or square-pyramidal surface complex. The non-octahedral configurations of these surface complexes may have hindered metal transfer from the calcite surface into the bulk, where Ca2+ is in octahedral coordination with respect to first-shell O. The use of pre-equilibrated calcite suspensions, with no net calcite dissolution or precipitation, likely prevented metal incorporation into the lattice as a result of surface recrystallization. The results from this study imply that ageing alone does not increase the stability of Zn2+, Pb2+, and Cu2+ partitioning to calcite if equilibrium with the solution is maintained during reaction; under these conditions, these metals are likely to remain available for exchange even after extended sorption times.  相似文献   

16.
Cadmium and zinc were added at 3 and 300 mg kg−1, respectively, to 23 soils and incubated at 16°C and 80% field capacity for 818 d. Following addition of metal, changes in the radio-labile concentrations of both elements were examined on seven separate sampling occasions over 818 d. At each sample time, soil pore water was extracted using Rhizon soil solution samplers, and concentrations of Cd, Zn, dissolved organic carbon, and major cations and anions were determined. The chemical speciation program WHAM 6 was used to determine free metal ion activity, (M2+). Similar measurements were made on a set of historically contaminated soils from old mining areas, sewage sludge disposal facilities, and industrial sources. The two data sets were combined to give a range of values for p(Cd2+) and p(Zn2+) that covered 5 and 4 log10 units, respectively. A pH-dependent Freundlich model was used to predict Zn2+ and Cd2+ ion activity in soil pore water. Total and radio-labile metal ion concentration in the solid phase was assumed to be adsorbed on the “whole soil,” humus, or free iron oxides to provide alternative model formats. The most successful models assumed that solubility was controlled by adsorption on soil humus. Inclusion of ionic strength as a model variable provided small improvements in model fit. Considering competition with Ca2+ and between Zn2+ and Cd2+ produced no apparent improvement in model fit. Surprisingly, there was little difference between the use of total and labile adsorbed metal as a model determinant. However, this may have been due to a strong correlation between metal lability and pH in the data set used. Values of residual standard deviation for the parameterized models using labile metal adsorbed on humus were 0.26 and 0.28 for prediction of p(Cd2+) and p(Zn2+), respectively. Solubility control by pure Zn and Cd minerals was not indicated from saturation indices. However there may have been fixation of metals to non-radio-labile forms in CaCO3 and Ca-phosphate compounds in the soils in the higher pH range. Independent validation of the Cd model was carried out using an unpublished data set that included measurements of isotopically exchangeable Cd. There was good agreement with the parameterized model.  相似文献   

17.
Effects of Zn2+, Cu2+ and Cd2+ in the synthetic acid mine drainage on the performance of the anaerobic sulfidogenic reactor using rape straw as carbon source were explored. Two different cases were respectively observed for the different metal dosages: stimulatory at lower concentrations and toxic/inhibitory at higher concentrations. Cellulose and hemicellulose were the major components hydrolyzed in the rape straw. Analysis of the heavy metals distribution in the anaerobic digested solid residue showed that adsorption and precipitation were the major mechanisms for the removal of heavy metals. This was also confirmed by the results of scanning electron microscopy and energy-dispersive spectrometry analysis.  相似文献   

18.
本文首先分析了江西德兴铜矿区周围土壤的微量元素和矿物组成特征,结果显示该地区重金属元素富集,且表层土中重金属元素含量与粘土矿物相对含量变化具有较好的一致性。室内土柱淋滤实验结果表明,当总淋滤时间为451 h时,土壤对Pb2+的总吸附量为2 584.75 mg/kg,淋滤实验的前半期存在多种竞争吸附机制,后半期土壤对Pb2+的吸附基本达到动态平衡。淋滤后土壤矿物的相对质量分数发生了改变,粘土矿物有所减少。粘土矿物在不同土壤层对Pb2+的吸附能力也各异。  相似文献   

19.
Novel bionanocomposites, S. cerevisiae–AgNPs, were synthesized by in situ formation of AgNPs on S. cerevisiae surface using fulvic acids as reductants under simulated sunlight. S. cerevisiae–AgNPs were characterized using UV–Vis spectroscopy, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. These analyses showed that AgNPs were distributed on the surface of S. cerevisiae. The application of S. cerevisiae–AgNPs in bacteria killing and heavy metal removal was studied. S. cerevisiae–AgNPs effectively inhibited the growth of E. coli with increasing concentrations of S. cerevisiae–AgNPs. E. coli was killed completely at high concentration S. cerevisiae–AgNPs (e.g., 100 or 200 µg mL?1). S. cerevisiae–AgNPs as excellent heavy metal absorbents also have been studied. Using Cd2+ as model heavy metal, batch experiments confirmed that the adsorption behavior fitted the Langmuir adsorption isotherms and the Cd2+ adsorption capacity of S. cerevisiae–AgNPs was 15.01 mg g?1. According to adsorption data, the kinetics of Cd2+ uptake by S. cerevisiae–AgNPs followed pseudo second-order kinetic model. Moreover, S. cerevisiae–AgNPs possessed ability of different heavy metals’ removal (e.g., Cr5+, As5+, Pb2+, Cu2+, Mn2+, Zn2+, Hg2+, Ni2+). The simulated contaminated water containing E. coli, Cd2+ and Pb2+ was treated using S. cerevisiae–AgNPs. The results indicated that the bionanocomposites can be used to develop antibacterial agents and bioremediation agents for water treatment.  相似文献   

20.
The objective of the present study is to evaluate the absorption efficacy of H. fusiformis biochar (HFB) for the removal of phenol and heavy metals from single and mixed solute systems of these species under different experimental conditions. The effects of contact time, pH change, initial phenol concentration, and heavy metal concentration on the adsorption capacity of HFB were investigated. The kinetics and equilibrium models of sorption of the components of the single and mixed solute systems on HFB were also studied. The experimental data were fitted to kinetic and equilibrium models. The batch experiments revealed that 360 min of contact time was sufficient to achieve equilibrium for the adsorption of both phenol and heavy metals. The adsorption of phenol and nickel by HFB followed the pseudo-second-order kinetic model, which was quite adequate for describing the adsorption mechanism. The equilibrium data for the adsorption of phenol and heavy metals fit well to the Langmuir model with regression coefficients of R 2 > 0.819. The maximum Langmuir adsorption capacities were 10.39, 12.13, 22.25, 2.24, 2.89, and 22.03 mg/g for phenol, Ni2+, Zn2+, Cu2+, Pb2+, and Cd2+, respectively. Moreover, HFB exhibited optimal sorption under slightly acidic conditions at pH 6. The HFB used in the present study exhibited higher adsorption capacity for the removal of phenol and heavy metals from aqueous solutions compared to documented sorbents. These results demonstrate that HFB is potentially useful for alleviating the harmful effects of phenol and heavy metal in wastewater treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号