首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
波致海底缓倾角无限坡滑动稳定性计算分析探讨   总被引:1,自引:1,他引:0  
波浪作用下海底无限坡滑动稳定性计算的极限平衡法中,忽略了坡体水平向应力状态的影响,为此,针对波浪作用下海底缓倾角无限边坡的特点,提出直接基于滑动面处土体应力状态的滑动稳定性计算方法(简称应力状态法),并分析了其适用范围。对具体算例的分析表明,应力状态法计算得出的安全系数大于极限平衡法的安全系数,且随着滑动面深度的增加、土体泊松比以及边坡坡角的增大,两种计算方法得出的安全系数的差异会逐渐增大;对于波浪作用下的海底缓倾角无限边坡,在失稳时极可能沿具有一定厚度的滑动带而不是单一的滑动面而滑动,且波致最大剪应力所在的深度,常常不是斜坡体最易失稳滑移的深度。  相似文献   

2.
The stabilization of slopes by placing piles is one of the most innovative and effective slope reinforcement techniques in the coastal engineering in recent years. Due to the simplicity and efficiency, limit analysis method is the most common approach for assessing the stability of slopes. However, the majority of existing limit analysis methods is limited to slope without the presence of piles. In this technical note, a novel upper-bound limit analysis method was proposed to access the stability of three-dimensional slopes reinforced with piles incorporating the admissible rotational failure mechanism where toe failure, face failure, and base failure were taken into account. The effects of key designing parameters, e.g., pile location, pile spacing, slope angle, slope width on the stability of earth slopes, and geometry of critical slip surface were presented and discussed. The results demonstrate that the proposed approach is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of piles stabilizing the unstable slopes.  相似文献   

3.
This article introduces the application of a stability analysis method that accounts for strength anisotropy on the embankment constructed at the Kobe airport. Shear strength anisotropy is induced by the in-situ state of stress along a potential slip surface of the embankment. In addition, the effects of the shearing rate on the undrained shear strength of the marine clay are examined in detail based on the results of a series of constant-volume direct shear box (DSB), triaxial compression (TC), and triaxial extension (TE) tests varying shearing rates. The most critical slip surface was selected from the deterministic slope stability analysis using unconfined compression tests of undisturbed clay samples from the field. For the most critical slip surface, the potential factor of safety of the embankment is estimated to be within the range of 1.21 to 1.28, as indicated by the results of the stability analyses using the strengths obtained from the DSB, TC, and TE tests and varying shearing rates.  相似文献   

4.
The exploration and exploitation of marine georesources ordinarily disturbs the submarine soft clay surrounding construction areas and leads to a significant decrease in the shear strength of structured and sensitive clayey soils in submarine slopes. Under wave action, local slides can even trigger large-scale submarine landslides, which pose a serious threat to offshore infrastructure such as pipelines and footings. Therefore, accurately evaluating the stability of submarine sensitive clay slopes under wave-induced pressure is one of the core issues of marine geotechnical engineering. In this paper, a kinematic approach of limit analysis combined with strength reduction technique is presented to accurately evaluate the real-time stability of submarine sensitive clay slopes based on the log-spiral failure mechanism, where external work rates produced by wave-induced pressure on slopes are obtained by the numerical integration technique and then are applied to the work-energy balance equations. The mathematical optimization method is employed to achieve the safety factors and the critical sliding surfaces of submarine slopes at different time in a wave cycle. On this basis, the stability of submarine sensitive clay slopes under various wave parameters is systematically investigated. In particular, extreme wave conditions and special cases of slope lengths no more than one wavelength are also discussed. The results indicate that waves have some negative effects on the stability of submarine sensitive clay slopes.  相似文献   

5.
By using the modified pseudo-dynamic method for submerged soils this paper explores the seismic stability of seawall for the active condition of earth pressure. Different forces such as seismic active earth pressure, seismic inertia forces of the wall, non-breaking wave pressure, hydrostatic and hydrodynamic pressures are considered in the stability analysis. Limit equilibrium has been used, and expressions for the factor of safety against sliding and overturning mode of failure have been proposed. The proposed methodology overcomes the limitations of existing pseudo-dynamic method for submerged soils. A detailed parametric study has been conducted by varying different parameters and results are presented in the form of design charts for computation of factor of safety against sliding and overturning mode of failures. It was noticed that the influences of soil friction angle, seismic acceleration coefficient, wall inclination and excess pore pressure are significant when compared to the other parameters. The value of factor of safety against the sliding mode of failure is increasing by about 62% when the value of soil frictional angle is increased from 30° to 40°. It was also found that the factor of safety against overturning mode of failure is decreasing by about 22% as the value of excess pore pressure ratio increases from 0 to 0.75. The proposed method with closed-form solutions can be used for the seismic design of seawalls.  相似文献   

6.
The homogeneous residual circulation in Hauraki Gulf arising from the tides, steady winds, and oceanic inflows is considered by use of a depth‐averaged 2‐dimensional numerical model. Vertical current structure of the wind‐driven circulation is derived by using the computed wind‐induced sea surface slopes, the wind stress, and a prescribed vertical eddy viscosity. Tidal residual circulation is weak, less than 0.01 ms‐1 over most of the Gulf. The response of the Gulf to wind‐forcing indicates a preference for north‐west/south‐east directed winds, the flow through the Gulf being more than 3 times as strong as for winds from other directions. Surface currents are mainly in the wind direction, but subsurface currents reveal closed circulation cells in near‐coastal areas. Simple oceanic inflows give rise to water movements which penetrate to the inner part of the Gulf.  相似文献   

7.
针对载波相位观测值中出现周跳的问题及北斗卫星导航系统全星座播发三频信号的现状,提出一种三频相位电离层残差二阶历元差分(STPIR)的算法,克服了传统电离层残差法受观测数据采样间隔影响较大的问题,联合MW组合观测量进行周跳探测又可避免各自的探测盲区。两种组合观测量均很好地削弱了电离层延迟项的影响,联立方程组进行周跳求解时,直接取整即可得到周跳值。通过北斗三频实测数据验证,提出的组合方法在观测数据采样间隔较大时,可以准确探测出所有周跳,并有效修复。  相似文献   

8.
基于极限分析上限方法的海底斜坡稳定性评价   总被引:2,自引:1,他引:1  
刘博  年廷凯  刘敏  郑德凤  宋雷  印萍 《海洋学报》2016,38(7):135-143
极限平衡法仍是当前海底斜坡稳定性的主要工程评价方法,但该法只能给出稳定性分析的近似解答。基于极限分析运动学定理,假定海底斜坡发生对数螺线型滑移破坏模式,将滑体有效自重和简化波浪力等以外荷载形式叠加引入到虚功率方程中,与潜在滑动面上由黏聚力产生的内能耗散率相平衡,建立考虑一阶简化波浪效应的海底斜坡上限解法;利用多变量无导数求极值的逐级迭代方法与最优化技术,结合抗剪强度折减思想,求解波浪加载下不同时刻的海底斜坡稳定性与相应的临界破坏机构,并针对典型算例开展有限元数值解的验证。进而联合采用数值法与上限解,探讨波高、波长、水深等波浪参数对海底斜坡稳定性与滑动机制的影响。结果表明,本文提出的上限解与数值解吻合较好,获得的安全系数与破坏模式等符合一般规律,为波浪作用下海底斜坡的稳定性评价提供了新的途径。  相似文献   

9.
This paper presents a three dimensional limit method based on the upper bound theory for the stability of suction bucket foundations of offshore platforms. The bucket embedded in soil is subjected to a lateral load applied above the mud line. In order to simulate the lateral load, a fictitious soil layer is assumed, having a thickness equals to the vertical distance from the load point to the surface of the foundation. The unit weight and shear strength of the fictitious soil are set to be zero. The soil–bucket failure mechanism is approximated by a series of prisms. The three dimensional limit method starts from establishing a compatible velocity field and obtains the factor of safety by the energy and work balance equation. Optimization is followed to approach the critical failure mechanism that offers the minimum factor of safety. Two different basal surfaces are incorporated, i.e. an arbitrarily defined failure surface and a partly elliptical failure surface. Results of centrifuge modeling of bucket foundations are used to verify the method. The arbitrary failure surface provides more reasonable prediction than the partly elliptical failure surface. Being a multi-variable dependent problem, further investigation is needed to search for the critical failure mechanism.  相似文献   

10.
Opposition-based firefly algorithm for earth slope stability evaluation   总被引:2,自引:1,他引:1  
This paper introduces a new approach of firefly algorithm based on opposition-based learning (OBFA) to enhance the global search ability of the original algorithm. The new algorithm employs opposition based learning concept to generate initial population and also updating agents’ positions. The proposed OBFA is applied for minimization of the factor of safety and search for critical failure surface in slope stability analysis. The numerical experiments demonstrate the effectiveness and robustness of the new algorithm.  相似文献   

11.
针对海塘边坡稳定性分析中因忽略参数空间变化等因素产生的分析结果偏于不安全的倾向,提出了一种计算模糊随机可靠度的简化方法.首次引入"正态模糊数"来描述所选重要参数的计算区间,采用简化Bishop法与"模糊顶点法"相结合的方法计算边坡稳定的安全系数密度函数,然后根据大量边坡实例统计结果的构造函数得到安全系数的戒下型隶属函数,最终计算获得边坡稳定的模糊随机可靠度评价.结果分析表明,传统可靠度分析结果偏于不安全,而利用模糊随机可靠度来评价边坡稳定状况更趋于合理性.  相似文献   

12.
LI  Yucheng 《中国海洋工程》2002,16(1):79-87
Regular wave deformation and breaking on very gende slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0-1 boundary element method. The wave elevation and the potentials of time-stepping integration are detertnined by the 2nd-order Taylor expansion at the nodes of free surface boundary elements. During calculation the x-coordinates of the free surface element nodes are supposed to remain unchanged, i.e. the partial derivatives of wave elevation and potentials with respect to x are considered as zero. The numerical results of asymmetric parameters of breaking waves are verified by experimental study. It is shown that when the wave asymmetry is weak, the maximum horizontal velocity of water particales occurs at the wave peak and, the average ratio of this maximum velocity to wave celerity is 0.96. However, when the wave asymmetry is strong, the maximum horizontal velocity of water particles occu  相似文献   

13.
To improve the current understanding of the reduction of tsunami-like solitary wave runup by the pile breakwater on a sloping beach, we developed a 3D numerical wave tank based on the CFD tool OpenFOAM in this study. The Navier Stokes equations were applied to solve the two-phase incompressible flow, combined with an LES model to solve the turbulence and a VOF method to capture the free surface. The adopted model was firstly validated with existing empirical formulas for solitary wave runup on the slope without the pile structure. It is then validated using our new laboratory observations of the free surface elevation, the velocity and the pressure around a row of vertical slotted piles subjected to solitary waves, as well as the wave runup on the slope behind the piles. Subsequently, a set of numerical simulations were implemented to analyze the wave reflection, the wave transmission, and the shoreline runup with various offshore wave heights, offshore water depths, adjacent pile spaces and beach slopes. Finally, an improved empirical equation accounting for the maximum wave runup on the slope was proposed by taking the presence of the pile breakwater into consideration.  相似文献   

14.
In this paper, residual and regional gravity and magnetic anomalies of Saros Bay are separated using wavelet method. Wavelet is one of the modern, stochastic image approaches processing technique in electronics. The vertical, horizontal and diagonal components of wavelet output are evaluated simultaneously and an underground model is obtained by suitable cross-sections. Thus the geological and tectonic properties of Saros Bay are extracted. Our proposed model is confirmed by deep and shallow seismic researches of Turkish Petroleum Cooperation (TPAO). The South-East region of Saros Graben is formed by strike slip Ganos Fault and Anafartalar reverse Fault that lies on the east of Ganos Fault. On the Northwest region, there is strike slip component fault resulting in the Enez Graben. Here we detected two new oval type geological structure, both of them starting from the Eastern direction of Canakkale Dardanelles and but one of them continuing through Gelibolu Peninsuls, while the other tending to the Enez Graben. We think that these structures are the ruins of a very old sea in this region. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
K-joint is widely used on offshore platforms; its strength is very important for safety evaluation of platforms and the welding residual stress is inevitable. According to the thermo-effect of welding process, based on ANSYS, using the birth-death element technology, numerical simulation was performed for the welding process by coupling the temperature field and stress field. The nonlinear changes of material properties were considered and the distribution of temperature and stress was obtained. Considering that annealing treatment is generally performed for K-joint after welding, the process of annealing treatment was also simulated in this paper and the influence of it on welding residual stress was analyzed. Based on this, axial loads were applied on two different K-joint models, one with welding residual stress and the other without welding residual stress while just considering the influence of welding seam structure on the K-joint. The stress concentration factors (SCFs) of these two models were calculated and thus the influence of the welding residual stress on stress concentration factor was analyzed. Furthermore, considering the influence of welding residual stress, 105 models of K-joints with different geometric parameters and loading conditions were generated and the effects of them on the SCFs were discussed, results presented in this paper provide references for safety analysis of K-joints.  相似文献   

16.
This paper presents an artificial neural network (ANN)-based response surface method that can be used to predict the failure probability of c-? slopes with spatially variable soil. In this method, the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model; the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties; and finally, an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables. The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability. As a result, the obtained approximate function can be used as an alternative to the specific analysis process in c-? slope reliability analyses.  相似文献   

17.
This study used the strength reduction method to analyze the seismic stability of a subsea tunnel under the effects of seepage and temperature. Excess pore water pressure within the rock mass was first eliminated by calculating the consolidation; then, an earthquake wave was applied to begin the dynamic and time-history analysis and to obtain the maximum horizontal displacement of the model boundary. Finally, a temperature field model was established for the thermal analysis of the structure. The temperature of each node of the structure was regarded as a form of outside load applied to the reduction model; both sides of the vertical horizontal displacement of the boundary nodes and gravity were used as inputs for the static analysis when the vertex horizontal displacement reached its maximum value. By continuously decreasing the shear strength parameters, the safety factor of the tunnel structure was determined. The results show that the plastic zone first appeared in a smaller range on both sides of the tunnel arch feet near the lining and vault of both sides. The safety factor decreased with increasing water depth and overburden layer thickness.  相似文献   

18.
The factors of safety for stationkeeping systems in current standards (ISO, API) are not derived or validated using reliability analyses. As the oil and gas exploration and production is breaking new boundaries, deploying new floating systems and moving into regions with harsher environments, it is of paramount importance to understand what level of reliability these new marine structures are achieving. This paper presents a reliability analysis of the mooring system of a Floating LNG (FLNG) vessel permanently moored and permanently manned offshore North West Australia in a tropical cyclone environment. The reliability analysis addresses both the mooring chain and the pile foundation. The analysis accounts for the long term characteristics of the environment, including the short term variability, in response to a given sea state and the variability and uncertainty in strength of the mooring chain and the pile. The stationkeeping system was analysed using detailed time domain simulations, capturing system non-linearities and low frequency oscillations as well as wave frequency responses and, thereby, reducing modelling uncertainties to a minimum.It is found that for the conditions modelled, neither the chain nor the pile meet a target reliability of 10−4/annum using the factors of safety commonly used in design following current ISO and API standards. New factors of safety are proposed to achieve this target reliability. For the pile design, one complicating factor is that current design standards do not explicitly define the exceedance probability that should be associated with the characteristic value of the undrained shear strength to be used in the design. It is demonstrated that the required factor of safety is crucially dependent on the definition of this characteristic value and on the level and the type of uncertainty in the soil strength profile. A recommendation is made regarding the definition of this characteristic value and the associated factor of safety. Furthermore, it is found that designing the mooring system to an environmental condition with a return period of 10,000 yr (as an Abnormal Limit State event), and setting the factor of safety to unity, meets the target reliability of 10−4/annum for the pile, if the characteristic undrained shear strength is a lower bound, defined in this paper by the 10th percentile value. For the chain however, this target reliability is not achieved.  相似文献   

19.
飓风等自然灾害的发生会对沿海地区造成巨大的社会、经济损失,因此有必要合理评估这些区域的建筑在飓风作用下的灾害。已有研究指出,全球气候变暖会影响未来飓风的强度和发生频率。本文考虑飓风发生(随机)过程的非平稳性,提出了沿海地区飓风灾害评估的新方法。用非齐次泊松过程来描述飓风的发生,并用时变的统计参数(均值、标准差)来反映飓风强度的变化。在此基础上,给出了累积飓风灾害的均值、方差的显式公式。选取美国佛罗里达州迈阿密县进行案例分析,研究了飓风过程非平稳性对累积灾害的影响。  相似文献   

20.
The first results of a laboratory simulation of the Kolmogorov flow on a spherical surface are described. The primary laminar regime was found to be a system of zonal laminar jets of alternating directions. When the first critical value is passed, the primary regime loses its stability, and on its background a secondary vortex quasi-periodic regime with low frequency is formed. With a further increase in the Reynolds number and when the second critical value is passed, this vortex regime becomes unstable and self-excited oscillations emerge in the flow. Specifically, it was found that, if the spherical layer radius is chosen as a length scale, the wavelengths of perturbations in the vortex regime fall in the range of maximum intensity in the spectrum of the horizontal component of wind speed at the tropopause level. We explain the maximum peak shift in the wind spectrum on synoptic time scales when the observational height increases from 3000 km in the surface layer up to 8000?C10000 km in the upper troposphere and lower stratosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号