首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以三个西北太平洋热带气旋(TC)为例,利用WRF(Weather Research and Forecasting)模式进行了一系列海表温度(SST)敏感性数值试验,揭示了西北太平洋SST增暖对TC的强度、尺度及潜在破坏力的影响及其机理。结果表明,在距TC中心100 km以内区域的SST升高有利于TC强度增加,但会减小TC内核尺度;而在距TC中心100 km以外的SST升高并不会使TC强度明显增加甚至使TC强度减弱,但同时会增加TC内核尺度。伴随着低层向眼墙的入流,升高的外区SST会使TC区表层的大气温度和湿度升高,造成眼墙附近海气温差和湿度差及向内的气压梯度力减小,进而减少进入TC眼墙内的感热和潜热,不利于TC增强,但有利于眼墙向外移动,使TC内核尺度增加。内区SST升高与外区SST升高对TC强度及尺度变化的作用机理相反。因此,当TC移过冷或暖洋面时,TC的强度和尺度的变化不仅取决于局地洋面的冷或暖状况,还取决于TC内区和外区SST的差异。由于TC内区和外区SST对TC强度和内核尺度的不同作用,可能存在一个临界范围,当暖池范围在这个临界范围之内时TC潜在破坏力随暖池范围的扩大而增大,但当暖池范围超过这个临界范围时TC潜在破坏力便不会随着暖池范围的继续扩大而增大,甚至会有所减小。   相似文献   

2.
Based on high-fidelity numerical simulation by using the Weather Research and Forecast (WRF) model, we analyzed the formation and replacement mechanism of the concentric eyewall of Super Typhoon Muifa (1109) from the aspects of the potential vorticity (PV), dynamic/ thermodynamic structure change, sea surface flux, and water vapor content. Observational data and sensitivity tests were also adopted to verify the results. We found that: (1) The abnormal increase of the PV in the rain zone is mainly due to the condensation latent heat. Sufficient water vapor conditions are beneficial to the formation of the outer eyewall structure, and when the environmental water vapor content is larger, the intensity of the outer eyewall becomes greater. (2) After the formation of the typhoon’s outer eyewall, in the area where the outer eyewall is located, the increase of inertial stability contributes to the decrease of the intensity of the inner eyewall. When the intensity of the outer eyewall is larger, the divergence and subsidence motion in the upper layer of the outer eyewall has a greater weakening effect on the intensity of the inner eyewall. (3) The increase of potential temperature of the outer eyewall is mainly due to the condensation latent heat release and the warming of dry air subsidence motion in the moat area. (4) The increase of sea surface heat flux can prolong the concentric eyewall replacement process.  相似文献   

3.
热带气旋眼墙非对称结构的研究综述   总被引:2,自引:0,他引:2  
热带气旋的眼墙非对称结构与其发展过程密切相关。在热带气旋移动过程中,非对称风场伴随着边界层内非对称摩擦而引起的辐合,影响着热带气旋眼墙内的对流分布。此外,风垂直切变作为影响热带气旋强度的重要因子,将上层暖心吹离表层环流,引起眼墙垂直运动的非对称,导致云、降水在方位角方向的非均匀分布。当存在平均涡度的径向梯度时,罗斯贝类型的波动可以存在于涡旋内核区域,影响眼墙非对称结构。海洋为热带气旋提供潜热和感热形式的能量,是热带气旋发展的重要能量来源,关于海洋如何影响热带气旋眼墙非对称结构的相关研究较少。文中着重回顾了热带气旋与海洋相互作用的研究成果,并提出海洋影响热带气旋眼墙非对称结构的机制。海洋对热带气旋最显著的响应特征是冷尾效应,该效应通过降低海表温度,减少海洋向大气输送的潜热和感热,从而影响热带气旋眼墙非对称结构。此外,海浪改变海表粗糙度,通过边界层影响移动热带气旋的眼墙结构。  相似文献   

4.
It has been challenging to project the tropical cyclone(TC) intensity,structure and destructive potential changes in a warming climate.Here,we compare the sensitivities of TC intensity,size and destructive potential to sea surface warming with and without a pre-storm atmospheric adjustment to an idealized state of Radiative-Convective Equilibrium(RCE).Without RCE,we find large responses of TC intensity,size and destructive potential to sea surface temperature(SST) changes,which is in line with some previous studies.However,in an environment under RCE,the TC size is almost insensitive to SST changes,and the sensitivity of intensity is also much reduced to 3%?C-1–4%?C-1.Without the pre-storm RCE adjustment,the mean destructive potential measured by the integrated power dissipation increases by about 25%?C-1 during the mature stage.However,in an environment under RCE,the sensitivity of destructive potential to sea surface warming does not change significantly.Further analyses show that the reduced response of TC intensity and size to sea surface warming under RCE can be explained by the reduced thermodynamic disequilibrium between the air boundary layer and the sea surface due to the RCE adjustment.When conducting regional-scale sea surface warming experiments for TC case studies,without any RCE adjustment the TC response is likely to be unrealistically exaggerated.The TC intensity–temperature sensitivity under RCE is very similar to those found in coupled climate model simulations.This suggests global mean intensity projections under climate change can be understood in terms of a thermodynamic response to temperature with only a minor contribution from any changes in large-scale dynamics.  相似文献   

5.
The power dissipation index (PDI), which is defined as the sum of the cube of tropical cyclone (TC) maximum wind speed during TC lifetime, is widely used to estimate the TC destructive potential. However, due to the lack of high-resolution observations, little attention has been paid to the contribution of TC size change to TC destructive potential in response to ocean warming. In this study, sensitivity experiments are performed by using the high-resolution Weather Research and Forecasting (WRF) model to investigate the responses of TC size and TC destructive potential to prescribed sea surface temperature (SST) increase under the present climate condition. The results show that TC size increases with the ocean warming. Possible reasons for TC size change are investigated with a focus on the outer air-sea moisture difference (ASMD). As SST increases, ASMD in the outer zone of the TC is larger than that in the inner zone, which increases the surface entropy flux (SEF) of the outer zone. This change in the radial distribution of SEF causes the increase of tangential wind in the outer zone, which further increases SEF, resulting in a positive feedback between outer-zone SEF and outer-zone tangential wind. This feedback leads to the increase of the radius of gale-force wind, leading to the expansion of TC size. Moreover, to estimate the contribution of TC size change to TC destructiveness, we calculate TC size-dependent destructive potential (PDS) as the storm size information is available in the model outputs, as well as PDI that does not consider the effect of TC size change. We find that PDS increases exponentially as SST increases from 1 to 4°C, while PDI increases linearly; hence the former is soon much greater than the latter. This suggests that the growth effect of TC size cannot be ignored in estimating destructiveness under ocean warming.  相似文献   

6.
根据非线性强迫奇异向量(NFSV)型海温(SST)强迫误差识别的敏感性特征,通过观测系统模拟试验(OSSE)确定了12个热带气旋(TC)的强度模拟的海温目标观测最优布局.NFSV型SST强迫误差敏感区一般沿着台风移动路径,主要位于台风快速增强阶段.结果 表明,在NFSV型SST强迫目标观测敏感区内以90 km间隔加密海...  相似文献   

7.
In the context of a model of tropical cyclone intensity based on an improved meso-scale atmospheric model, numerical simulation is performed of the track and intensity variation of tropical cyclones(TC) arising from sea surface temperature(SST) variation over a specified sea region. Evidence suggests that the model is capable of modeling quite welt the track and intensity of TC:SST variation leads to an abrupt change in the cyclone intensity:the response of the cyclone to the abrupt SST change lasts 8-12 h.  相似文献   

8.
2006年超级台风“桑美”强度与结构变化的数值模拟研究   总被引:2,自引:1,他引:1  
使用一个高分辨率、非静力数值模式WRF模式对2006年超级台风Saomei强度和结构进行了数值模拟研究.首先,评估了Makin的粗糙度长度公式对台风Saomei强度和结构变化的影响,结果表明,采用新参数后,使得模拟的台风强度变化与实况最佳路径资料的强度变化更一致,对超级台风Saomei强度预报有改进;但对台风路径的影响不大.通过QuikSCAT、雷达和TRMM非常规资料的验证,进一步表明模拟的台风Saomei的结构与实况很接近,可以再现台风内核区域的部分"双眼墙"和"Annular"结构.其次,通过对台风Saomei边界层过程模拟的改进,表明在平均风速大于40 m/s时边界层各物理量明显改善,使得模式最大强度比传统的简单外推插值方案有显著改进,特别是在台风最强阶段,当台风Saomei眼墙区域的海表面拖曳系数C_d的相对变小,使得其眼墙区域的平均切向风速、径向风速、垂直风速、温度距平、涡旋动能和绝对角动量等物理量均有增强.表明台风Saomei眼墙氏域(20-40 km)各物理量的贡献对其强度和结构变化的影响十分重要.最后,在此基础上进一步分析模式海温和大尺度环境垂直风切变对台风Saomei强度和结构变化的可能影响,讨论了台风Saomei在其增强和消弱阶段中,大尺度环境垂直风切变对其强度变化的负反馈作用.  相似文献   

9.
A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model.Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane.When coupled processes are excluded,a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research.The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well,as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks.Asymmetric structures are successfully simulated under conditions of uniform environmental flow.The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions.The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated.TC intensity responds nonlinearly to sea surface temperature (SST).The TC intensification rate becomes smaller once the SST exceeds a certain threshold.Oceanic stratification also influences TC intensity,with stronger stratification responsible for a larger decrease in intensity.The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified,demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification.Air-sea interaction has only a slight influence on TC movement in this model.  相似文献   

10.
Among all of the sources of tropical cyclone(TC) intensity forecast errors, the uncertainty of sea surface temperature(SST) has been shown to play a significant role. In the present study, we determine the SST forcing error that causes the largest simulation error of TC intensity during the entire simulation period by using the WRF model with time-dependent SST forcing. The SST forcing error is represented through the application of a nonlinear forcing singular vector(NFSV)structure. For the selected 12 TC cases, the NFSV-type SST forcing errors have a nearly coherent structure with positive(or negative) SST anomalies located along the track of TCs but are especially concentrated in a particular region. This particular region tends to occur during the specific period of the TCs life cycle when the TCs present relatively strong intensity, but are still intensifying just prior to the mature phase, especially within a TC state exhibiting a strong secondary circulation and very high inertial stability. The SST forcing errors located along the TC track during this time period are verified to have the strongest disturbing effect on TC intensity simulation. Physically, the strong inertial stability of TCs during this time period induces a strong response of the secondary circulation from diabatic heating errors induced by the SST forcing error. Consequently, this significantly influences the subsidence within the warm core in the eye region, which,in turn, leads to significant errors in TC intensity. This physical mechanism explains the formation of NSFV-type SST forcing errors. According to the sensitivity of the NFSV-type SST forcing errors, if one increases the density of SST observations along the TC track and assimilates them to the SST forcing field, the skill of TC intensity simulation generated by the WRF model could be greatly improved. However, this adjustment is most advantageous in improving simulation skill during the time period when TCs become strong but are still intensifying just prior to reaching full maturity. In light of this, the region along the TC track but in the time period of TC movement when the NFSV-type SST forcing errors occur may represent the sensitive area for targeting observation for SST forcing field associated with TC intensity simulation.  相似文献   

11.
本文利用包括海气耦合、气浪耦合及浪流耦合的完全耦合系统,着重研究了2006年“格美”(Kaemi)台风眼墙内的中尺度涡结构。中尺度涡作为影响台风眼墙非对称结构的内部因子,与风垂直切变密切相关,其发展过程受台风下垫面海洋状况的影响。在顺切变右侧,垂直气流逐渐增强,在顺切变左侧达到最大后逐渐减弱。当不考虑海表温度的冷涌反馈作用时,海气间的热通量输送较大,由此引起眼墙内的中尺度对流加强,但集中爆发区仍然位于顺切变方向,不受热通量输送变化的影响。当不考虑海浪对海表粗糙度的影响时,在较小的海表粗糙度条件下,眼墙非对称性减弱,使得中尺度对流涡在切向方向上的分布较为均匀。  相似文献   

12.
A new mesoscale air-sea coupled model (WRF- OMLM-Noh) was constructed based on the Weather Research and Forecasting (WRF) model and an improved Mellor-Yamada ocean mixed-layer model from Noh and Kim (OMLM-Noh). Through off-line tests and a simulation of a real typhoon, the authors compared the performance of the WRF-OMLM-Noh with another existing ocean mixed-layer coupled model (WRF-OMLM-Pollard). In the off-line tests with Tropical Ocean Global Atmosphere Program’s Coupled Ocean Atmosphere Response Experiment (TOGA-COARE) observational data, the results show that OMLM-Noh is better able to simulate sea surface temperature (SST) variational trends than OMLM -Pollard. Moreover, OMLM-Noh can sufficiently reproduce the diurnal cycle of SST. Regarding the typhoon case study, SST cooling due to wind-driven ocean mixing is underestimated in WRF-OMLM-Pollard, which artificially increases the intensity of the typhoon due to more simulated air-sea heat fluxes. Compared to the WRF- OMLM-Pollard, the performance of WRF-OMLM-Noh is superior in terms of both the spatial distribution and temporal variation of SST and air-sea heat fluxes.  相似文献   

13.
Liguang Wu  Li Tao 《Climate Dynamics》2011,36(9-10):1851-1864
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30?years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30?years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs.  相似文献   

14.
赤道中东太平洋表层水温异常与热带气旋活动的统计关系   总被引:7,自引:4,他引:3  
杨亚新  江静 《气象科学》2008,28(6):637-643
利用1950-2005年西北太平洋热带气旋(TC)和赤道中东太平洋表层水温(SST)资料,统计分析了赤道中东太平洋表层水温异常与TC频数、强度、源地和路径等的关系.结果表明,赤道中东太平洋暖异常年:(1)TC发生频数偏少,较常年平均偏少2~3个,但强度偏强,强台风和超强台风发生数偏多,较常年平均偏多1个左右,且随着暖异常强度的增强,TC发生频数偏少,强度增强愈加明显;(2)TC生成位置偏东偏南,145°E以东海区TC生成频数较冷异常年和La Nina年增加明显;(3)TC路径偏东,转向路径出现频次增加,西向路径出现频次减少,从而导致日本东部海区TC通过频数增加,而我国南海和华东沿海TC通过频数减少;(4)在我国登陆的TC频数偏少,较常年平均偏少1~2个.赤道中东太平洋冷异常年,情况基本与上相反.上述影响主要是由于赤道中东太平洋SST异常导致大气环流发生异常造成的.  相似文献   

15.
Using hourly rainfall intensity, daily surface air temperature, humidity and low-level dew point depressions at 55 stations in the southeast coast of China, and sea surface temperature from reanalysis in the coastal region, this paper analyzes the connection between peak intensity of extreme afternoon short-duration rainfall (EASR) and humidity as well as surface air temperature. The dependency of extreme peak intensity of EASR on temperature has a significant transition. When daily highest surface temperature is below (above) 29°C, the peak rainfall intensity shows an ascending (descending) tendency with rising temperature. Having investigated the role of moisture condition in the variation of EASR and temperature, this paper discovered that the decrease of peak rainfall intensity with temperature rising is connected with the variation of relative humidity. At higher temperatures, the land surface relative humidity decreases dramatically as temperature further increases. During this process, the sea surface temperature maintains basically unchanged, resulting in indistinct variations of water vapor content at seas. As water vapor over land is mainly contributed by the quantitative moisture transport from adjacent seas, the decline of relative humidity over land will be consequently caused by the further rise of surface air temperature.  相似文献   

16.
利用1979—2010年NCEP/NCAR再分析资料和特拉华大学地面气温资料,研究了夏季北太平洋洋中槽强度的年际变化特征、成因及其与北美地表气温的联系。结果表明,夏季北太平洋洋中槽强度存在明显的年际变化特征,并主要表现为准4 a和准5a的周期变化特征。进一步的分析表明,夏季北太平洋洋中槽强度与同期北美东南地区地表气温存在显著的负相关,当夏季北太平洋洋中槽强度异常偏强(弱)时,洋中槽下游的北美东南地区对流层中高层的位势高度异常降低(升高),对应于控制该地区的高压减弱(增强),从而使得该地区地表气温降低(升高)。此外,夏季热带印度洋海温异常对洋中槽的年际变化起了决定性的作用。当热带印度洋海温异常偏暖时,通过调节大气边界层相当位温,加热对流层大气,在热带印度洋东侧激发出东传的开尔文波,同时也使得北太平洋中东部位势高度异常升高,导致洋中槽的异常减弱。反之亦然。  相似文献   

17.
The mean kinematic and thermodynamic structures of tropical cyclones (TCs) making landfall in main-land China are examined by using sounding data from 1998 to 2009. It is found that TC landfall is usually accompanied with a decrease in low-level wind speed, an expansion of the radius of strong wind, weakening of the upper-level warm core, and drying of the mid-tropospheric air. On average, the warm core of the TCs dissipates 24 h after landfall. The height of the maximum low-level wind and the base of the stable layer both increase with the increased distance to the TC center;however, the former is always higher than the latter. In particular, an asymmetric structure of the TC after landfall is found. The kinematic and thermodynamic structures across various areas of TC circulation diff er, especially over the left-front and right-rear quadrants (relative to the direction of TC motion). In the left-front quadrant, strong winds locate at a smaller radius, the upper-level temperature is warmer with the warm core extending into a deep layer, while the wet air occupies a shallow layer. In the right-rear quadrant, strong wind and wet air dwell in an area that is broader and deeper, and the warmest air is situated farther away from the TC center.  相似文献   

18.
The sensitivity of the simulation of tropical cyclone(TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model(WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes–Ferrier(FER), WRF Single-Moment 5-class(WSM5) and WRF Single-Moment6-class(WSM6)–are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size(the inner-core size, especially). In addition, the inclusion of graupel microphysics processes(as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.  相似文献   

19.
In this study a coupled air–sea–wave model system, containing the model components of GRAPES-TCM, ECOM-si and WAVEWATCH III, is established based on an air–sea coupled model. The changes of wave state and the effects of sea spray are both considered. Using the complex air–sea–wave model, a set of idealized simulations was applied to investigate the effects of air–sea–wave interaction in the upper ocean. Results show that air–wave coupling can strengthen tropical cyclones while air–sea coupling can weaken them; and air–sea–wave coupling is comparable to that of air–sea coupling, as the intensity is almost unchanged with the wave model coupled to the air–sea coupled model. The mixing by vertical advection is strengthened if the wave effect is considered, and causes much more obvious sea surface temperature (SST) decreases in the upper ocean in the air–sea coupled model. Air–wave coupling strengthens the air–sea heat exchange, while the thermodynamic coupling between the atmosphere and ocean weakens the air–sea heat exchange: the air–sea–wave coupling is the result of their balance. The wave field distribution characteristic is determined by the wind field. Experiments are also conducted to simulate ocean responses to different mixed layer depths. With increasing depth of the initial mixed layer, the decrease of SST weakens, but the temperature decrease of deeper layers is enhanced and the loss of heat in the upper ocean is increased. The significant wave height is larger when the initial mixed layer depth increases.  相似文献   

20.
This paper comprehensively analyzes the characteristics and cause of the inshore intensification of super typhoon "Hato", the 13 th super typhoon in 2017. The aspects of typhoon structure, evolution of large-scale circulation and physical quantity field are analyzed using observation data from the Guangdong Automatic Station, Shenzhen Doppler Radar data, NCEP 1°×1° reanalysis data, NCEP 0.25°×0.25° sea surface temperature(SST) data, etc.Additionally, in order to investigate the influence of SST change on the intensity of "Hato", the WRF model and ECMWF 0.125°×0.125° reanalysis data are combined to conduct 3 sensitivity tests on"Hato". The results show that the favorable conditions for inshore intensification of "Hato"included the strengthening and westward extension of the subtropical high, continuous increase of low level moisture transport, an anomalous warm SST area north of 20°N in the South China Sea, an extreme divergence value in the northern South China Sea exceeding 6 ×10-5 s-1, and vertical environmental wind shear between 1.1 m/s-4.8 m/s. The intensity of"Hato"was very sensitive to changes in SST. When the SST rose or dropped by 2℃, the minimum central pressure of the typhoon changed by about 13 hPa or 11 hPa,respectively. SST indirectly influenced the intensity of the typhoon through affecting latent heat transport and sensible heat transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号