首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using surface observations from 58 widely distributed stations over India, a highly significant (99.9 %) decreasing trend of pan evaporation (Epan) of 9.24 mm/a/a is calculated for 1971 to 2010. This constitutes a ~10 % reduction of Epan over the last four decades. While Epan is decreasing during the wet summer monsoon season (JJAS), as well as during the dry rest of the year, the rate of decrease during the dry season is much larger than that during the wet season. Apart from increasing solar dimming, surface winds are also persistently decreasing over the Indian sub-continent at the rate of ?0.02 m/s/a resulting in ~40 % reduction over the last four decades. Based on PenPan model, it is shown that both the above factors contribute significantly to the decreasing trend in Epan. On a continental scale, annual mean potential evaporation (Ep) is larger than rainfall (P or Ep-P > 0, moisture divergence) indicating that India is water-limited. However, during wet monsoon P > Ep (or Ep-P < 0, moisture convergence) indicating that India is energy-limited during this season. Long term data shows that annually Ep-P follows a significant decreasing trend indicating that water limitation is decreasing with time. This is largely due to stronger decreasing trend of Ep-P during the dry season compared to weaker increasing trend of Ep-P during the wet monsoon season. The scatter plot of Ep-P versus Ep also conveys that the decrease in Ep leads to increase in moisture convergence in wet season and decrease in moisture divergence in dry season.  相似文献   

2.
Summary Monthly mean surface fields of different meteorological parameters and evaporation are studied for the 1979 (poor monsoon) and 1983 (good monsoon) monsoon seasons over the Arabian Sea, in order to understand the role of evaporation on the Indian monsoon rainfall. It is noticed that in general, the sea surface temperatures are higher in 1983 throughout the monsoon season than in 1979 in the Arabian Sea excepting western region. The mean rates of evaporation on a seasonal scale are found to be equal in both years (3.66×1010 and 3.59×1010 tons/day in 1979 and 1983, respectively). No coherence is observed between the evaporation and the west coast rainfall within a season. It is also noted that the pressure distribution over the Arabian Sea is even important to advect the moisture towards the west coast of India, through winds.With 10 Figures  相似文献   

3.
This study documents the temporal and spatial variability of surface wind conditions over the Norwegian county of Finnmark and the coupling of local surface winds to the larger-scale atmospheric circulation, represented by the mean sea level pressure field. At locations along the northern coast, thermally driven offshore winds from the south dominate, especially during the cold season. During the warm season, downward mixing of westerly overlying winds becomes more important as the stability of the boundary layer stratification decreases. In the western part, locations are situated in valleys, resulting in two opposing along-channel dominant wind directions. Seasonal changes in atmospheric conditions are reflected in a reversal of the dominant wind direction, with a component towards the coast during the cold season. At all locations, a clear separation between different prevailing surface wind directions in each season can be achieved based exclusively on local mean sea level geostrophic wind direction. This allows statistical downscaling of the prevailing surface wind conditions from lower-resolution simulations of the surface pressure field and may improve local wind forecasts over complex terrain.  相似文献   

4.
Summary  An hourly averaged climatology at 0.05 ° horizontal resolution over the Lake Tanganyika region was created by making simulations with a mesoscale model (HIRLAM) using a high resolution physiography to represent the surface. Initial and boundary values were interpolated from ECMWF analyses. Climatologies for a typical dry season month (July 1994) and wet season month (March 1994) were created by 7-day segmenting. Model results were validated by utilizing a special coastal observation network. A number of experiments were made with changes to the physiography (mountains/no mountains, lake/no lake). The results reveal local channelling and blocking effects of the near-surface southeasterly trade winds by the high mountain chains in the region of the East African rift. Furthermore, surface winds display regular diurnal cycles in many places, due to slope winds over hills and lake-land-type breezes near the coast. The diurnal coastal winds (defined by the observation network) are reasonably well simulated. Precipitation patterns display the semi-annual march of the ITCZ across the area, plus considerable topographic effects. There is high evaporation from lakes and wetlands during the windy dry season, while evaporation from the moist land surface dominates the rainy season. Received October 15, 1998/Revised September 2, 1999  相似文献   

5.
In September 2009, the Indian Space Research Organisation launched a Ku-band microwave scatterometer (OSCAT) onboard the polar orbiting satellite ‘Oceansat-2’. In this article, the capabilities of the newly available OSCAT sea-surface winds are demonstrated by studying the monsoon intra-seasonal variabilities during the 2010 summer monsoon season. A preliminary validation of OSCAT surface winds with European Centre for Medium Range Weather Forecasting (ECMWF) analysis surface winds carried out during June to August 2010 suggests that the quality of the OSCAT winds are able to meet the mission specifications. The observed mean monthly features of the Indian summer monsoon in July and August 2010 from OSCAT match well with those of ECMWF reanalysis winds. The OSCAT winds capture the known characteristics of the Indian summer monsoon, such as the northward propagation of a low level jet, and its preferred locations during active and break monsoon conditions, reasonably well. The Morlet wavelet transform is used for time series analysis. The OSCAT measured sea-surface winds were found to possess two dominant modes of variability during the 2010 monsoon season: one with a periodicity between 32 and 64?days, and another with a periodicity between 8 and 16?days. Rainfall activity over the Indian summer monsoon region is closely associated with the phases of the two above-mentioned dominant intra-seasonal variabilities. This study demonstrates that the OSCAT winds can be used very well and with confidence for meteorological studies.  相似文献   

6.
Carbon monoxide (CO), Ozone (O3) and Black Carbon (BC) aerosol mass concentrations in relation to planetary boundary layer (PBL) height measurements were analyzed from January–December, 2008 over tropical urban environment of Hyderabad, India. DMSP-OLS night-time satellite data were analyzed for fire occurrence over the region and its correlation with pollution concentrations over the urban region. Results of the study suggested considerable increase in CO and BC concentrations during early morning hours. Higher concentration of BC, CO and ozone was observed during pre-monsoon, post-monsoon and winter and lowest concentrations exhibited during monsoon season. NCEP/NCAR reanalysis winds suggested long range transport of aerosols and trace gases from forest fires are enhancing the pollutant concentrations over the study area.  相似文献   

7.
EstimationofWindsatDifferentlsobaricLevelsBasedontheObserved Windsat850hPaLevelUsingDoubleFourierSeriesS.N.BavadekarandR.M.Kh?..  相似文献   

8.
In this work, the influence of South Asian biomass burning emissions on O3 and PM2.5 concentrations over the Tibetan Plateau (TP) is investigated by using the regional climate chemistry transport model WRF-Chem. The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets, providing a clear perspective on the spatiotemporal variations of O3 and PM2.5 concentrations across the Indian subcontinent, including the Tibetan Plateau. Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O3 concentrations. For example, contribution ratios were up to 20% in the Indo-Gangetic Plain during the pre-monsoon season but below 1% over the TP throughout the year 2016. In contrast, South Asian biomass burning emissions contributed more than 60% of PM2.5 concentration over the TP during the pre-monsoon season via significant contribution of primary PM2.5 components (black carbon and organic carbon) in western India that were lofted to the TP by westerly winds. Therefore, it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP, especially during the pre-monsoon season.  相似文献   

9.
The cyclone frequency distribution over the Bay of Bengal during 1990–2009 was distinctly bimodal, with a primary post-monsoon peak and a secondary pre-monsoon peak, despite the very high convective available potential energy (CAPE) during the pre-monsoon. The location of the monsoon trough over the bay is a primary factor in tropical cyclogenesis. Because the trough was in the northernmost bay during the pre-monsoon season, cyclogenesis was inactive in the southern bay, where a strong southwesterly wind shear was found. In this season, moreover, a hot, dry air mass extending vertically from 950 to 600 hPa was advected from northwestern India toward the bay. Moist, warm southwesterly winds penetrating below the deep, dry air mass caused a prominent dryline to form aloft on the northwestern side of the bay. The synoptic-scale hot, dry air forcing to the bay suppressed the active convection necessary for cyclogenesis. The strength of the stable environmental layer, represented by convective inhibition (CIN), was extremely large, and acted as a cap over the northern and northwestern bay. Conversely, during the post-monsoon, there were no horizontal temperature or moisture gradients, and CAPE and CIN were fairly modest. The entire bay was covered by a very deep, moist layer from the surface to 700 hPa transported from the east. The monsoon trough position and the environmental CIN in combination can explain the lower frequency of cyclogenesis during the pre-monsoon compared with the post-monsoon season.  相似文献   

10.
The coverage of satellite derived winds over the Indian region including Indian Ocean has improved by the operation of India’s first dedicated satellite for meteorology, KALPANA-1 since 12 September 2002. Atmospheric motion vectors (AMVs) are being derived at the India Meteorological Department (IMD), New Delhi on a routine operational basis. The AMV is recognized as an important source of information for numerical weather prediction (NWP) and is particularly suited for tracking the low and middle level clouds mainly because of the good contrast in albedo between target and background, whereas the upper level moisture pattern can be better tracked by water vapor winds (WVW) using water vapor (WV) channel (5.7–7.1 μm). The WVWs proved to be a very useful wind product for predicting the future track position of cyclones, well marked low pressure areas or heavy rainfall warnings in advance and so, often these types of weather systems are steered by the upper level winds. In the present study, the quantitative as well as qualitative analyses of KALPANA-1 WVW have been carried out. The primary change introduced is making use of first guess (FG) forecast fields obtained from National Center for Environmental Prediction (NCEP) and Global Forecast System (GFS), at a resolution of 1° × 1° with T-382/L64 instead of forecasts of operational limited area model (LAM) of IMD. The overall results showed a consistent improvement after using improved FG wind fields from NCEP instead of LAM with a significantly increasing number of good qualities of KALPANA-1 derived WVWs. The quantitative error analysis has also been carried out for the validation of WVWs using collocated radiosonde observations for the period from May 2008 to December 2009 and the available mid-upper level winds derived from METEOSAT-7 data for the period from October to December 2008. The analysis shows that after modification, the RMSE and bias of KALPANA-1 WVWs have reduced considerably. Further, to assess the impact of these winds, a high resolution mesoscale model WRF 3DVAR system is used in the present study for the analysis of tropical cyclone ‘Sidr’. The results show that the wind assimilation experiments (analysis at 200 hPa) using upper level KALPANA-1 WVW have great potential for improving the NWP analysis. The impact of additional wind data in the model is found to be positive and beneficial.  相似文献   

11.
A high-resolution mesoscale numerical model (MM5) has been used to study the coastal atmospheric circulation of the central west coast of India, and Goa in particular. The model is employed with three nested domains. The innermost domain of 3 km mesh covers Goa and the surrounding region. Simulations have been carried out for three different seasons—northeast (NE) monsoon, transition period and southwest (SW) monsoon with appropriate physics options to understand the coastal wind system. The simulated wind speed and direction match well with the observations. The model winds show the presence of a sea breeze during the NE monsoon season and transition period, and its absence during the SW monsoon season. In the winter period, the synoptic flow is northeasterly (offshore) and it weakens the sea breeze (onshore flow) resulting in less diurnal variation, while during the transition period, the synoptic flow is onshore and it intensifies the sea breeze. During the northeast monsoon at an altitude of above 750 m, the wind direction reverses, and this is the upper return current, indicating the vertical extent of the sea breeze. A well-developed land sea breeze circulation occurs during the transition period, with vertical extension of 300 and 1,100 m, respectively.  相似文献   

12.
Dissimilarities in temperature trends in space and time over the Indian region have been examined to look for signatures of aerosols’ influence. Separate temperature time series for North and South India were constructed for dry (November–May) and wet (June–October) seasons. Temperature trend for the entire period 1901–2007 and different subperiods of 1901–1950, 1951–1990, 1971–2007, and 1991–2007 have been examined to isolate the aerosol and other greenhouse gas influences on temperatures. Maximum (daytime) temperatures during dry season corresponding to North and South India show significant warming trend of 0.8 and 1.0?°C per hundred years during the period 1901–2007, while minimum temperature shows nebulous trend of 0.2 and 0.3?°C per hundred years over North and South India, respectively. During the wet season, maximum temperature shows nearly half of dry season maximum temperature warming trend. However, asymmetry is observed in dry season maximum temperature trend during post-industrial period 1951–1990 wherein the North/South India shows decreasing/increasing trends, while during the recent period 1991–2007 trends are uniformly positive for both the regions. Spatial and temporal asymmetry in observed trends clearly point to the role of aerosols in lowering temperature trends over northern India. Atmospheric aerosols could cause a negative climate forcing that can modulate the regional surface temperature trends in a significant way. As this forcing acts differentially on day and night temperatures, trends in diurnal temperature range (DTR) provide a direct assessment of impacts of aerosols on temperature trends. Time series of diurnal temperature range for dry and wet seasons have been examined separately for North and South India. Over North India, the DTR for dry season has increased gradually during the period 1901–1970 and thereafter showed decreasing trend, while trends in temperature range over Southern India were almost opposite in phase with North India. The aerosol and greenhouse gases seem to play an important role in the spatial and temporal variability of temperature range over India.  相似文献   

13.
The predictability of Cyclone Sidr in the Bay of Bengal was explored in terms of track and intensity using the Advanced Research Hurricane Weather Research Forecast (AHW) model. This constitutes the first application of the AHW over an area that lies outside the region of the North Atlantic for which this model was developed and tested. Several experiments were conducted to understand the possible contributing factors that affected Sidr??s intensity and track simulation by varying the initial start time and domain size. Results show that Sidr??s track was strongly controlled by the synoptic flow at the 500-hPa level, seen especially due to the strong mid-latitude westerly over north-central India. A 96-h forecast produced westerly winds over north-central India at the 500-hPa level that were notably weaker; this likely caused the modeled cyclone track to drift from the observed actual track. Reducing the model domain size reduced model error in the synoptic-scale winds at 500?hPa and produced an improved cyclone track. Specifically, the cyclone track appeared to be sensitive to the upstream synoptic flow, and was, therefore, sensitive to the location of the western boundary of the domain. However, cyclone intensity remained largely unaffected by this synoptic wind error at the 500-hPa level. Comparison of the high resolution, moving nested domain with a single coarser resolution domain showed little difference in tracks, but resulted in significantly different intensities. Experiments on the domain size with regard to the total precipitation simulated by the model showed that precipitation patterns and 10-m surface winds were also different. This was mainly due to the mid-latitude westerly flow across the west side of the model domain. The analysis also suggested that the total precipitation pattern and track was unchanged when the domain was extended toward the east, north, and south. Furthermore, this highlights our conclusion that Sidr was influenced from the west side of the domain. The displacement error was significantly reduced after the domain size from the western model boundary was decreased. Study results demonstrate the capability and need of a high-resolution mesoscale modeling framework for simulating the complex interactions that contribute to the formation of tropical cyclones over the Bay of Bengal region.  相似文献   

14.
By using 40-year NCEP reanalysis daily data (1958-1997), we have analyzed the climatic characteristics of summer monsoon onset in the South China Sea (105°E ~ 120°E, 5°N ~ 20°N, to be simplified as SCS in the text followed) pentad by pentad (5 days). According to our new definition, in the monsoon area of the SCS two of the following conditions should be satisfied: 1) At 850hPa, the southwest winds should be greater than 2m/s. 2) At 850 hPa, θse should be greater than 335°K. The new definition means that the summer monsoon is the southwest winds with high temperature and high moisture. The onset of the SCS summer monsoon is defined to start when one half of the SCS area (105°E ~ 120°E,5°N ~ 20°N) is controlled by the summer monsoon. The analyzed results revealed the following: 1) The summer monsoon in the SCS starts to build up abruptly in the 4th pentad in May. 2) The summer monsoon onset in the SCS is resulted from the development and intensification of southwesterly monsoon in the Bay of Bengal. 3) The onset of the summer monsoon and establishment of the summer monsoon rainfall season in the SCS occur simultaneously. 4) During the summer monsoon onset in the SCS, troughs deepen and widen quickly in the lower troposphere of the India; the subtropical high in the Western Pacific moves eastward off the SCS in the middle troposphere; the easterly advances northward over the SCS in the upper troposphere.  相似文献   

15.
云贵高原西部大理地区近地层湍流特征分析   总被引:4,自引:1,他引:3  
利用大理国家气候观象台2007年3—12月观测资料,采用涡动相关法等计算方法分析了该地区湍流强度、湍流方差、湍流通量等特征量的日变化和干湿季变化特征。结果表明,湍流强度干季大于湿季;湍流方差与稳定度满足1/3次方定律,风速方差在稳定条件下比不稳定条件下离散,水平方向比垂直方向离散;湍流通量有明显日变化特征,感热、动量通量干季大于湿季,潜热通量湿季大于干季,干湿季热量交换以潜热为主;干季能量闭合率大于湿季;不同风向条件下平均水汽密度存在差异.  相似文献   

16.
季风与贵州的雨季   总被引:2,自引:1,他引:2  
赵恕 《气象学报》1965,37(1):96-106
本文利用1944—1962年气象资料,对贵州季风特征和雨季情况,进行了初步的分析研究,提出了划分雨季标准和季风分类的意见,并初步确定了贵州季风进退和雨季始止日期。对季风与自然天气季节以及季风与贵州旱涝的关系,也作了初步的整理,以供日常中长期天气分析预报的参考。  相似文献   

17.
Windsonde data gathered over a nine-year period at three stations in the Southeast U.S. are stratified by season and by time of observation to provide average profiles depicting the diurnal variations in low-level winds. Significant variations are found (especially during the summer months) in wind speed, angle between wind direction and isobars, and the various terms of the kinetic energy budget equation. A qualitative model of the diurnal variations in planetary boundary-layer winds (over land) is developed. From a thesis submitted to the Graduate Faculty of Colorado State University in partial fulfillment of the requirements for the degree, Doctor of Philosophy.  相似文献   

18.
The evolutionary characteristics of a dust storm over Oman on 2 February 2008 were studied by analyzing the weather associated with it. The National Center for Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) reanalysis wind flow pattern at 1,000?hPa showed a clockwise and outward wind flow pattern over the study region, a manifestation of a high-pressure cold air mass. In addition, ground truth observations for surface temperature and surface winds showed cold northerly winds until the early morning of 2 February 2008. A strong wind shear resulted from differences in wind speed between warm air and trapped cold air. This vertical wind shear enhanced instability. Furthermore, the weakening of the inversion in the lower troposphere and the formation of a mixed layer due to transfer of horizontal momentum from upper air towards the surface led to strong surface winds. These strong winds lifted a large amount of dust particles off the ground, resulting in the dust event of 2 February 2008.  相似文献   

19.
Large scale aspects of India-China summer monsoon rainfall   总被引:1,自引:0,他引:1  
This study investigates the dominant modes of variability in monthly and seasonal rainfall over the India-China region mainly through Empirical Orthogonal Function (EOF) analysis. The EOFs have shown that whereas the rain-fall over India varies as one coherent zone, that over China varies in east-west oriented bands. The influence of this banded structure extends well into India.Relationship of rainfall with large scale parameters such as the subtropical ridge over the Indian and the western Pacific regions, Southern Oscillation, the Northern Hemispheric surface air temperature and stratospheric winds have also been investigated. These results show that the rainfall over the area around 40oN, 110oE over China is highly related with rainfall over India. The subtropical ridge over the Indian region is an important predictor over India as well as over the northern China legion.  相似文献   

20.
An algorithm for computation of cloud motion winds has been developed at the National Satellite Meteorological Center in China. Since 1997, it has been applied to calculate the cloud motion winds for a 1.25 lat. 1.25 long. mesh over the northwest Pacific region with the satellite data from GMS-5. The development of the tropical cyclones is studied. It shows that the tropical cyclone is usually intrigued by the westerly jet streams at the upper levels of the troposphere, which may be caused by mid-latitude troughs well extending into the tropics. During the prime season of summer, the westerly flowing equatorward of the TUTT may also be a cause for the generation of typhoons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号