首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.

Two events of Tibet uplifting are revealed by detrital apatite fission track (AFT) age data from Linxia Basin. They occurred at about 14 and 5.4-8.0 MaBP respectively. We interpret the first one to be related to the uplifting of the northern Tibet, which might have resulted from convectively removing the thickened lower lithosphere. The second one is a result of Laji Mountain uplifting. Numerous studies of the Tibetan Plateau suggest that the onset time of the deformation in the northeastern margin of Tibetan Plateau and the time of Tibet attaining to its present elevation is about 8 MaBP. They are approximately coincident with the uplift of Lajishan Mountain. It suggests that the northeastern margin of Tibet propagated northeastwardly to its present site in about 8 MaBP for accommodating the sustained convergence between India-Eurasia plate and for keeping its high elevation. The active block pattern dominating the strong earthquake distribution of Chinese continent probably formed at about 8.0-5.4 MaBP.

  相似文献   

2.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

3.
A series of independent faulted basins developed in the present middle reaches of the Yellow River during late Cenozoic, among which the Sanmen Lake Basin is located in the east edge of the Loess Plateau, a transitional zone between the second and third macromorphological step of China. The thick strata of the Sanmen Group deposited in the large basin. The Sanmen Group is a perfect place for the study on paleoenvironmental change, tectono-climatic cycles as well as the formation and evolution of the Yellow River. In this paper, the paleoenvironmental changes, regional tectonic movement and the evolutionary process of the Sanmen Lake Basin during the past 5 Ma were reconstructed based on the analysis of paleomagnetic stratigraphy, pollen, TOC and carbonate content from the Huangdigou outcrop near the Sanmenxia Reservoir, Pinglu County, Shanxi Province. The sedimentary records from the outcrop indicate that the basin was first formated by fault activity at about 5.4 MaBP, and after the strong tectonic movement at 3.6 MaBP the lake enlarged and the rainfall of summer monsoon increased. There was no great climatic transition near 2.6 MaBP, corresponding to the bottom age of loess in the Loess Plateau. After Olduvai event (about 1.77 MaBP) the Picea and Abies were presented in the sediments, which indicates a colder climate. The tectonic movement at 1.2 MaBP caused the light angular discordance between the upper and lower Sanmen Group. The sedimentary records show a cold and wet climate during the prosperous periods of loess accumulation such as L15, L9, L6. The tectonic intensification periods of the Sanmen Basin correspond with the tectonic movements in the Qinghai-Xizang Plateau chronologically. The earliest age of the outflow from the Paleo-Sanmen Lake or the partly cutting off of the Sanmenxia Gorge was about 0.41- 0.35 MaBP. The age of cutting thoroughly the Sanmenxia Gorge by the Yellow River and the disappearance of the Paleo-Sanmen Lake was about 0.15 MaBP, which symbolized the formation of the present Yellow River and had an important influence on the environmental and morphological evolution in the middle and lower reaches of the Yellow River.  相似文献   

4.
The kinematic characteristics of the Sanguankou-Niushoushan fault(SGK-NSSF) are of great significance to the understanding of the extension of the arc tectonic belt in the northeastern margin of the Tibet Plateau. Using field surveys and various data collection methods, including large-scale geological mapping, measurement of typical topographies, and dating of sedimentary strata, it was determined that the SGK-NSSF exhibits obvious dextral strike-slip characteristics and thus is not a sinistral strike-slip fault, as believed by previous researchers. The results of this study show that the geological boundaries for the Paleozoic, Mesozoic, and Cenozoic eras were all dextrally dislocated by the fault, with the faulted displacements being similar. The maximum strike-slip displacement of the fault, after elimination of topographic effects, was found to be 961±6 m. The Sanguankou fault at the northern section exhibits obvious characteristics of more recent activities, with a series of small gullies having undergone synchronized dextral writhing after traversing the fault. The average horizontal slip rate of the fault since the late Quaternary was determined to be approximately 0.35 mm/a. The pre-existing fold structures formed during the late Pliocene were dislocated by the fault and became ex situ, indicating that dextral strike-slip of the fault could not have occurred prior to the late Pliocene. The maximum displacements and average slip rates were used to estimate the onset time of the dextral strike-slip activities of the fault as being after 2.7 Ma. In this study, the understanding of previous researchers concerning the extension in the northeastern margin of the Tibet Plateau was combined with analyses of the successive relationships between fold deformations and fault activities. This led to the finding that the extension in the northeastern margin of the Tibet Plateau reached the vicinity of the SGK-NSSF during the late Pliocene(~2.7 Ma), causing regional uplift and fold deformations of the strata there. During the early Quaternary, the northeastern compression of the Tibet Plateau and the counterclockwise rotation of the Ordos block collectively resulted in the dextral strike-slip activities of the SGK-NSSF. This then formed the foremost margin of the arc tectonic belt extension in the northeastern margin of the Tibet Plateau.  相似文献   

5.
Based on a multi-proxy investigation into the deep core of the Cuoe Lake in the middle of Tibetan Plateau, a 2.8 Ma paleoclimatic and paleoenvironmental evolution is reconstructed. The result of magnetic stratum indicates that the lake basin was formed at about 2.8 MaBP, while the multi-proxy analyses of lithology, grain size, magnetic susceptibility and geochemical elements reveal that there have been three major environmental evolution stages and at least two intensive uplifts of the Tibetan Plateau in the lake basin area, i.e. during 2.8-2.5 MaBP, the lake basin came into being as a result of the disaggregation of the planation surface and rapid rising of the Tibetan Plateau. During 2.5-0.8 MaBP, with gradual uplift of the Tibetan Plateau, the environment of this area was more effectively controlled by the climatic cycle of the alternative glacial-interglacial stages. After 0.8 MaBP, the middle part of the Plateau accelerated its uplift and entered cryoshere.  相似文献   

6.
2017年四川九寨沟MS7.0地震是继2008年汶川MS8.0地震和2013年芦山MS7.0地震之后,青藏高原东缘在不到十年的时间内发生的第三个震级MS7.0以上的强震.这次地震发生在东昆仑断裂带东端,作为青藏高原东北缘的一条大型左旋走滑断裂带,东昆仑断裂带与东端其它构造之间的转换关系仍不清楚,因区内地质构造和地形复杂,东昆仑断裂带东端的主要构造仍缺少深入的研究.本文在总结区域地震构造活动特征、历史地震和现代地震基础上,通过东昆仑断裂带东端已有的和最近开展的活动构造定量研究结果,并结合现今GPS变形场资料和2017年九寨沟MS7.0地震灾害特征分析,发现东昆仑断裂带最东段塔藏断裂上的左旋走滑除了一小部分继续向东传播转移到文县断裂带上外,大部分转化为其南侧的龙日坝断裂带北段、岷江断裂和虎牙断裂上的近东西向地壳缩短,这可能是岷山隆起的构造机制,而2017年九寨沟MS7.0地震正是左旋走滑的东昆仑断裂带在东端继续向东扩展的结果.  相似文献   

7.
Longshou Shan, located at the southern edge of the Alxa block, is one of the outermost peripheral mountains and the northeasternmost area of the northeastern Tibetan plateau. In recent years, through geochronology, thermochronology, magnetic stratigraphy and other methods, a large number of studies have been carried out on the initiation time of major faults, the exhumation history of mountains and the formation and evolution of basins in the northeastern Tibet Plateau, the question of whether and when the northeastward expansion of the northeastern Tibet Plateau has affected the southern part of the Alxa block has been raised. Therefore, the exhumation history of Longshou Shan provides significant insight on the uplift and expansion of the Tibetan plateau and their dynamic mechanism. The Longshou Shan, trending NWW, is the largest mountain range in the Hexi Corridor Basin, and its highest peak is more than 3 600m(with average elevation of 2800m), where the average elevation of Hexi Corridor is 1 600m, the relative height difference between them is nearly 2200m. This mountain is bounded by two parallel thrust faults: The North Longshou Shan Fault(NLSF)and the South Longshou Shan Fault(SLSF), both of them trends NWW and has high angle of inclination(45°~70°)but dips opposite to each other. The South Longshou Shan Fault, located in the northern margin of the Hexi Corridor Basin, is the most active fault on the northeastern plateau, and controls the uplift of Longshou Shan.Due to its lower closure temperature, the lower-temperature thermochronology method can more accurately constrain the cooling process of a geological body in the upper crust. In recent years, the low-temperature thermochronology method has been used more and more in the study of the erosion of orogenic belts, the evolution of sedimentary basins and tectonic geomorphology. In this study, the apatite (U-Th)/He(AHe) method is used to analyze the erosion and uplift of rocks on the south and north sides of Longshou Shan. 11 AHe samples collected from the south slope exhibit variable AHe ages between~8Ma and~200Ma, the age-elevation plot shows that before 13~17Ma, the erosion rate of the Longshou Shan is very low, and then rapid erosion occurs in the mountain range, which indicates that the strong uplift of Longshou Shan occurred at 13~17Ma BP, resulting in rapid cooling of the southern rocks. In contrast, 3 AHe ages obtained from the north slope are older and more concentrated ranging from 220Ma BP to 240Ma BP, indicating that the north slope can be seen as a paleo-isothermal surface and the activity of the north side is weak. The results of thermal history inverse modeling show that the South Longshou Shan Fault was in a tectonic quiet period until the cooling rate suddenly increased to 3.33℃/Ma at 14Ma BP, indicating that Longshou Shan had not experienced large tectonic events before~14Ma BP.
We believe that under the control of South Longshou Shan Fault, the mountain is characterized by a northward tilting uplift at Mid-Miocene. Our results on the initial deformation of the Longshou Shan, in combination with many published studies across the northeastern margin of the Tibetan plateau, suggest that the compression strain of the northeastern margin of the Tibetan plateau may expand from south to north, and the Tibetan plateau has expanded northeastward to the southern margin of the Alxa block as early as Mid-Miocene, making Longshou Shan the current structural and geomorphic boundary of the northeastern plateau.  相似文献   

8.
由于活动的青藏高原不断的隆升和推挤作用,在西南向东北的推挤作用和周缘块体的阻挡以及东北缘内部块体挤压形变的作用下,形成了多个走向不同的青藏高原东北缘构造体系.新生代构造变形和地震活动强烈,区内分布多条大型深断裂带.海原断裂是青藏高原东北缘发育的弧形活动断裂带中规模最大、活动最为强烈的一条左旋走滑型断裂带,是重要的大地构造区边界,也是控制现今强震活动的活断层.本文利用2009年完成的高分辨率深地震反射剖面的北段资料,对其进行初步构造解释,揭示出海原断裂带的深部几何形态和其两侧地壳上地幔细结构.结果显示海原断裂并不是简单的陡立或者较缓,其几何形态随着深度变化.在海原断裂之下的Moho并未错断的反射特征显示海原断裂并不是直接错断莫霍面的超壳断裂.海原断裂带及两侧岩石圈结构和构造样式的研究为探讨青藏高原东北缘岩石圈变形机制提供地震学依据.  相似文献   

9.
五台山新生代隆升剥露的磷灰石裂变径迹研究   总被引:5,自引:1,他引:4       下载免费PDF全文
五台山是中国三级地貌重要分界线之一太行山脉海拔最高的山,其隆升历史的研究对中国三级地貌形成时代的确定具有重要意义.沿五台山最高峰北台顶向北自上而下至山根和阜平县境内长城岭地区海拔最高点向东自上而下至山根两条剖面,分别采集一系列岩石样品,最后挑选16个样品进行磷灰石裂变径迹研究.通过对封闭径迹长度分布直方图的分析,表明五台山样品自晚白垩纪末以来一直在单调冷却,即五台山在持续地隆升;通过对样品径迹年龄-高程图的分析,同时结合热史模拟及Excel数据拟合,表明晚白垩纪末以来五台山的隆升为分阶段幕式过程,共经历了三期快速隆升:74~58 Ma、46~31 Ma及15 Ma左右.五台山晚白垩纪末以来的隆升与太行山其他地区及周边张宣隆起、泰山等其他山系的隆升在时间上存在对应关系,所以,五台山新生代隆升为区域性构造演化的一部分.  相似文献   

10.
2016年1月21日01时13分在青海省海北州门源县发生了MS6.4地震,震中位置位于青藏高原东北缘地区祁连造山带内的祁连—海原断裂带冷龙岭断裂部分附近,震源深度约11.4 km,震源机制解显示该次地震为一次纯逆冲型地震.我们于2015年7—8月期间完成了跨过祁连造山带紧邻穿过2016年1月21日青海门源MS6.4地震震中区的大地电磁探测剖面(DKLB-M)和古浪地震大地电磁加密测量剖面(HYFP).本文对所采集到的数据进行了先进的数据处理和反演工作,获得了二维电性结构图.结合青藏高原东北缘地区最新获得的相对于欧亚板块2009—2015年GPS速度场分布特征,1月21日门源MS6.4地震主震与余震分布特征以及其他地质与地球物理资料等,探讨了门源MS6.4地震的发震断裂,断裂带空间展布、延伸位置,分析了门源MS6.4地震孕震环境与地震动力学背景等以及祁连山地区深部构造特征等相关问题.所获结论如下:2016年门源MS6.4地震震源区下存在较宽的SW向低阻体,推测冷龙岭断裂下方可能形成了明显的力学强度软弱区,这种力学强度软弱区的存在反映了介质的力学性质并促进了地震蠕动、滑移和发生;冷龙岭北侧断裂可能对门源MS6.4地震主震和余震的发生起控制作用,而该断裂为冷龙岭断裂在青藏高原北东向拓展过程中产生的伴生断裂,表现出逆冲特征;现今水准场、重力场、GPS速度场分布特征以及大地电磁探测结果均表明祁连—海原断裂带冷龙岭断裂部分为青藏高原东北缘地区最为明显的一条边界断裂,受控于青藏高原北东向拓展和阿拉善地块的阻挡作用,冷龙岭断裂附近目前正处于青藏高原北东向拓展作用最强烈、构造转化最剧烈的地区,这种动力学环境可能是门源MS6.4地震发生的最主要原因,与1927年古浪MS8.0地震和1954年民勤MS7.0地震相似,2016年门源MS6.4地震的发生同样是青藏高原北东向拓展过程中的一次地震事件.  相似文献   

11.
延庆盆地是一个位于燕山山及脉南京的晚新生代形成的小型断陷盆地,通过对延庆盆地系统的野外调查,根据延庆分协的地貌,只物,断裂活动等特征,初步认为延就分协在过去约50万年曾发生守三次对盆地地貌和沉积环境演化发生过重要升改变盆地演经过程的重大构造事件。  相似文献   

12.
Geological mapping data (1:250000) in the Qinghai-Tibet Plateau and its adjacent regions reveal the sediment sequences, distribution and tectonic evolution of the 92 Tertiary remnant basins. Southern Tibet and the Yecheng area in Xinjiang, located at southern and northwestern margins of the Qinghai-Tibet Plateau, respectively, were parts of the Neo-Tethys remnant sea in the Paleogene. In southern Tibet, both the subabyssal and abyssal sequences occur at the Gyangze, Saga, Guoyala, and Sangmai areas. The deep-water facies successions outcrop in the west, whereas the shallow-water facies sequences in the east, indicating the east to the west retreat of the Neo-Tethys Ocean. The retreat of the Neo-Tethys Ocean in the east was contributed to the earlier tectonic uplift of the eastern Qinghai-Tibet Plateau. The uplift process of the Plateau from the Late Cretaceous to Pliocene is described as follows: During the Late Cretaceous, tectonic uplift of the Qinghai-Tibet Plateau occurred in the northeastern part and the configuration of the Qinghai-Tibet Plateau was characterized by rise in the northeast and depression in the west. In the Paleocene-Eocene interval, the Tengchong-Baingoin and Kuyake-Golmud areas experienced local tectonic uplifting, the West Kunlun uplift zone broadened easterly, the Qilian uplift zone broadened southerly, and the Songpan-Garzê uplift zone shrank easterly. The Oligocene configuration of the Qinghai-Tibet Plateau was characterized by mountain chains rising along its margins and sedimentary basins in the central part because of tectonic uplifts of the Gangdisê and the Himalaya blocks. Meanwhile, the Kunlun-Altyn-Qilian uplift zones have also broadened southerly and northerly. In contrast, the great uplift zones of the Gangdisê, the Himalaya, the Karakorum, and the Kunlun blocks characterize the paleogeographic contours of the Qinghai-Tibet Plateau during the Miocene-Pliocene. Additionally, the thermochronological data on tectonic uplift events in southern Tibet, West Kunlun Mountains, Altyn Tagh, eastern Tibet, and western Sichuan all suggest that the most intense deformation occurred at 13-8 Ma and since 5 Ma, respectively, corresponding to two great uplift periods in Neogene. As a result, turnover of paleogeographic configuration of the Qinghai-Tibet Plateau occurred during the Neogene, experiencing a change from high contours in the east in the pre-Oligocene to high contours in the west at the end-Pliocene. The uplift of the Qinghai-Tibet Plateau during the Cenozoic was episodic, and the uplifts of various blocks within the Plateau were spatially and chronologically different.  相似文献   

13.

Ganzi loess represents the oldest Tibetan loess, its formation is the key to determining the readjustment of Tibetan atmospheric circulation and the relationship between Tibetan uplift and global climatic change. Detailed magnetostratigraphic study shows that the Ganzi loess was formed at about 1.13 MaBP. It also reveals that there are two notable climatic events occurring in 0.95–0.92 Ma and 0.65–0.5 Ma respectively. The both demonstrate that the Tibetan atmospheric circulation was readjusted and the Tibetan Plateau entered the cryosphere at 21.13 Ma, and the Tibetan glaciation might reach its maximum at ∼0.65–0.5 Ma.

  相似文献   

14.
西藏高原南北向裂谷研究意义   总被引:8,自引:1,他引:8  
强烈遭受南北向挤压下的西藏高原上却发育了大量的正在活动着的东西向伸展构造,即裂谷系。特别是在挤压力最为集中的喜马拉雅碰撞弧的前方,拉萨地体内发育了大规模、有规律排列的近南北向裂谷系。目前,在拉萨地体内,开展了大量的地球物理探测和地质研究工作,如亚东——格尔木地学断面,INDETPH,中法合作项目等。鉴于当时的认识和科学研究目标,这些成果并没有把所有的裂谷系所发育的环境作为一个整体去研究。因此,裂谷系的深部过程及其原由还是知之甚少。本文在总结前人研究成果的基础上认为,从整个岩石圈流变学结构去研究藏南近南北向裂谷系将有助于去认识其产生这些裂谷系的深部动力学过程,进而能够更好地去认识西藏高原隆升的地球动力学过程。  相似文献   

15.
在青藏高原东北缘祁连山造山带至阿拉善地块之间完成了一条372km的大地电磁剖面,通过二维反演计算,获得了沿剖面180km深的壳幔电性结构模型,结合研究区地质和地球物理资料开展综合分析,研究结果表明:(1)剖面自南向北所经过的祁连山造山带、走廊过渡带和阿拉善地块对应3种壳幔电性结构模型:东祁连壳幔高-低-高阻似层状电性结构、河西走廊壳幔低阻带状电性结构和阿拉善南缘壳幔高-低-高阻层状电性结构.(2)剖面所经过的主要断裂带在电性结构上表现为低阻异常带或电性梯度带,并且止于中上地壳或消失于下地壳低阻层中.除这些分布于中上地壳的断裂系统以外,在下地壳至上地幔顶部还存在两条切割莫霍面的壳幔韧性剪切带:西华山北缘壳幔韧性剪切带和阿拉善南缘壳幔韧性剪切带.其中,西华山北缘壳幔韧性剪切带可能是1920年海原8.6级地震发生的深部背景之一;而阿拉善南缘壳幔剪切带可能是卫宁北山燕山晚期和喜山期幔源岩浆上升到地壳浅部或喷出到地表的通道,为在该区域寻找晚中生代至新生代含矿隐伏岩体提供了深部电性结构依据.(3)由若干形状不规则、彼此不相连的"碎块状"极高阻块体组成的中上地壳与"似层状"的中下地壳低阻层共同构成的地壳电性结构,是引起青藏高原东北缘强烈破坏性地震最佳的地壳电性结构组合之一.印度板块向欧亚板块俯冲碰撞楔入引起青藏高原块体向北东方向运移与阿拉善地块向南的俯冲碰撞楔入,是青藏高原东北缘强震活动带产生的动力学背景.  相似文献   

16.
The Tianshan Mountains have undergone its initial orogeny, extension adjusting and re-orogeny since the Late Paleozoic. The re-orogeny and uplifting process of the orogeny in the Mesozoic and Cenozoic are two of most important events in the geological evolution of Euro-Asian continent, which resulted in the formation of the present range-and-basin pattern in topography of the Tianshan Mountains and its adjacent areas. Thermochronology results by the method of fission-track dating of apatite suggest three obvious uplifting stages of the Bogad Mountain Chain re-orogeny during the Cenozoic, i.e. 5.6-19 Ma, 20-30 Ma, and 42-47 Ma. The strongest uplifting stage of the mountain is the second one at 20 -30 Ma, when the mountain uplifted as a whole, and the beginning of re-orogeny was no less than 65 Ma. Furthermore, our studies also show that the uplifting types of the mountain are variable in the dif-ferent time periods, including uplifting of mountain as a whole and differential uplifting. The apparently diversified uplifting processes of the mountain chain are characterized by the migration (or transfor-mation) of the uplifting direction of the mountain from west to east and from north to south, and the main process of mountain extending is from north to south.  相似文献   

17.
This paper deals with the uplift mechanism and the uplift form of Qinghai-Xizang (Tibet) plateau and the deformation regularity of its surrounding region caused by this uplifting. It is shown that the insertion of Indian plate with the wedge-like frontal margin beneath Qinghai-Xizang plateau made the plateau compressed and uplifted; at same time along several pre-existing large faults, striking NE and NW, the strike-slip movement took place. It is of great significance to study Asian  相似文献   

18.

Based on paleomagnetic measurements and morphostratigraphy of red bed/clay sequences from pediments of the Liupan Shan and the Longdong Basin, the following results are revealed. The red bed/clay sediments became to accumulate at around 8.1 MaBP, which implied that the plantation surface developed since Late Cretaceous was broken by active fault, and its development was terminated. The Liupan Shan began to slightly uplift. The Liupan Shan experienced a small-scale uplift around 5.2 MaBP, inferred from the appearance of fine gravel sediments at that time. Consequently, a pediment was developed. The Liupan Shan accelerated uplift since about 3.8 MaBP at a large scale, which caused the deep incision of the rivers and the termination of fluvial and lacustrine deposition. Meanwhile, typical eolian red clay appeared since then. This uplift process is well correlated and in response to that of the Tibetan Plateau and the mountains around it.

  相似文献   

19.

The Xunhua, Guide and Tongren Basins are linked with the Laji Mountain and the northern West Qinling thrust belts in the Xunhua-Guide district. Basin depositional stratigraphy consists of the Oligocene Xining Group, the uppermost Oligocene-Pliocene Guide Group and the Lower Pleistocene. They are divided into three basin phases by unconformities. Basin phase 1 is composed of the Xining Group, and Basin phase 2 of the Zharang, Xiadongshan, Herjia and Ganjia Conglomerate Formations in the Guide Group, and Basin phase 3 of the Gonghe Formation and the Lower Pleistocene. Three basin phases all develop lacustrine deposits at their lower parts, and alluvial-braided channel plain depositional systems at upper parts, which constitute a coarsening-upward and progradational sequence. Basin deposition, paleocurrent and provenance analyses represent that large lacustrine basin across the Laji Mountain was developed and sourced from the West Qinling thrust belt during the stage of the Xining Group (Basin phase 1), and point-dispersed alluvial fan-braided channel plain deposition systems were developed beside the thrust and uplifted Laji Mountain and sourced from it, as thrusting migrated northwards during the stage of the Guide Group (Basin phase 2). Evolution of basin-mountain system in the study area significantly indicates the growth process of the distal Tibetan Plateau. The result shows that the Tibetan Plateau expanded to the northern West-Qinling at Oligocene (29–21.4 Ma) by means of northward folded-and-thrust thickening and uplifting and frontal foreland basin filling, and across the study area to North Qilian and Liupan Mountain at the Miocene-Pliocene (20.8–2.6 Ma) by means of two-sided basement-involved-thrust thickening and uplifting and broken foreland basin filling, and the distant end of Tibetan Plateau behaved as regional erosion and intermontane basin aggradational filling during the Pliocene and early Pleistocene (2.6–1.7 Ma).

  相似文献   

20.
通过分析阿尔金断裂带西段车尔臣河出山口以西 85°~ 86°E的高精度SPOT卫星影像 ,结合野外考察和年代学研究 ,对阿尔金断裂带西段 3个典型走滑断层的断错地貌进行了研究。在库拉木拉克 ,阿尔金断裂带西段自 (6 0 2± 0 4 7)kaBP以来的左旋滑动速率为 (11 6± 2 6 )mm/a ,自 (15 6 7± 1 19)kaBP以来的左旋滑动速率为 (9 6± 2 6 )mm/a ;阿羌牧场附近 ,自 (2 0 6± 0 16 )kaBP以来的左旋滑动速率为 (12 1± 1 9)mm/a ;达拉库岸萨依附近 ,自 (4 91± 0 39)kaBP以来的左旋滑动速率为(12 2± 3 0 )mm/a。由此得到阿尔金断裂带全新世以来的平均滑动速率约为 (11 4± 2 5 )mm/a。以阿尔金断裂带走向N75°E计算 ,阿尔金断裂带西段左旋走滑所吸收的青藏高原SN向缩短速率为 (3 0±0 6 )mm/a  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号