首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
青藏高原东北缘隆升机制和过程一直以来备受争议,本文为了进一步限定北祁连山及其北缘地区山体的隆升历史,在旱峡、白杨河和红山以及酒泉盆地以北的黑山和金塔南山进行了磷灰石和锆石裂变径迹分析.测试结果表明,研究区基岩样品的磷灰石裂变径迹年龄分布在晚白垩世上新世(82~4.2 Ma),径迹长度介于9.6~13.6 μm;锆石裂变径迹年龄分布范围为106.3~480.5 Ma,多数介于106~195 Ma.结合镜质体反射率,热史模拟曲线揭示了中新生代三期主要的冷却降温事件:早白垩世期间(140~100Ma)、始新世期间(55~30Ma)、中新世(10~8 Ma)以来.早白垩世期间的隆升剥露冷却过程可能由于拉萨地块的北向拼贴碰撞引起;始新世期间的隆升剥露冷却事件可能是印度与欧亚板块碰撞远程快速响应的结果;中新世以来的隆升剥露冷却过程与北祁连山逆冲断层的构造活动有关.  相似文献   

2.
对吕梁山地区中-新生代隆升时限及其演化的认识,是恢复鄂尔多斯盆地沉积东界的基础,也是探讨华北克拉通演化和破坏等科学问题的有机组成部分.本文以盆山耦合的研究思路为指导,通过较系统的裂变径迹热年代学采样分析,认为吕梁山地区显生宙的隆升活动主要发生在早白垩世晚期以来,可进一步分为缓慢抬升(120~65 Ma)、加速抬升(65~23 Ma)及强烈抬升(23 Ma以来)3个隆升演化阶段,新生代以来是其最主要的隆升时期.抬升作用在空间上具非均衡性,中、北部抬升早,南部晚.晚新生代以来吕梁山地区的快速隆升作用,与东部相邻断陷的沉降具有成因耦合联系.吕梁山地区晚中生代-新生代以来的隆升演化,可能主要与青藏高原挤压造山作用和太平洋板块俯冲的远程效应有关.  相似文献   

3.
本文通过背斜褶皱变形与低温热年代学年龄(磷灰石和锆石(U-Th)/He、磷灰石裂变径迹)端元模型研究,约束低起伏度、低斜率地貌特征的四川盆地南部地区新生代隆升剥露过程.四川盆地南部沐川和桑木场背斜地区新生代渐新世-中新世发生了相似的快速隆升剥露过程(速率为~0.1 mm/a、现今地表剥蚀厚度1.0~2.0 km),反映出盆地克拉通基底对区域均一性快速抬升冷却过程的控制作用.川南沐川地区磷灰石(U-Th)/He年龄值为~10-28.6 Ma, 样品年龄与古深度具有明显的线性关系,揭示新生代~10-30 Ma以速率为0.12±0.02 mm/a的稳态隆升剥露过程.桑木场背斜地区磷灰石裂变径迹年龄为~36-52 Ma,古深度空间上样品AFT年龄变化不明显(~50 Ma)、且具有相似的径迹长度(~12.0 μm).磷灰石裂变径迹热演化史模拟表明桑木场地区经历三个阶段热演化过程:埋深增温阶段(~80 Ma以前)、缓慢抬升冷却阶段(80-20 Ma)和快速隆升剥露阶段(~20 Ma-现今),新生代隆升剥露速率大致分别为~0.025 mm/a和~0.1 mm/a.新生代青藏高原大规模地壳物质东向运动与四川盆地克拉通基底挤压,受板缘边界主断裂带差异性构造特征控制造就了青藏高原东缘不同的边界地貌特征.  相似文献   

4.
北淮阳构造带与大别造山带的差异性隆升   总被引:26,自引:1,他引:25  
采用同位素定年、角闪石压力计法 ,裂变径迹法 ,结合微裂隙内流体包裹体均一温度测定值分析 ,得出北淮阳构造带和大别造山带中加里东期、海西期、燕山期一些岩体的形成年龄和结晶深度 ,从而得出自晚古生代以来北淮阳构造带和大别造山带隆升时间和隆升幅度的差异 :北淮阳构造带经历三个阶段性隆升 (C1~C2 ,T~J2 ,J3 ~K1) ,总隆升幅度约 10km ;大别造山带仅经历二个阶段性隆升 (T~J2 ,J3 ~K1) ,最大隆升幅度大于 15km .前者主体隆升发生在中侏罗世末 (约 150Ma)之前 ,后者主体隆升发生在中侏罗世末 (约 150Ma)之后 .  相似文献   

5.
详细研究了离石北部一带阶地的地层地貌特征,并尝试对吕梁山山体的隆升进行分析探讨。结果表明,晚更新世以来该区有过三次间歇性隆升,并且三级阶地形成以来即晚更新世早期山体隆升相对快速强烈,二级阶地形成以来即晚更新世晚期至全新世时期山体隆升处于相对缓慢的过程。  相似文献   

6.
现代的天山山脉是在古生代造山基础上,于新生代强烈抬升而形成.其新生代造山和隆升过程,造就了现今的天山地貌格局.本文选取西南天山作为研究区域,采用河床砂岩屑裂变径迹测年分析,从统计角度限定西南天山的隆升-剥露过程.样品采集于特克斯河支流阿克雅孜河、夏特河、木扎河以及特克斯河干流的沉积河床.磷灰石裂变径迹测试和统计分析表明,存在代表源区热史演化不同阶段的年龄峰值.尽管不同样品的年龄众数分布有少许差别,颗粒年龄众数的去褶积分析获得了西南天山山体新生代冷却的三个基本一致的阶段:6~8 Ma,12~19 Ma以及32~40 Ma.结合山脉隆起的地质地貌模型,无论是整体抬升或掀斜抬升,以及压扭性背景的花状挤出抬升,根据磷灰石裂变径迹封闭温度推断的抬升量与现今天山高度基本相当的事实,都可以确认西南天山山体是6~8 Ma以来形成的.天山这三期快速抬升冷却事件与青藏高原及其周边的主要隆升时期有较好的对应,证明了天山隆升和印度-欧亚板块碰撞远程效应的关系.另外,6~8 Ma的冷却事件与沉积地层学研究揭示的6 Ma左右的气候显著变化相互印证,显示了研究区域山脉隆升和气候变化之间存在的密切关系.  相似文献   

7.
贺兰山隆升时限及其演化   总被引:3,自引:0,他引:3  
贺兰山横亘于鄂尔多斯盆地西北缘,其隆升时限与盆地的构造属性和发展演化密切相关.对其隆起的时间前人有晚三叠世、晚侏罗世等多种认识.对贺兰山现存地层的分布和岩浆及热液活动等资料分析,认为晚三叠世-中侏罗世贺兰山并未隆升,其隆起时间应在中侏罗世之后.通过对与贺兰山相邻的银川地堑沉积地层及沉降速率的研究,指出贺兰山大规模隆升时间为始新世,在上新世以来发生了快速隆升.根据对不同时代样品磷灰石和锆石裂变径迹测试结果的分析,精细刻画了贺兰山的隆升-冷却过程,指出其隆升至少经历了晚侏罗世—早白垩世初、早白垩世中晚期、晚白垩世和始新世以来4个阶段.其中,晚白垩世和始新世以来的隆升最为明显.早白垩世中晚期为区域冷却过程.综合分析和总结各方面研究结果,认为贺兰山隆升的最早时间在晚侏罗世,此时隆升规模较为局限;晚白垩世的隆升与鄂尔多斯盆地整体的抬升相对应;始新世开始发生大规模的隆升,上新世隆升速率进一步加快.  相似文献   

8.
南迦巴瓦峰第四纪隆升期次划分的热年代学证据   总被引:1,自引:0,他引:1       下载免费PDF全文
喜马拉雅东构造结南迦巴瓦峰核心区附近一个高程剖面上的8个片麻岩样品裂变径迹中值年龄介于0.71~2.07Ma之间,平均封闭径迹长度在14.51~15.87μm之间,标准偏差都小于0.84μm;其冷却年龄和径迹长度所作"香蕉图"显示出三期快速的抬升期,分别发生在距今0.71 Ma、1.23 Ma、2.05 Ma.结合已有磷灰石裂变径迹冷却年龄等值线图显示出南迦巴瓦峰核心区呈复式背斜状快速隆升,而外围拉萨地体和冈底斯构造单元隆升速率慢的空间分布特征等,分析认为这种差异隆升主要受构造作用主导,气候变化造成的均衡抬升起次要作用.  相似文献   

9.
报道了米仓山-汉南穹窿一带磷灰石裂变径迹分析结果,以制约该区白垩纪以来的剥蚀-演化历史.露头样品磷灰石裂变径迹年龄分布显示从汉南穹窿南部的核部地区向南至四川盆地北部裂变径迹的年龄逐渐变新,这与米仓山地区逆冲断裂以背驮式扩展的构造样式从汉南穹窿向南经米仓山褶皱-逆冲带发育到四川盆地北缘的构造模式相吻合.热模拟的结果显示米仓山-汉南穹窿经历了两期快速的剥蚀,其分别发生在白垩纪(约90 Ma之前)和15 Ma以来.研究区白垩纪的快速剥蚀反映了秦岭-大别造山带白垩纪的区域性剥蚀事件,这可能是对临区诸多构造事件(如西伯利亚-蒙古-中朝板块的碰撞,拉萨-羌塘-思茅-印支块体的碰撞,太平洋板块向欧亚板块的俯冲及其相关的岩浆活动)远场效应的响应;约15 Ma以来的快速剥蚀是对青藏高原隆升向东北方向传递的响应.  相似文献   

10.
江南隆起位于扬子与华夏地块的碰撞汇聚带,是研究华南大地构造演化的关键地质单元.本文采用磷灰石裂变径迹及(U-Th-Sm)/He年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,主要研究了幕阜山岩体新生代的隆升与剥蚀过程,并在此基础上结合区域构造背景, 对其构造-热演化之间的关系进行了探讨.自晚白垩世持续隆升以来,幕阜山岩体经历的平均剥蚀厚度约4800 m.在不同岩体间,隆升过程及幅度存在差异,空间上具有非均匀性.热史结果显示幕阜山岩体经历了3期剥蚀, 其中两期快速剥蚀分别发生在晚白垩世-古近纪(80~50 Ma)和10 Ma以来,而这之间为一期缓慢剥蚀过程.研究区古近纪的快速剥蚀反映了中-下扬子喜山期大规模伸展断陷作用造成的肩部块体快速剥蚀事件; 约10 Ma以来的快速剥蚀是对太平洋板块向西运动的响应.幕阜山岩体自燕山晚期以来的隆升剥蚀作用具有良好的盆地沉积响应, 三期隆升剥蚀事件与研究区构造演化的动力学背景相吻合.  相似文献   

11.
中上扬子地区印支期以来抬升剥蚀时限的确定   总被引:5,自引:2,他引:3       下载免费PDF全文
采用磷灰石裂变径迹年龄空间分布特征定性分析与径迹长度分布数据定量模拟相结合,约束了中上扬子地区的抬升剥蚀时限.江汉盆地在157~97Ma和10 Ma以来发生了两期大规模抬升剥蚀;湘鄂西-武陵地区、黔中隆起自137Ma开始持续抬升剥蚀;鄂西渝东、川东褶皱带从97 Ma开始持续抬升剥蚀;川东北和川中地区于56 Ma才开始遭受抬升剥蚀;川西-滇西地区则自23 Ma以来经历了较大规模的抬升剥蚀.印支期以来,中上扬子不同地区抬升剥蚀开始的时间存在明显差异性,总体上由东往西逐渐变晚.齐岳山断裂带以东,大规模抬升剥蚀始于中燕山期(J3-K1);齐岳山断裂与华蓥山断裂带之间的川东高陡背斜带抬升剥蚀始于晚燕山期(K2);华蓥山断裂与龙泉山断裂之间的川中和缓褶皱带晚期抬升剥蚀始于喜马拉雅早期(E);龙泉山断裂带以西的川西凹陷晚期抬升剥蚀始于喜马拉雅晚期(N).  相似文献   

12.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

13.
While the high-temperature exhumation process in the Dabie Mountain has been well documented, the low-temperature exhumation of this area since Cretaceous, especially since Late Cretaceous, is relatively less studied. Low-temperature thermochronology provides one of the important approaches to solve this problem. Based on the data of fission track and (U-Th)/He analysis of apaptites and zircons from the granitoid and metamorphic rocks in the Dabie Mountain, this paper applies Mancktelow’s and Braun’s methods to estimating the exhumation rates and to drawing the regional differential exhumation pattern since Cretaceous, especially since Late Cretaceous by taking into consideration factors such as heat transport, heat advection, topography and heat production, which could influence geothermal field in the shallow crust. Since Cretaceous, the exhumation rate (0.08-0.10 km/Ma) in the region around Tiantangzhai and in the south of Tanlu fault zone is larger than the rate (0.04-0.07 km/Ma) in other areas of the Dabie Mountain. The regional differential exhumation pattern might be related to the push-up effect caused by differential strike-slip movement along NNE-trending faults.  相似文献   

14.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

15.
The Helan Mountain lies in the northwest margin of Ordos Basin and its uplift periods have close relations with the tectonic feature and evolution of the basin. There are many views on the uplift time of Helan Mountain, which is Late Triassic and Late Jurassic. It is concluded by the present strata, magmatic rock and hot fluid distribution that the Helan Mountain does not uplift in Late Triassic to Middle Jurassic but after Middle Jurassic. Through the research of the sedimentary strata and deposit rate in Yinchuan Graben which is near to the Helan Mountain, it is proved that the Helan Mountain uplifts in Eocene with a huge scale and in Pliocene with a rapid speed. The fission track analysis of apatite and zircon can be used to determine the precise uplift time of Helan Mountain, which shows that four stages of uplifting or cooling: Late Jurassic to the early stage of Early Cretaceous, mid-late stage of Early Cretaceous, Late Cretaceous and since Eocene. During the later two stages the uplift is most apparent and the mid-late stage of Early Cretaceous is a regional cooling course. Together with several analysis ways, it is considered that the earliest time of Helan Mountain uplift is Late Jurassic with a limited scale and that Late Cretaceous uplift is corresponding to the whole uplift of Ordos Basin, extensive uplift happened in Eocene and rapid uplift in Pliocene.  相似文献   

16.
文章以塔里木盆地东北缘库鲁克塔格隆起与孔雀河斜坡盆山系统为主要研究对象,在该地区露头和钻井样品开展碎屑磷灰石、锆石裂变径迹研究,对库鲁克塔格构造演化中关键构造事件提供热年代学约束.锫石样品在加里东晚期-早海西期达到最大古地温,之后经历了长期的抬升降温过程,锆石最小峰值年龄记录了371~392 Ma 和328~305.7...  相似文献   

17.
鄂尔多斯盆地东南缘处于渭北隆起、晋西挠褶带和东秦岭造山带的转折地带,构造位置独特,演化历史复杂.本文选取东缘韩城地区和南缘东秦岭洛南地区上三叠统延长组为研究对象,采集6件砂岩样品进行锆石、磷灰石裂变径迹分析,对关键构造-热事件提供热年代学约束,恢复盆地东南缘不同构造带的热演化史,深化对盆地东南部油气资源赋存条件的认识,以期实现油气勘探的新突破.研究表明韩城和洛南地区的抬升冷却史存在明显差异.磷灰石裂变径迹年龄表现为从南到北减小的趋势.东缘韩城剖面磷灰石裂变径迹记录51.6~66.3 Ma、33 Ma两次抬升冷却的峰值年龄.南缘洛南剖面锆石裂变径迹年龄和磷灰石裂变径迹年龄分别记录89~106 Ma和59~66 Ma的冷却抬升年龄.洛南地区抬升冷却时间较早,剥蚀速率(106m/Ma)大于韩城地区(68m/Ma),且持续时间长.磷灰石裂变径迹(Apatite Fission Track,AFT)热史模拟显示,晚中生代,受燕山运动的影响,东秦岭地区发生强烈的构造岩浆事件,洛南地区热演化程度明显高于韩城地区.洛南剖面的热演化主要受岩浆活动的控制,韩城剖面为埋藏增温型.鄂尔多斯盆地东南缘的裂变径迹年龄格局基本受控于白垩纪以来的抬升冷却事件.  相似文献   

18.
运用裂变径迹分析方法, 探讨分析了千家店地区侏罗系后城组地层的构造热演化特征. 千家店地区后城组上段三个磷灰石样品,AFT年龄集中在85.7~76.0 Ma,小于其相应的地层年龄;平均封闭径迹长度为9.4~10.8 μm,小于初始径迹长度(16.3±0.9 μm),呈非对称的单峰态分布,标准偏差为2.1~2.5. 后城组下段的三个AFT样品,AFT年龄集中在82.6~62.4 Ma,小于其相应的地层年龄,也小于上段层位的AFT年龄;平均封闭径迹长度仅为7.2~7.7 μm,远小于初始径迹长度(16.3±0.9 μm),其中YQ-07样品的封闭径迹长度呈似双峰态分布,标准偏差达到3.1;显然,侏罗系样品经历了明显的中度退火行为,最大温度可能接近于90℃. AFT年龄和封闭径迹长度的规律性变化主要是由于埋深不同引起的温度差异造成的. 裂变径迹热历史模拟结果表明,沉积物自进入盆地充填埋藏一直到115 Ma左右,盆地沉积物达到最大埋深3000多米,盆地温度达到最大值90℃多,这一过程沉积速率达到66.7 m/Ma. 115 Ma之后盆地处于相对稳定期,没有明显的温度波动,直到6 Ma左右温度以11.7 ℃/Ma的速度突然下降,表明侏罗系地层遭受剥蚀,迅速上升、快速冷却直至地表,剥露速率超过了500 m/Ma.  相似文献   

19.
运用LA-ICP MS锆石U-Pb定年、角闪石和黑云母40Ar-39Ar定年、锆石和磷灰石裂变径迹(FT)分析等构造热年代学研究方法,探讨分析了鄂尔多斯盆地东缘紫金山侵入岩的热演化历史及其抬升冷却过程.紫金山侵入岩主要由次透辉二长岩和正长岩组成,锆石U-Pb测年给出的岩浆侵位-结晶年龄为136.7 Ma,角闪石和黑云母40Ar-39Ar测年获得的岩浆结晶-固结年龄集中在133.1~130.4 Ma,表明紫金山侵入岩主要形成于早白垩世的136.7~130.4 Ma.侵入岩T-t轨迹与磷灰石FT模拟热史路径综合揭示了鄂尔多斯盆地东缘紫金山侵入岩抬升冷却的三个构造热演化阶段:1) 136~120 Ma侵位岩浆结晶-固结阶段,岩体平均冷却速率高达52 ℃/Ma;2) 120~30 Ma岩体相对缓慢抬升冷却阶段,平均抬升冷却速率为2.5 ℃/Ma;3) 30 Ma以来岩体快速抬升冷却阶段,平均抬升冷却速率3.6 ℃/Ma,尤以近10 Ma以来的快速抬升冷却最为显著,抬升冷却速率接近7 ℃/Ma.结合区域构造动力学环境分析认为,鄂尔多斯盆地东缘的紫金山岩浆活动与华北克拉通早白垩世构造体制转换过程的大规模岩浆活动属于相同时期、统一构造作用的产物,早白垩世末期以来由慢到快的差异抬升过程主要受控于华北克拉通东部(古)太平洋体系与其西南部特提斯体系之间相互联合、彼此消长的构造作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号