首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Extensive measurements of dissolved Re and major ion abundances in the Yamuna River System (YRS), a major tributary of the Ganga, have been performed along its entire stretch in the Himalaya, from its source near the Yamunotri Glacier to its outflow at the foothills of the Himalaya at Saharanpur. In addition, Re analysis has been made in granites and Precambrian carbonates, some of the major lithologies of the drainage basin. These data, coupled with those available for black shales in the Lesser Himalaya, allow an assessment of these lithologies’ contributions to the Re budget of the YRS.The Re concentrations in the YRS range from 0.5 to 35.7 pM with a mean of 9.4 pM, a factor of ∼4 higher than that reported for its global average concentration in rivers. Dissolved Re and ΣCations∗ (= Na∗+K+Ca+Mg) are strongly correlated in the YRS, indicating that they are released to these waters in roughly the same proportion throughout their course. The Re/ΣCations∗ in most of these rivers are one to two orders of magnitude higher than the (Re/Na+K+Mg+Ca) measured in granites of the Yamuna basin. This leads to the conclusion that, on average, granites/crystallines make only minor contributions to the dissolved Re budget of the YRS on a basin-wide scale, though they may be important for rivers with low dissolved Re. Similarly, Precambrian carbonates of the Lesser Himalaya do not seem to be a major contributor to dissolved Re in these rivers, as their Re/(Ca+Mg) is much less than those in the rivers. The observation that Re concentrations in rivers flowing through black shales and in groundwaters percolating through phosphorite-black shale-carbonate layers in phosphorite mines are high, and that Re and SO4 are significantly correlated in YRS, seems to suggest that the bulk of the dissolved Re is derived from black shale/carbonaceous sediments. Material balance considerations, based on average Re of 30 ng g−1 in black shales from the Lesser Himalaya, require that its abundance in the drainage basin of the YRS needs to be a few percent to yield average Re of 9.4 pM. Furthermore, the positive correlation between Re and ΣCations∗ would require that these Re-rich sediments (e.g., black shales) and Re-poor lithologies (e.g., crystallines, Precambrian carbonates) contribute Re and cations in roughly the same proportion throughout the drainage basin. The available data on the abundance and distribution of black shales in the basin are not adequate to test if these requirements can be met.The annual fluxes of dissolved Re at the base of the Himalaya from the Yamuna are ∼150 mol at Batamandi and ∼100 mol at Saharanpur, compared to ∼120 mol from the Ganga at Rishikesh. The total flux from the Yamuna and the Ganga account for ∼0.4% of the global riverine Re flux, much higher than their contribution to global water discharge. This is also borne out from the mobilization rate of Re: ∼1 to 3 g km−2 y−1 in the Ganga and Yamuna basins in the Himalaya, compared to the global average of ∼0.1 g km−2 y−1.Black shale weathering can also significantly influence the budgets of Os and U in rivers and CO2 in rivers and the atmosphere. Using dissolved Re in rivers as a proxy, it is estimated that ∼(6-9) × 108 kg y−1 of black shales are being weathered in the Ganga and Yamuna basins in the Himalaya. Weathering of such amounts of black shales can account for the reported concentrations of Os and U in these rivers. Furthermore, if the weathering results in the conversion of organic carbon in the black shales to CO2, it would release ∼2 × 105 mol of CO2 km−2 y−1 in the Yamuna and Ganga basins in the Himalaya, comparable to the CO2 consumption from silicate weathering.  相似文献   

2.
Sr and 87Sr/86Sr have been measured in the Yamuna river headwaters and many of its tributaries (YRS) in the Himalaya. These results, with those available for major ions in YRS rivers and in various lithologies of their basin, have been used to determine their contributions to riverine Sr and its isotopic budget. Sr in the YRS ranges from 120 to 13,400 nM, and 87Sr/86Sr from 0.7142 to 0.7932. Streams in the upper reaches, draining predominantly silicates, have low Sr and high 87Sr/86Sr whereas those draining the lower reaches exhibit the opposite resulting from differences in drainage lithology. 87Sr/86Sr shows significant co-variation with SiO2/TDS and (Na* + K)/TZ+ (indices of silicate weathering) in YRS waters, suggesting the dominant role of silicate weathering in contributing to high radiogenic Sr. This is also consistent with the observation that streams draining largely silicate terrains have the highest 87Sr/86Sr, analogous to that reported for the Ganga headwaters. Evaluation of the significance of other sources such as calc-silicates and trace calcites in regulating Sr budget of these rivers and their high 87Sr/86Sr needs detailed work on their Sr and 87Sr/86Sr. Preliminary calculations, however, indicate that they can be a significant source to some of the rivers.It is estimated that on an average, ∼25% of Sr in the YRS is derived from silicate weathering. In the lower reaches, the streams receive ∼15% of their Sr from carbonate weathering whereas in the upper reaches, calc-silicates can contribute significantly (∼50%) to the Sr budget of rivers. These calculations reveal the need for additional sources for rivers in the lower reaches to balance their Sr budget. Evaporites and phosphorites are potential candidates as judged from their occurrence in the drainage basin. In general, Precambrian carbonates, evaporites, and phosphorites “dilute” the high 87Sr/86Sr supplied by silicates, thus making Sr isotope distribution in YRS an overall two end member mixing. Major constraints in quantifying contributions of Sr and 87Sr/86Sr from different sources to YRS rivers are the wide range in Sr and 87Sr/86Sr of major lithologies, limited data on Sr and 87Sr/86Sr in minor phases and on the behavior of Sr, Na, and Ca during weathering and transport.The Ganga and the Yamuna together transport ∼0.1% of the global Sr flux at the foothills of the Himalaya which is in the same proportion as their contribution to global water discharge. Dissolved Sr flux from the Yamuna and its mobilization rate in the YRS basin is higher than those in the Ganga basin in the Himalaya, a result consistent with higher physical and chemical erosion rates in the YRS.  相似文献   

3.
Concentrations of major ions, Sr and 87Sr/86Sr have been measured in the Gomti, the Son and the Yamuna, tributaries of the Ganga draining its peninsular and plain sub-basins to determine their contribution to the water chemistry of the Ganga and silicate and carbonate erosion of the Ganga basin. The results show high concentrations of Na and Sr in the Gomti, the Yamuna and the Ganga (at Varanasi) with much of the Na in excess of Cl. The use of this ‘excess Na’ (Na∗ = Nariv − Clriv) a common index of silicate weathering yield values of ∼18 tons km−2 yr−1 for silicate erosion rate (SER) in the Gomti and the Yamuna basins. There are however, indications that part of this Na∗ can be from saline/alkaline soils abundant in their basins, raising questions about its use as a proxy to determine SER of the Ganga plain. Independent estimation of SER based on dissolved Si as a proxy give an average value of ∼5 tons km−2 yr−1 for the peninsular and the plain drainages, several times lower than that derived using Na∗. The major source of uncertainty in this estimate is the potential removal of Si from rivers by biological and chemical processes. The Si based SER and CER (carbonate erosion rate) are also much lower than that in the Himalayan sub-basin of the Ganga. The lower relief, runoff and physical erosion in the peninsular and the plain basins relative to the Himalayan sub-basin and calcite precipitation in them all could be contributing to their lower erosion rates.Budget calculations show that the Yamuna, the Son and Gomti together account for ∼75% Na, 41% Mg and ∼53% Sr and 87Sr of their supply to the Ganga from its major tributaries, with the Yamuna dominating the contribution. The results highlight the important role of the plain and peninsular sub-basins in determining the solute and Sr isotope budgets of the Ganga. The study also shows that the anthropogenic contribution accounts for ?10% of the major ion fluxes of the Ganga at Rajmahal during high river stages (October). The impact of both saline/alkaline soils and anthropogenic sources on the major ion abundances of the Ganga is minimum during its peak flow and therefore the SER and CO2 consumption rates of the river is best determined during this period.  相似文献   

4.
Major ion composition of waters, δ13C of its DIC (dissolved inorganic carbon), and the clay mineral composition of bank sediments in the Brahmaputra River System (draining India and Bangladesh) have been measured to understand chemical weathering and erosion and the factors controlling these processes in the eastern Himalaya. The time-series samples, collected biweekly at Guwahati, from the Brahmaputra mainstream, were also analyzed for the major ion composition. Clay mineralogy and chemical index of alteration (CIA) of sediments suggest that weathering intensity is relatively poor in comparison to that in the Ganga basin. This is attributed to higher runoff and associated physical erosion occurring in the Brahmaputra basin. The results of this study show, for the first time, spatial and temporal variations in chemical and silicate erosion rates in the Brahmaputra basin. The subbasins of the Brahmaputra watershed exhibit chemical erosion rates varying by about an order of magnitude. The Eastern Syntaxis basin dominates the erosion with a rate of ∼300 t km−2 y−1, one of the highest among the world river basins and comparable to those reported for some of the basaltic terrains. In contrast, the flat, cold, and relatively more arid Tibetan basin undergoes much slower chemical erosion (∼40 t km−2 y−1). The abundance of total dissolved solids (TDS, 102-203 mg/L) in the time-series samples collected over a period of one year shows variations in accordance with the annual discharge, except one of them, cause for which is attributable to flash floods. Na* (Na corrected for cyclic component) shows a strong positive correlation with Si, indicating their common source: silicate weathering. Estimates of silicate cations (Nasil+Ksil+Casil+Mgsil) suggest that about half of the dissolved cations in the Brahmaputra are derived from silicates, a proportion higher than that for the Ganga system. The CO2 consumption rate due to silicate weathering in the Brahmaputra watershed is ∼6 × 105 moles km−2 y−1; whereas that in the Eastern Syntaxis subbasin is ∼19 × 105 moles km−2 y−1, similar to the estimates for some of the basaltic terrains. This study suggests that the Eastern Syntaxis basin of the Brahmaputra is one of most intensely chemically eroding regions of the globe; and that runoff and physical erosion are the controlling factors of chemical erosion in the eastern Himalaya.  相似文献   

5.
The Yarlung Tsangpo-Brahmaputra river drains a large portion of the Himalaya and southern Tibetan plateau, including the eastern Himalayan syntaxis, one of the most tectonically active regions on the globe. We measured the solute chemistry of 161 streams and major tributaries of the Tsangpo-Brahmaputra to examine the effect of tectonic, climatic, and geologic factors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern Tibet and the eastern syntaxis of the Himalaya, examine the major chemical weathering reactions in the tributaries of the Tsangpo-Brahmaputra, and determine the total weathering flux from carbonate and silicate weathering processes in this region. We show that high precipitation, rapid tectonic uplift, steep channel slopes, and high stream power generate high rates of chemical weathering in the eastern syntaxis. The total dissolved solids (TDS) flux from the this area is greater than 520 tons km−2 yr−1 and the silicate cation flux more than 34 tons km−2 yr−1. In total, chemical weathering in this area consumes 15.2 × 105 mol CO2 km−2 yr−1, which is twice the Brahmaputra average. These data show that 15-20% of the total CO2 consumption by silicate weathering in the Brahmaputra catchment is derived from only 4% of the total land area of the basin. Hot springs and evaporite weathering provide significant contributions to dissolved Na+ and Cl fluxes throughout southern Tibet, comprising more than 50% of all Na+ in some stream systems. Carbonate weathering generates 80-90% of all dissolved Ca2+ and Mg2+ cations in much of the Yarlung Tsangpo catchment.  相似文献   

6.
Rates of chemical and silicate weathering of the Deccan Trap basalts, India, have been determined through major ion measurements in the headwaters of the Krishna and the Bhima rivers, their tributaries, and the west flowing streams of the Western Ghats, all of which flow almost entirely through the Deccan basalts.Samples (n = 63) for this study were collected from 23 rivers during two consecutive monsoon seasons of 2001 and 2002. The Total dissolved solid (TDS) in the samples range from 27 to 640 mg l−1. The rivers draining the Western Ghats that flow through patches of cation deficient lateritic soils have lower TDS (average: 74 mg l−1), whereas the Bhima (except at origin) and its tributaries that seem to receive Na, Cl, and SO4 from saline soils and anthropogenic inputs have values in excess of 170 mg l−1. Many of the rivers sampled are supersaturated with respect to calcite. The chemical weathering rates (CWR) of “selected” basins, which exclude rivers supersaturated in calcite and which have high Cl and SO4, are in range of ∼3 to ∼60 t km−2 y−1. This yields an area-weighted average CWR of ∼16 t km−2 y−1 for the Deccan Traps. This is a factor of ∼2 lower than that reported for the Narmada-Tapti-Wainganga (NTW) systems draining the more northern regions of the Deccan. The difference can be because of (i) natural variations in CWR among the different basins of the Deccan, (ii) “selection” of river basin for CWR calculation in this study, and (iii) possible contribution of major ions from sources, in addition to basalts, to rivers of the northern Deccan Traps.Silicate weathering rates (SWR) in the selected basins calculated using dissolved Mg as an index varies between ∼3 to ∼60 t km−2 y−1, nearly identical to their CWR. The Ca/Mg and Na/Mg in these rivers, after correcting for rain input, are quite similar to those in average basalts of the region, suggesting near congruent release of Ca, Mg, and Na from basalts to rivers. Comparison of calculated and measured silicate-Ca in these rivers indicates that at most ∼30% of Ca can be of nonsilicate origin, a likely source being carbonates in basalts and sediments.The chemical and silicate weathering rates of the west flowing rivers of the Deccan are ∼4 times higher than the east flowing rivers. This difference is due to the correspondingly higher rainfall and runoff in the western region and thus reemphasises the dominant role of runoff in regulating weathering rates. The silicon weathering rate (SWR) in the Krishna Basin is ∼15 t km−2 y−1, within a factor of ∼2 to those in the Yamuna, Bhagirathi, and Alaknanda basins of the Himalaya, suggesting that under favourable conditions (intense physical weathering, high runoff) granites and the other silicates in the Himalaya weather at rates similar to those of Deccan basalts. The CO2 consumption rate for the Deccan is deduced to be ∼3.6 × 105 moles km−2 y−1 based on the SWR. The rate, though, is two to three times lower than reported for the NTW rivers system; it still reinforces the earlier findings that, in general, basalts weather more rapidly than other silicates and that they significantly influence the atmospheric CO2 budget on long-term scales.  相似文献   

7.
The Narmada River in India is the largest west-flowing river into the Arabian Sea, draining through the Deccan Traps, one of the largest flood basalt provinces in the world. The fluvial geochemical characteristics and chemical weathering rates (CWR) for the mainstream and its major tributaries were determined using a composite dataset, which includes four phases of seasonal field (spot) samples (during 2003 and 2004) and a decade-long (1990-2000) fortnight time series (multiannual) data. Here, we demonstrate the influence of minor lithologies (carbonates and saline-alkaline soils) on basaltic signature, as reflected in sudden increases of Ca2+-Mg2+ and Na+ contents at many locations along the mainstream and in tributaries. Both spot and multiannual data corrected for non-geological contributions were used to calculate the CWR. The CWR for spot samples (CWRspot) vary between 25 and 63 ton km−2 year−1, showing a reasonable correspondence with the CWR estimated for multiannual data (CWRmulti) at most study locations. The weathering rates of silicate (SilWR), carbonate (CarbWR) and evaporite (Sal-AlkWR) have contributed ∼38-58, 28-45 and 8-23%, respectively to the CWRspot at different locations. The estimated SilWR (11-36 ton km−2 year−1) for the Narmada basin indicates that the previous studies on the North Deccan Rivers (Narmada-Tapti-Godavari) overestimated the silicate weathering rates and associated CO2 consumption rates. The average annual CO2 drawdown via silicate weathering calculated for the Narmada basin is ∼0.032 × 1012 moles year−1, suggesting that chemical weathering of the entire Deccan Trap basalts consumes approximately 2% (∼0.24 × 1012 moles) of the annual global CO2 drawdown. The present study also evaluates the influence of meteorological parameters (runoff and temperature) and physical weathering rates (PWR) in controlling the CWR at annual scale across the basin. The CWR and the SilWR show significant correlation with runoff and PWR. On the basis of observed wide temporal variations in the CWR and their close association with runoff, temperature and physical erosion, we propose that the CWR in the Narmada basin strongly depend on meteorological variability. At most locations, the total denudation rates (TDR) are dominated by physical erosion, whereas chemical weathering constitutes only a small part (<10%). Thus, the CWR to PWR ratio for the Narmada basin can be compared with high relief small river watersheds of Taiwan and New Zealand (1-5%) and large Himalayan Rivers such as the Brahmaputra and the Ganges (8-9%).  相似文献   

8.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

9.
A systematic study of the major ion chemistry of the Ganga source waters—the Bhagirathi, Alaknanda and their tributaries—has been carried out to assess the chemical weathering processes in the high altitude Himalaya. Among major ions, Ca, Mg, HCO3 and SO4 are the most abundant in these river waters. These results suggest that weathering of carbonate rocks by carbonic and sulphuric acids dominates in these drainage basins. On an average, silicate weathering can contribute up to ∼ 30% of the total cations. The concentration of total dissolved salts in the Bhagirathi and the Alaknanda is 104 and 115mg/l, respectively. The chemical denudation rate in the drainage basins of the Bhagirathi and the Alaknanda is, respectively, 110 and 137 tons/km2/yr, significantly higher than that derived for the entire Ganga basin, indicating intense chemical erosion of the Himalaya.  相似文献   

10.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

11.
12.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

13.
Chemical weathering in the Three Rivers region of Eastern Tibet   总被引:2,自引:0,他引:2  
Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ+) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the “exit” sample of the Chang Jiang, 45% of TZ+ is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ+. The net rate of CO2 consumption by silicate weathering is (103-121) × 103 mol km−2 year−1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.  相似文献   

14.
Chemical weathering and resulting water compositions in the upper Ganga river in the Himalayas were studied. For the first time, temporal and spatial sampling for a 1 year period (monthly intervals) was carried out and analyzed for dissolved major elements, trace elements, Rare Earth Elements (REE), and strontium isotopic compositions. Amounts of physical and chemical loads show large seasonal variations and the overall physical load dominates over chemical load by a factor of more than three. The dominant physical weathering is also reflected in high quartz and illite/mica contents in suspended sediments. Large seasonal variations also occur in major elemental concentrations. The water type is categorized as HCO3–SO42––Ca2+ dominant, which constitute >60% of the total water composition. On an average, only about 5–12% of HCO3 is derived from silicate lithology, indicating the predominance of carbonate lithology in water chemistry in the head waters of the Ganga river. More than 80% Na+ and K+ are derived from silicate lithology. The silicate lithology is responsible for the release of low Sr with extremely radiogenic Sr (87Sr/86 Sr>0.75) in Bhagirathi at Devprayag. However, there is evidence for other end-member lithologies for Sr other than carbonate and silicate lithology. Trace elements concentrations do not indicate any pollution, although presence of arsenic could be a cause for concern. High uranium mobilization from silicate rocks is also observed. The REE is much less compared to other major world rivers such as the Amazon, perhaps because in the present study, only samples filtered through <0.2 m were analysed. Negative Eu anomalies in suspended sediments is due to the excess carbonate rock weathering in the source area.  相似文献   

15.
16.
The goal of this study was to highlight the occurrence of an additional proton-promoted weathering pathway of carbonate rocks in agricultural areas where N-fertilizers are extensively spread, and to estimate its consequences on riverine alkalinity and uptake of CO2 by weathering. We surveyed 25 small streams in the calcareous molassic Gascogne area located in the Garonne river basin (south-western France) that drain cultivated or forested catchments for their major element compositions during different hydrologic periods. Among these catchments, the Hay and the Montoussé, two experimental catchments, were monitored on a weekly basis. Studies in the literature from other small carbonate catchments in Europe were dissected in the same way. In areas of intensive agriculture, the molar ratio (Ca + Mg)/HCO3 in surface waters is significantly higher (0.7 on average) than in areas of low anthropogenic pressure (0.5). This corresponds to a decrease in riverine alkalinity, which can reach 80% during storm events. This relative loss of alkalinity correlates well with the content in surface waters. In cultivated areas, the contribution of atmospheric/soil CO2 to the total riverine alkalinity (CO2 ATM-SOIL/HCO3) is less than 50% (expected value for carbonate basins), and it decreases when the nitrate concentration increases. This loss of alkalinity can be attributed to the substitution of carbonic acid (natural weathering pathway) by protons produced by nitrification of N-fertilizers (anthropogenic weathering pathway) occurring in soils during carbonate dissolution. As a consequence of these processes, the alkalinity over the last 30 years shows a decreasing trend in the Save river (one of the main Garonne river tributaries, draining an agricultural catchment), while the nitrate and calcium plus magnesium contents are increasing.We estimated that the contribution of atmospheric/soil CO2 to riverine alkalinity decreased by about 7-17% on average for all the studied catchments. Using these values, the deficit of CO2 uptake can be estimated as up to 0.22-0.53 and 12-29 Tg1 yr−1 CO2 on a country scale (France) and a global scale, respectively. These losses represent up to 5.7-13.4% and only 1.6-3.8% of the total CO2 flux naturally consumed by carbonate dissolution, for France and on a global scale, respectively. Nevertheless, this loss of alkalinity relative to the Ca + Mg content relates to carbonate weathering by protons from N-fertilizers nitrification, which is a net source of CO2 for the atmosphere. This anthropogenic CO2 source is not negligible since it could reach 6-15% of CO2 uptake by natural silicate weathering and could consequently partly counterbalance this natural CO2 sink.  相似文献   

17.
Pramod Singh   《Chemical Geology》2009,266(3-4):251-264
The sediments of the Ganga River from different depositional regimes in the Plain region such as the river channel, active flood-plain and the older flood-plain sediments from the inter-fluve region were analysed for major, trace and the rare earth elements (REEs). These are compared with catchment zone sediments of the river and probable source rocks in the Himalaya. The lower CIA values between 48 and 54.7 for the catchment sediments indicates that the sediments supplied to the Ganga Plain are chemically immature and subjected mostly to physical weathering due to higher erosion rates in the Himalaya. The CIA values ranging between 55 and 74, with average value of 59, 61.4 and 67 for sediments from the Plain's bed-load, active flood-plain and older flood-plain from the inter-fluve region indicates that silicate weathering of Ganga River sediments has occurred only after entering into the plains. This is likely because of higher residence time and change in the climate from cold-frigid in the Himalaya to tropical sub-humid in the plains. Therefore, the use of geochemical data on ancient system to infer climate in their source region may not always be true. Although the CIA values indicate a moderate chemical weathering in the plains, it is far from impressive. Dominance of physical weathering in the catchment region and lower degree of chemical weathering in the Plains indicate that weathering of sediments supplied by Himalayan Rivers, particularly the Ganga River may not have affected the atmospheric CO2 to a significant level as is generally believed. Thus the net effect of the Himalaya on the CO2 sequestration and consequent global cooling needs a re-evaluation.The plots of sediments in ternary diagram among La, Th, Sc and ratios involving Co/Th, La/Sc and Sc/Th indicate granitic to granodioritic source rocks to the sediments. The ratio plots involving relatively immobile Al2O3, TiO2 and FeO along with REE plots suggest that out of the major Himalayan lithologies, gneisses and Cambro-Ordovician granites of HHCS have acted as the dominant source to the sediments.The plots of LogNa2O/K2O vs. LogSiO2/Al2O3 and FeO/SiO2 vs. Al2O3/SiO2 diagrams show that the combination of processes including erosion, weathering, sorting and aeolian activity has together played a major role in progressively changing the chemistry from source rock to catchments bed-load to Plains bed-load, active flood-plains and the older inter-fluve sediments in the Ganga River system. The above plots demonstrate that as a result of above processes the ratios between the elements generally thought to be immobile and used in provenance studies does not always remain invariant and the linear trend line in the scatter gram between the two immobile elements show rotation around the fine grained end member.  相似文献   

18.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   

19.
We determined total CO2 solubilities in andesite melts with a range of compositions. Melts were equilibrated with excess C-O(-H) fluid at 1 GPa and 1300°C then quenched to glasses. Samples were analyzed using an electron microprobe for major elements, ion microprobe for C-O-H volatiles, and Fourier transform infrared spectroscopy for molecular H2O, OH, molecular CO2, and CO32−. CO2 solubility was determined in hydrous andesite glasses and we found that H2O content has a strong influence on C-O speciation and total CO2 solubility. In anhydrous andesite melts with ∼60 wt.% SiO2, total CO2 solubility is ∼0.3 wt.% at 1300°C and 1 GPa and total CO2 solubility increases by about 0.06 wt.% per wt.% of total H2O. As total H2O increases from ∼0 to ∼3.4 wt.%, molecular CO2 decreases (from 0.07 ± 0.01 wt.% to ∼0.01 wt.%) and CO32− increases (from 0.24 ± 0.04 wt.% to 0.57 ± 0.09 wt.%). Molecular CO2 increases as the calculated mole fraction of CO2 in the fluid increases, showing Henrian behavior. In contrast, CO32− decreases as the calculated mole fraction of CO2 in the fluid increases, indicating that CO32− solubility is strongly dependent on the availability of reactive oxygens in the melt. These findings have implications for CO2 degassing. If substantial H2O is present, total CO2 solubility is higher and CO2 will degas at relatively shallow levels compared to a drier melt. Total CO2 solubility was also examined in andesitic glasses with additional Ca, K, or Mg and low H2O contents (<1 wt.%). We found that total CO2 solubility is negatively correlated with (Si + Al) cation mole fraction and positively correlated with cations with large Gibbs free energy of decarbonation or high charge-to-radius ratios (e.g., Ca). Combining our andesite data with data from the literature, we find that molecular CO2 is more abundant in highly polymerized melts with high ionic porosities (>∼48.3%), and low nonbridging oxygen/tetrahedral oxygen (<∼0.3). Carbonate dominates most silicate melts and is most abundant in depolymerized melts with low ionic porosities, high nonbridging oxygen/tetrahedral oxygen (>∼0.3), and abundant cations with large Gibbs free energy of decarbonation or high charge-to-radius ratio. In natural silicate melt, the oxygens in the carbonate are likely associated with tetrahedral and network-modifying cations (including Ca, H, or H-bonds) or a combinations of those cations.  相似文献   

20.
Dissolved uranium concentration and 234U/238U activity ratio have been measured in two distinctly different Indian drainage systems: the Yamuna headwaters in the Himalaya and the Chambal river system in the plains to study the weathering and mobility of uranium in these watersheds. The dissolved uranium in the Chambal river system ranges from 0.2 to 1.74 μg L−1 during September (tail end of monsoon), whereas in the Yamuna river system, its concentration varies from 0.1 to 3.18 μg L−1 during October (post-monsoon) and from 0.09 to 3.61 μg L−1 in June (summer). In the Yamuna main stream, uranium is highest at its source and decreases steadily along its course, from 3.18 μg L−1 at Hanuman Chatti to 0.67 μg L−1 at Batamandi, at the base of the Himalaya. This decrease results mainly from mixing of the Yamuna mainstream with its tributaries, which are lower in uranium. The high concentration of uranium at Hanuman Chatti is derived from weathering of the Higher Himalayan Crystalline series (HHC) and associated accessary minerals, which may include uranium-mineralised zones. The 234U/238U activity ratios in the samples from the Chambal watershed are in the range of 1.15±0.05 to 1.67±0.04; whereas in the Yamuna the ratios vary from 0.95±0.03 to 1.56±0.07, during post-monsoon and from 0.98±0.01 to 1.30±0.03, during summer. The relatively high 234U/238U activity ratios in the Yamuna system are in its tributaries from the lower reaches viz., the Amlawa, Aglar, Bata, Tons and the Giri. It is estimated that ~9×103 and ~12 × 103 kg of dissolved uranium are transported annually from the Yamuna at Batamandi and the Chambal at Udi, respectively. This corresponds to uranium weathering rates of 0.9 and 0.09 kg U km−2 y−1 in the basins of the Yamuna and the Chambal headwaters. This study confirms that uranium weathering rate in the Himalaya is far in excess (by about an order of magnitude) of the global average value of ~0.08 kg U km−2 y−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号