首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》2000,15(6):865-878
Knowledge of the impact of N-fertilizers on the weathering-erosion processes of soils in intensively cultivated regions is of prime importance. Nitrification of NH4 fertilizers produces HNO3 in the basin of the Garonne river, enhancing soil degradation. Their influence on the weathering rates was determined by calculating the consumption rate of atmospheric/soil CO2 by soil weathering and erosion, and its contribution to the total dissolved riverine HCO3. This contribution was found to be less than 50% which corresponds normally to a complete carbonate dissolution by carbonic acid, suggesting that part of the alkalinity in the river waters is due to carbonate dissolution by an acid other than carbonic acid, probably HNO3.  相似文献   

2.
CO2 consumption by chemical weathering is an integral part of the boundless carbon cycle, whose spatial patterns and controlling factors on continental scale are still not fully understood. A dataset of 338 river catchments throughout North America was used to empirically identify predictors of bicarbonate fluxes by chemical weathering and interpret the underlying controlling factors. Detailed analysis of major ion ratios enables distinction of the contributions of silicate and carbonate weathering and thus quantifying CO2 consumption. Extrapolation of the identified empirical model equations to North America allows the analysis of the spatial patterns of the CO2 consumption by chemical weathering.Runoff, lithology and land cover were identified as the major predictors of the riverine bicarbonate fluxes and the associated CO2 consumption. Other influence factors, e.g. temperature, could not be established in the models. Of the distinguished land cover classes, artificial surfaces, dominated by urban areas, increase bicarbonate fluxes most, followed by shrubs, grasslands, managed lands, and forests. The extrapolation results in an average specific bicarbonate flux of 0.3 Mmol km−2 a−1 by chemical weathering in North America, of which 64% originates from atmospheric CO2, and 36% from carbonate mineral dissolution. Chemical weathering in North America thus consumes 50 Mt atmospheric CO2-C per year. About half of that originates from 10% of the area of North America.The estimated strength of individual predictors differs from previous studies. This highlights the need for a globally representative set of regionally calibrated models of CO2 consumption by chemical weathering, which apply very detailed spatial data to resolve the heterogeneity of earth surface processes.  相似文献   

3.
4.
Two sediment cores retrieved at the northern slope of Sakhalin Island, Sea of Okhotsk, were analyzed for biogenic opal, organic carbon, carbonate, sulfur, major element concentrations, mineral contents, and dissolved substances including nutrients, sulfate, methane, major cations, humic substances, and total alkalinity. Down-core trends in mineral abundance suggest that plagioclase feldspars and other reactive silicate phases (olivine, pyroxene, volcanic ash) are transformed into smectite in the methanogenic sediment sections. The element ratios Na/Al, Mg/Al, and Ca/Al in the solid phase decrease with sediment depth indicating a loss of mobile cations with depth and producing a significant down-core increase in the chemical index of alteration. Pore waters separated from the sediment cores are highly enriched in dissolved magnesium, total alkalinity, humic substances, and boron. The high contents of dissolved organic carbon in the deeper methanogenic sediment sections (50-150 mg dm−3) may promote the dissolution of silicate phases through complexation of Al3+ and other structure-building cations. A non-steady state transport-reaction model was developed and applied to evaluate the down-core trends observed in the solid and dissolved phases. Dissolved Mg and total alkalinity were used to track the in-situ rates of marine silicate weathering since thermodynamic equilibrium calculations showed that these tracers are not affected by ion exchange processes with sediment surfaces. The modeling showed that silicate weathering is limited to the deeper methanogenic sediment section whereas reverse weathering was the dominant process in the overlying surface sediments. Depth-integrated rates of marine silicate weathering in methanogenic sediments derived from the model (81.4-99.2 mmol CO2 m−2 year−1) are lower than the marine weathering rates calculated from the solid phase data (198-245 mmol CO2 m−2 year−1) suggesting a decrease in marine weathering over time. The production of CO2 through reverse weathering in surface sediments (4.22-15.0 mmol CO2 m−2 year−1) is about one order of magnitude smaller than the weathering-induced CO2 consumption in the underlying sediments. The evaluation of pore water data from other continental margin sites shows that silicate weathering is a common process in methanogenic sediments. The global rate of CO2 consumption through marine silicate weathering estimated here as 5-20 Tmol CO2 year−1 is as high as the global rate of continental silicate weathering.  相似文献   

5.
This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers of the Changjiang Basin, one of the largest riverine systems in the world. Water samples were collected in August 2006 from the main tributaries and the main Changjiang channel. The chemical and isotopic analyses indicated that four major reservoirs (carbonates, silicates, evaporites and agriculture/urban effluents) contribute to the total dissolved solutes. The overall chemical weathering (carbonate and silicate) rate for the Changjiang is approximately 40 ton/km2/year or 19 mm/kyr, similar to that of the Ganges-Brahmaputra system, and the basin is characterized by carbonate and silicate weathering rates ranging from 17 to 56 ton/km2/year and from 0.7 to 7.1 ton/km2/year, respectively. In the lower reach of the Changjiang main channel, the weathering rates are estimated to be 36 and 2.2 ton/km2/year for carbonates and silicates, respectively. It appears that sulphuric acid may dominate chemical weathering reactions for some sub-basins. The budgets of CO2 consumption are estimated to be 646 × 109 and 191 × 109 mol/year by carbonate and silicate weathering, respectively. The contribution of the anthropogenic inputs to the cationic TDS of the Changjiang is estimated to be 15-20% for the most downstream stations. Our study suggested that the Changjiang is strongly impacted by human activities and is very sensitive to the change of land use.  相似文献   

6.
We evaluate whether the global weathering budget is near steady state for the pre-anthropogenic modern environment by assessing the magnitude of acidity-generating volcanic exhalations. The weathering rate induced by volcanic acid fluxes, of which the CO2 flux is the most important, can be expressed as an average release rate of dissolved silica, based on a model feldspar-weathering scheme, and the ratio of carbonate-to-silicate rock weathering. The theoretically predicted flux of silica from chemical weathering is slightly smaller than the estimated global riverine silica flux. After adjustment for carbonate weathering, the riverine dissolved bicarbonate flux is larger than the volcanic carbon degassing rate by a factor of about three. There are substantial uncertainties associated with the calculated and observed flux values, but the modern system may either not be in steady state, or additional, “unknown” carbon sources may exist. The closure errors in the predicted budgets and observed riverine fluxes suggest that continental weathering rates might have had an impact on atmospheric CO2 levels at a time scale of 103-104 years, and that enhanced weathering rates during glacial periods might have been a factor in the reduced glacial atmospheric CO2 levels. Recent anthropogenic emissions of carbon and sulfur have a much larger acid-generating capacity than the natural fluxes. Estimated potential weathering budgets to neutralize these fluxes are far in excess of observed values. A theoretical scenario for a return to steady state at the current anthropogenic acidity emissions (disregarding the temporary buffering action of the ocean reservoir) requires either significantly lower pH values in continental surface waters as a result of storage of strong acids, and/or higher temperatures as a result of enhanced atmospheric CO2 levels in order to create weathering rates that can neutralize the total flux of anthropogenic and natural background acidity.  相似文献   

7.
The patterns of dissolved inorganic C (DIC) and aqueous CO2 in rivers and estuaries sampled during summer and winter in the Australian Victorian Alps were examined. Together with historical (1978–1990) geochemical data, this study provides, for the first time, a multi-annual coverage of the linkage between CO2 release via wetland evasion and CO2 consumption via combined carbonate and aluminosilicate weathering. δ13C values imply that carbonate weathering contributes ∼36% of the DIC in the rivers although carbonates comprise less than 5% of the study area. Baseflow/interflow flushing of respired C3 plant detritus accounts for ∼50% and atmospheric precipitation accounts for ∼14% of the DIC. The influence of in river respiration and photosynthesis on the DIC concentrations is negligible. River waters are supersaturated with CO2 and evade ∼27.7 × 106 mol/km2/a to ∼70.9 × 106 mol/km2/a CO2 to the atmosphere with the highest values in the low runoff rivers. This is slightly higher than the global average reflecting higher gas transfer velocities due to high wind speeds. Evaded CO2 is not balanced by CO2 consumption via combined carbonate and aluminosilicate weathering which implies that chemical weathering does not significantly neutralize respiration derived H2CO3. The results of this study have implications for global assessments of chemical weathering yields in river systems draining passive margin terrains as high respiration derived DIC concentrations are not directly connected to high carbonate and aluminosilicate weathering rates.  相似文献   

8.
An experimental study was carried out in order to evaluate the impact of nitrogen fertiliser-induced acidification in carbonated soils. Undisturbed soil columns containing different carbonate content were sampled in the field. Fertiliser spreading was simulated by NH4Cl addition on top of the soil column. Soil solution composition (mainly nitrate and base cations) was studied at the soil column’s base. Nitrification occurred to a different extent depending on soil type. Higher nitrification rates were observed in calcareous soils. In all the soil types, strong correlations between leached base cation and nitrate concentrations were observed. Regression coefficients between base cations, nitrate and chloride were used to determine the dominant processes occurring following NH4Cl spreading. In non-carbonated soils, nitrogen nitrification induced base cation leaching and soil acidification. In carbonated soils, no change of soil pH was observed. However, fertilisers induced a huge cation leaching. Carbonate mineral weathering led to the release of base cations, which replenished the soil exchangeable complex. Carbonated mineral weathering buffered acidification. Since direct weathering might have occurred without atmospheric CO2 consumption, the use of nitrogen fertiliser on carbonated soil induces a change in the cation and carbon budgets. When the results of these experiments are extrapolated on a global scale to the surface of fertilised areas lying on carbonate, carbonated reactions with N fertilisers would imply an additional flux of 5.7 × 1012 mol yr−1 of Ca + Mg. The modifications of weathering reactions in cultivated catchments and the ability of nitrogen fertilisers to significantly modify the CO2 budget should be included in carbon global cycle assessment.  相似文献   

9.
We have performed a series of molecular dynamics simulations aimed at the evaluation of the solubility of CO2 in silicate melts of natural composition (from felsic to ultramafic). In making in contact within the simulation cell a supercritical CO2 phase with a silicate melt of a given composition, we have been able to evaluate (i) the solubility of CO2 in the P-T range 1473-2273 K and 20-150 kbar, (ii) the density change experienced by the CO2-bearing melt, (iii) the respective concentrations of CO2 and species in the melt, (iv) the lifetime and the diffusivity of these species and (v) the structure of the melt around the carbonate groups. The main results are the following:(1) The solubility of CO2 increases markedly with the pressure in the three investigated melts (a rhyolite, a mid-ocean ridge basalt and a kimberlite) from about ∼2 wt% CO2 at 20 kbar to ∼25 wt% at 100 kbar and 2273 K. The solubility is found to be weakly dependent on the melt composition (as far as the present compositions are concerned) and it is only at very high pressure (above ∼100 kbar) that a clear hierarchy between solubilities occurs (rhyolite < MORB < kimberlite). Furthermore at a given pressure the calculated solubility is negatively correlated with the temperature.(2) In CO2-saturated melts, the proportion of carbonate ions is positively correlated with the pressure at isothermal condition and is negatively correlated with the temperature at isobaric condition (and vice versa for molecular CO2). Furthermore, at fixed (PT) conditions the proportion of carbonate ions is higher in CO2-undersaturated melts than in the CO2-saturated melt. Although the proportion of molecular CO2 decreases when the degree of depolymerization of the melt increases, it is still significant in CO2-saturated basic and ultrabasic compositions at high temperatures. This finding is at variance with experimental data on CO2-bearing glasses which show no evidence of molecular CO2 as soon as the degree of depolymerization of the melt is high (e.g. basalt). These conflicting results can be reconciled with each other by noticing that a simple low temperature extrapolation of the simulation data predicts that the proportion of molecular CO2 in basaltic melts might be negligible in the glass at room temperature.(3) The carbonate ions are found to be transient species in the liquid phase, with a lifetime increasing exponentially with the inverse of the temperature. Contrarily to a usual assumption, the diffusivity of carbonate ions into the liquid silicate is not vanishingly small with respect to that of CO2 molecules: in MORB they differ from each other by a factor of ∼6 at 1473 K and only a factor of ∼2 at 2273 K. Although the bulk diffusivity of CO2 is governed primarily by the diffusivity of CO2 molecules, the carbonate ions contribute significantly to the diffusivity of CO2 in depolymerized melts.(4) Concerning the structure of the CO2-bearing silicate melt, the carbonate ions are found to be preferentially associated with NBO’s of the melt, with an affinity for NBOs which exceeds that for BOs by almost one order of magnitude. This result explains why the concentration in carbonate ions is positively correlated with the degree of depolymerization of the melt and diminishes drastically in fully polymerized melts where the number of NBO’s is close to zero. Furthermore, the network modifier cations are not randomly distributed in the close vicinity of carbonate groups but exhibit a preferential ordering which depends at once on the nature of the cation and on the melt composition. However at the high temperatures investigated here, there is no evidence of long lived complexes between carbonate groups and metal cations.  相似文献   

10.
11.
The paper suggests an accurate approach to studying carbonate equilibrium in the water of the Razdol’naya River. The approach involves measuring pH by Pitzer’s scale, using a cell without liquid junction; measuring the total alkalinity by Bruevich’s technique; and using apparent constants of carbonate equilibrium with regard for the organic alkalinity. The Pitzer technique was employed to calculate the apparent constants of carbonate equilibrium in solution that models the riverine water: Ca(HCO3)2–NaCl–H2O within the range of alkalinity of 0–0.005 mol/kg and temperatures of 0–25°C. Carbonate equilibrium in the water of the Razdol’naya River was sampled for studying at eight sites during all four seasons. Although the contents of biogenic compounds in the water are high, they can merely insignificantly affect the acid–base equilibrium, which is controlled in the riverine water by carbonate equilibrium and the concentrations of humic substances, which play the greater role, the greater the discharge of the river. In addition to the production and destruction of organic matter, carbonate equilibrium in the river is also affected by the supply of humic substances with soil waters and total alkalinity with groundwaters. The fluxes of alkalinity and humic substances annually brought by the Razdol’naya River to Amur Bay are evaluated at 1.33 × 109 mol and 9.9 × 106 kgC, respectively. The carbon dioxide export with the Razdol’naya River is equal to the alkalinity flux and does not depend on the weathering mechanisms.  相似文献   

12.
13.
14.
Water samples from the Fraser, Skeena and Nass River basins of the Canadian Cordillera were analyzed for dissolved major element concentrations (HCO3, SO42−, Cl, Ca2+, Mg2+, K+, Na+), δ13C of dissolved inorganic carbon (δ13CDIC), and δ34S of dissolved sulfate (δ34SSO4) to quantify chemical weathering rates and exchanges of CO2 between the atmosphere, hydrosphere, and lithosphere. Weathering rates of silicates and carbonates were determined from major element mass balance. Combining the major element mass balance with δ34SSO4 (−8.9 to 14.1‰CDT) indicates sulfide oxidation (sulfuric acid production) and subsequent weathering of carbonate and to a lesser degree silicate minerals are important processes in the study area. We determine that on average, 81% of the riverine sulfate can be attributed to sulfide oxidation in the Cordilleran rivers, and that 25% of the total weathering cation flux can be attributed to carbonate and silicate dissolution by sulfuric acid. This result is validated by δ13CDIC values (−9.8 to −3.7‰ VPDB) which represents a mixture of DIC produced by the following weathering pathways: (i) carbonate dissolution by carbonic acid (−8.25‰) > (ii) silicate dissolution by carbonic acid (−17‰) ≈ (iii) carbonate dissolution by sulfuric acid derived from the oxidation of sulfides (coupled sulfide-carbonate weathering) (+0.5‰).δ34SSO4 is negatively correlated with δ13CDIC in the Cordilleran rivers, which further supports the hypothesis that sulfuric acid produced by sulfide oxidation is primarily neutralized by carbonates, and that sulfide-carbonate weathering impacts the δ13CDIC of rivers. The negative correlation between δ34SSO4 and δ13CDIC is not observed in the Ottawa and St. Lawrence River basins. This suggests other factors such as landscape age (governed by tectonic uplift) and bedrock geology are important controls on regional sulfide oxidation rates, and therefore also on the magnitude of sulfide-carbonate weathering—i.e., it is more significant in tectonically active areas.Calculated DIC fluxes due to Ca and Mg silicate weathering by carbonic acid (38.3 × 103 mol C · km−2 · yr−1) are similar in magnitude to DIC fluxes due to sulfide-carbonate weathering (18.5 × 103 mol C · km−2 · yr−1). While Ca and Mg silicate weathering facilitates a transfer of atmospheric CO2 to carbonate rocks, sulfide-carbonate weathering can liberate CO2 from carbonate rocks to the atmosphere when sulfide oxidation exceeds sulfide deposition. This implies that in the Canadian Cordillera, sulfide-carbonate weathering can offset up to 48% of the current CO2 drawdown by silicate weathering in the region.  相似文献   

15.
Epochs of changing atmospheric CO2 and seawater CO2–carbonic acid system chemistry and acidification have occurred during the Phanerozoic at various time scales. On the longer geologic time scale, as sea level rose and fell and continental free board decreased and increased, respectively, the riverine fluxes of Ca, Mg, DIC, and total alkalinity to the coastal ocean varied and helped regulate the C chemistry of seawater, but nevertheless there were major epochs of ocean acidification (OA). On the shorter glacial–interglacial time scale from the Last Glacial Maximum (LGM) to late preindustrial time, riverine fluxes of DIC, total alkalinity, and N and P nutrients increased and along with rising sea level, atmospheric PCO2 and temperature led, among other changes, to a slightly deceasing pH of coastal and open ocean waters, and to increasing net ecosystem calcification and decreasing net heterotrophy in coastal ocean waters. From late preindustrial time to the present and projected into the 21st century, human activities, such as fossil fuel and land-use emissions of CO2 to the atmosphere, increasing application of N and P nutrient subsidies and combustion N to the landscape, and sewage discharges of C, N, P have led, and will continue to lead, to significant modifications of coastal ocean waters. The changes include a rapid decline in pH and carbonate saturation state (modern problem of ocean acidification), a shift toward dissolution of carbonate substrates exceeding production, potentially leading to the “demise” of the coral reefs, reversal of the direction of the sea-to-air flux of CO2 and enhanced biological production and burial of organic C, a small sink of anthropogenic CO2, accompanied by a continuous trend toward increasing autotrophy in coastal waters.  相似文献   

16.
Weathering of rocks that regulate the water chemistry of the river has been used to evaluate the CO2 consumption rate which exerts a strong influence on the global climate. The foremost objective of the present research is to estimate the chemical weathering rate (CWR) of the continental water in the entire stretch of Brahmaputra River from upstream to downstream and their associated CO2 consumption rate. To establish the link between the rapid chemical weathering and thereby enhance CO2 drawdown from the atmosphere, the major ion composition of the Brahmaputra River that drains the Himalaya has been obtained. Major ion chemistry of the Brahmaputra River was resolved on samples collected from nine locations in pre-monsoon, monsoon and post-monsoon seasons for two cycles: cycle I (2011–2012) and cycle II (2013–2014). The physico-chemical parameters of water samples were analysed by employing standard methods. The Brahmaputra River was characterized by alkalinity, high concentration of Ca2+ and HCO3 ? along with significant temporal variation in major ion composition. In general, it was found that water chemistry of the river was mainly controlled by rock weathering with minor contributions from atmospheric and anthropogenic sources. The effective CO2 pressure (log\({{\text{P}}_{{\text{C}}{{\text{O}}_{\text{2}}}}}\)) for pre-monsoon, monsoon and post-monsoon has been estimated. The question of rates of chemical weathering (carbonate and silicate) was addressed by using TDS and run-off (mm year?1). It has been found that the extent of CWR is directly dependent on the CO2 consumption rate which may be further evaluated from the perspective of climate change mitigation The average annual CO2 consumption rate of the Brahmaputra River due to silicate and carbonate weathering was found to be 0.52 (×106 mol Km?2 year?1) and 0.55 (×106 mol Km?2 year?1) for cycle I and 0.49 (×106 mol Km?2 year?1) and 0.52 (×106 mol Km?2 year?1) for cycle II, respectively, which were significantly higher than that of other Himalayan rivers. Estimation of CWR of the Brahmaputra River indicates that carbonate weathering largely dominates the water chemistry of the Brahmaputra River.  相似文献   

17.
18.
The spatial and temporal changes in element and mineral concentrations in regolith profiles in a chronosequence developed on marine terraces along coastal California are interpreted in terms of chemical weathering rates and processes. In regoliths up to 15 m deep and 226 kyrs old, quartz-normalized mass transfer coefficients indicate non-stoichiometric preferential release of Sr > Ca > Na from plagioclase along with lesser amounts of K, Rb and Ba derived from K-feldspar. Smectite weathering results in the loss of Mg and concurrent incorporation of Al and Fe into secondary kaolinite and Fe-oxides in shallow argillic horizons. Elemental losses from weathering of the Santa Cruz terraces fall within the range of those for other marine terraces along the Pacific Coast of North America.Residual amounts of plagioclase and K-feldspar decrease with terrace depth and increasing age. The gradient of the weathering profile bs is defined by the ratio of the weathering rate, R to the velocity at which the profile penetrates into the protolith. A spreadsheet calculator further refines profile geometries, demonstrating that the non-linear regions at low residual feldspar concentrations at shallow depth are dominated by exponential changes in mineral surface-to-volume ratios and at high residual feldspar concentrations, at greater depth, by the approach to thermodynamic saturation. These parameters are of secondary importance to the fluid flux qh, which in thermodynamically saturated pore water, controls the weathering velocity and mineral losses from the profiles. Long-term fluid fluxes required to reproduce the feldspar weathering profiles are in agreement with contemporary values based on solute Cl balances (qh = 0.025-0.17 m yr−1).During saturation-controlled and solute-limited weathering, the greater loss of plagioclase relative to K-feldspar is dependent on the large difference in their respective solubilities instead of the small difference between their respective reaction kinetics. The steady-state weathering rate under such conditions is defined as
  相似文献   

19.
Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water-rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water-rock reactions. We have determined the contribution of each source and calculated the rates of CO2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km2/yr for cations only) and atmospheric CO2 consumption rates (∼0.33-0.46 × 106 mol/km2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO2 consumption derived from hydrothermal activity represents about 11% of the total HCO3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals.Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact.  相似文献   

20.
To understand possible volcanogenic fluxes of CO2 to the Martian atmosphere, we investigated experimentally carbonate solubility in a synthetic melt based on the Adirondack-class Humphrey basalt at 1-2.5 GPa and 1400-1625 °C. Starting materials included both oxidized and reduced compositions, allowing a test of the effect of iron oxidation state on CO2 solubility. CO2 contents in experimental glasses were determined using Fourier transform infrared spectroscopy (FTIR) and Fe3+/FeT was measured by Mössbauer spectroscopy. The CO2 contents of glasses show no dependence on Fe3+/FeT and range from 0.34 to 2.12 wt.%. For Humphrey basalt, analysis of glasses with gravimetrically-determined CO2 contents allowed calibration of an integrated molar absorptivity of 81,500 ± 1500 L mol−1 cm−2 for the integrated area under the carbonate doublet at 1430 and 1520 cm−1. The experimentally determined CO2 solubilities allow calibration of the thermodynamic parameters governing dissolution of CO2 vapor as carbonate in silicate melt, KII, (Stolper and Holloway, 1988) as follows: , ΔV0 = 20.85 ± 0.91 cm3 mol−1, and ΔH0 = −17.96 ± 10.2 kJ mol−1. This relation, combined with the known thermodynamics of graphite oxidation, facilitates calculation of the CO2 dissolved in magmas derived from graphite-saturated Martian basalt source regions as a function of P, T, and fO2. For the source region for Humphrey, constrained by phase equilibria to be near 1350 °C and 1.2 GPa, the resulting CO2 contents are 51 ppm at the iron-wüstite buffer (IW), and 510 ppm at one order of magnitude above IW (IW + 1). However, solubilities are expected to be greater for depolymerized partial melts similar to primitive shergottite Yamato 980459 (Y 980459). This, combined with hotter source temperatures (1540 °C and 1.2 GPa) could allow hot plume-like magmas similar to Y 980459 to dissolve 240 ppm CO2 at IW and 0.24 wt.% of CO2 at IW + 1. For expected magmatic fluxes over the last 4.5 Ga of Martian history, magmas similar to Humphrey would only produce 0.03 and 0.26 bars from sources at IW and IW + 1, respectively. On the other hand, more primitive magmas like Y 980459 could plausibly produce 0.12 and 1.2 bars at IW and IW + 1, respectively. Thus, if typical Martian volcanic activity was reduced and the melting conditions cool, then degassing of CO2 to the atmosphere may not be sufficient to create greenhouse conditions required by observations of liquid surface water. However, if a significant fraction of Martian magmas derive from hot and primitive sources, as may have been true during the formation of Tharsis in the late Noachian, that are also slightly oxidized (IW + 1.2), then significant contribution of volcanogenic CO2 to an early Martian greenhouse is plausible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号