首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Noble gas isotopes of HIMU and EM ocean island basalts from the Cook-Austral and Society Islands were investigated to constrain their origins. Separated olivine and clinopyroxene (cpx) phenocrysts were used for noble gas analyses. Since samples are relatively old, obtained from the oceanic area and showing chemical zoning in cpx phenocrysts, several tests on sample preparation and gas extraction methods were performed. First, by comparing heating and crushing methods, it has been confirmed that the crushing method is suitable to obtain inherent magmatic noble gases without radiogenic and cosmogenic components which were yielded after eruption, especially for He and Ne analyses. Second, noble gas compositions in the core and the rim of cpx phenocrysts were measured to evaluate the zoning effect on noble gases. The result has been that noble gas concentrations and He and Ne isotope ratios are different between them. The enrichment of noble gases in the rim compared to the core is probably due to fractional crystallization. Difference of He and Ne isotope ratios is explained by cosmogenic effect, and isotope ratios of the trapped component seem to be similar between the rim and the core. Third, leaching test reveals no systematic differences in noble gas compositions between leached and unleached samples.3He/4He ratios of HIMU samples in the Cook-Austral Islands are uniform irrespective of phenocryst type (olivine and cpx) and age of samples (10–18 Ma), and lower (average 6.8 RA) than those of the Pacific MORB. On the other hand, 3He/4He of EM samples in the Cook-Austral Islands are similar to MORB values. EM samples in the Society Islands show rather higher 3He/4He than MORB. Ne, Kr and Xe isotope ratios are almost atmospheric within analytical uncertainties. 40Ar/36Ar are not so high as those of MORB. Anomalous noble gas abundance pattern such as He and Ne depletion and Kr and Xe enrichment relative to atmospheric abundances was observed. Furthermore, Ne/Ar and Kr/Ar show correlation with some trace elemental ratios like La/Yb.Lower 3He/4He of HIMU than MORB values requires relatively high time-integrated (U + Th)/3He for the HIMU source, which suggests that the HIMU source was produced from recycled materials which had been once located near the Earth’s surface. Moreover, extreme noble gas abundance pattern and strong correlation of Ne/Ar and Kr/Ar with La/Yb indicate that the HIMU endmember is highly depleted in light noble gases and enriched in heavy noble gases. Such feature is not common to mantle materials and is rather similar to the noble gas abundance patterns of the old oceanic crust and sediment, which supports the model that the HIMU source originates from subducted oceanic crust and/or sediment.If the HIMU source corresponds to the oceanic crust which subducted at 1–2 Ga as suggested by Pb isotope studies, however, the characteristic 3He/4He of HIMU (6.8 RA) would be too high because radiogenic 4He produced by U and Th decay should dramatically decrease 3He/4He. To overcome this problem, the He open system model is introduced which includes the effects of 4He production and diffusion between the HIMU source material and the surrounding mantle. This model favors that the HIMU source resides in the upper mantle, rather than in the lower mantle. Furthermore, this model predicts the thickness of the HIMU source to be in the order of 1 km.In contrast to low and uniform 3He/4He character of HIMU, 3He/4He of EM are rather variable. Entrainment of upper mantle material and/or a less-degassed component are required to explain the observed 3He/4He of EM in the Polynesian area. Participation of the less-degassed component would be related to the “superplume” below the Polynesian region.  相似文献   

2.
New volatile data (CO2, H2O, He, Ne, and Ar) are presented for 24 submarine basaltic glasses from the Kolbeinsey Ridge, Tjörnes Fracture Zone and Mohns Ridge, North Atlantic. Low CO2 and He contents indicate that magmas were strongly outgassed with the extent of degassing increasing toward the south, as expected from shallower ridge depths. Ne and Ar are significantly more abundant in the southernmost glasses than predicted for degassed melt. The strong atmospheric isotopic signal associated with this excess Ne and Ar suggests syn- or posteruptive contamination by air. Degassing, by itself, cannot generate the large variations in δ13C values of dissolved CO2 or coupled CO2-Ar variations. This suggests that δ13C values were also affected by some other processes, most probably melt-crust interaction. Modelling indicates that degassing had a negligible influence on water owing to its higher solubility in basaltic melt than the other volatiles. Low H2O contents in the glasses reflect melting of a mantle source that is not water-rich relative to the source of N-MORB.Before eruption, Kolbeinsey Ridge melts contained ∼400 ppm CO2 with δ13C of −6‰, 0.1 to 0.35 wt.% H2O, 3He/4He ∼11 RA, and CO2/3He of ∼2 × 109. We model restored volatile characteristics and find homogeneous compositions in the source of Kolbeinsey Ridge magmas. Relative to the MORB-source, He and Ne are mildly fractionated while the 40Ar/36Ar may be low. The 3He/4He ratios in Tjörnes Fracture Zone glasses are slightly higher (13.6 RA) than on Kolbeinsey Ridge, suggesting a greater contribution of Icelandic mantle from the south, but the lack of 3He/4He variation along the Kolbeinsey Ridge is inconsistent with active dispersal of Icelandic mantle beyond the Tjörnes Fracture Zone.  相似文献   

3.
The abundances and isotopic compositions of Helium and Argon have been analyzed in a suite of fresh spinel peridotite xenoliths in Cenozoic basalts from the eastern North China Craton (NCC) by step-wise heating experiments, to investigate the nature of noble gas reservoirs in the subcontinental lithospheric mantle beneath this region. The xenoliths include one harzburgite collected from Hebi in the interior of the NCC, two lherzolites from Hannuoba at the northern margin of the craton, and three lherzolites from Shanwang and Nushan on the eastern margin. 3He/4He ratios in most of the xenoliths are similar to those of mid-ocean ridge basalts (MORB) or slightly lower (2–10.5 Ra, where Ra is the 3He/4He ratio of the atmosphere), suggesting mixing of MORB-like and radiogenic components. One olivine separate from Nushan has a helium value of 25.3 Ra, probably suggesting cosmogenic 3He addition. The 40Ar/36Ar ratios vary from atmospheric value (296) to 1625, significantly lower than the MORB value. Available data of the peridotite xenoliths indicate the He and Ar isotopic systematics of the mantle reservoirs beneath the NCC can be interpreted as mixtures of at least three end-members including MORB-like, radiogenic and atmospheric components. We suggest that the MORB-like noble gases were derived from the underlying asthenosphere during mantle upwelling, whereas the radiogenic and recycled components probably were incorporated into the lithospheric mantle during circum-craton subduction of oceanic crust. Available data suggest that the MORB-like fluids are better preserved in the interior of the NCC, whereas the radiogenic ones are more prevalent at the margins. The Paleo-Asian ocean subduction system probably was responsible for the enriched and recycled noble gas signatures on the northern margin of the craton, while the Pacific subduction system could account for the observed He–Ar isotopic signatures beneath the eastern part. Therefore, integration of helium and argon isotopes reflects heterogeneous metasomatism in the lithospheric mantle and demonstrates the critical importance of lithospheric mantle modification related to both circum-craton subduction of oceanic crust and asthenospheric upwelling beneath the eastern NCC.  相似文献   

4.
新疆坡北镁铁-超镁铁质杂岩体由一个辉长岩体以及二十多个超镁铁质侵入体组成,其中坡一超镁铁质岩体稀有气体同位素组成揭示存在地幔柱的贡献。坡北杂岩体西端的坡一、坡四、坡十和坡十四等几个超镁铁质岩体的稀有气体同位素对比分析结果表明,岩浆矿物的3He/4He值(0.26~2.79Ra)分布于地壳与地幔值之间,较高的20Ne/22Ne和较低的21Ne/22Ne值分布于Ne质量分馏线(MFL)和L-K线之间,40Ar/36Ar=295~598。3He/4He与40Ar/36Ar比值揭示坡北杂岩体西端不同超镁铁质岩体形成过程中地幔(柱)、地壳和大气组分的贡献不同,岩体成因也可能不同。其中,坡一岩体具有地幔柱作用的贡献,其他三个岩体的岩石圈地幔及地壳流体组分的贡献较大。岩浆地幔源区由深部地幔柱物质叠加俯冲流体交代的岩石圈地幔物质所组成,大气与地壳物质组分可能由俯冲再循环洋壳带入到岩浆地幔源区以及围岩物质的混入。  相似文献   

5.
稀有气体同位素在示踪成矿作用流体来源方面具有独特优势。本文应用熔融质谱法测定了金川Cu-Ni-PGE硫化物矿床23个硅酸盐矿物和金属硫化物单矿物的He、Ne和Ar丰度和同位素组成。结果表明,硅酸盐矿物的3He/4He比值(0.239Ra)略低于硫化物(平均0.456Ra),且从橄榄石(平均0.291Ra)、斜方辉石(0.215Ra)到单斜辉石(0.174Ra)逐渐降低,20Ne/22Ne-21Ne/22Ne分布于MORB与大陆地壳演化线之间,扣除放射性成因4He*和40Ar*后橄榄石和辉石中3He/4He和40Ar/36Ar接近岩石圈地幔组成。He、Ne和Ar同位素组成示踪表明成矿岩浆中存在岩石圈地幔(SCLM)、地壳(CC)和大气饱和流体(ASW)三种端元成分,硫化物熔体的分离发生在岩浆结晶分异的早期。岩石圈地幔部分熔融形成的成矿初始岩浆经历了两阶段的演化。在深部岩浆房高温成矿岩浆同化围岩引入地壳混染组分,促使硫饱和及硫化物熔体的熔离,同时形成具有壳幔混合特征的混合岩浆组分(MC),上升至上部岩浆房后混入较高比例的大气饱和流体,进一步促使硫饱和及浸染状硫化物就地熔离堆积。  相似文献   

6.
We present new He-Ne data for geothermal fluids and He-Ne-Ar data for basalts from throughout the Icelandic neovolcanic zones and older parts of the Icelandic crust. Geothermal fluids, subglacial glasses, and mafic phenocrysts are characterized by a wide range in helium isotope ratios (3He/4He) encompassing typical MORB-like ratios through values as high as 36.8 RA (where RA = air 3He/4He). Although neon in geothermal fluids is dominated by an atmospheric component, samples from the northwest peninsula show a small excess of nucleogenic 21Ne, likely produced in-situ and released to circulating fluids. In contrast, geothermal fluids from the neovolcanic zones show evidence of a contribution of mantle-derived neon, as indicated by 20Ne enrichments up to 3% compared to air. The neon isotope composition of subglacial glasses reveals that mantle neon is derived from both depleted MORB-mantle and a primordial, ‘solar’ mantle component. However, binary mixing between these two endmembers can account for the He-Ne isotope characteristics of the basalts only if the 3He/22Ne ratio of the primordial mantle endmember is lower than in the MORB component. Indeed, the helium to neon elemental ratios (4He/21Ne∗ and 3He/22Nes where 21Ne∗ = nucleogenic 21Ne and 22Nes = ‘solar’-derived 22Ne) of the majority of Icelandic subglacial glasses are lower than theoretical values for Earth’s mantle, as observed previously for other OIB samples. Helium may be depleted relative to neon in high-3He/4He ratio parental melts due to either more compatible behavior during low-degree partial melting or more extensive diffusive loss relative to the heavier noble gases. However, Icelandic glasses show higher 4He/40Ar∗ (40Ar∗ = radiogenic Ar) values for a given 4He/21Ne∗ value compared to the majority of other OIB samples: this observation is consistent with extensive open-system equilibrium degassing, likely promoted by lower confining pressures during subglacial eruptions of Icelandic lavas. Taken together, the He-Ne-Ar systematics of Icelandic subglacial glasses are imprinted with the overlapping effects of helium depletion in the high-3He/4He ratio parental melt, binary mixing of two distinct mantle components, degassing fractionation and interaction with atmospheric noble gases. However, it is still possible to discern differences in the noble gas characteristics of the Icelandic mantle source beneath the neovolcanic zones, with MORB-like He-Ne isotope features prevalent in the Northern Rift Zone and a sharp transition to more primitive ‘solar-like’ characteristics in central and southern Iceland.  相似文献   

7.
Argon analyses by both high-resolution stepheating and stepcrushing of MORB and Loihi basalt glasses were performed to separate pristine mantle-derived Ar and contaminating atmospheric Ar. In high-vesicularity glasses (> 0.8% vesicles), most of the mantle argon resides in vesicles, from which it is released by crushing or stepheating between 600 and 900 °C. By contrast, in low vesicularity glasses (< permil vesicularity), most mantle argon is dissolved in the glass matrix, as inferred from the correlation with neutron-induced, glass-dissolved argon isotopes (39Ar, 37Ar, 38Ar from K, Ca, Cl). The distribution of mantle Ar between vesicles and glass matrix is well explained by melt-gas equilibrium partitioning at eruption according to Henry’s law, which is compatible with previously determined Henry constants of ∼(5-10) × 10−5ccSTP 40Ar mantle/g bar. Atmospheric Ar is heterogeneously distributed in all samples. Only a very minor part is dissolved in the glass matrix; a significant part correlates with vesicularity and is released by crushing, most probably from a rather small fraction of vesicles or microcracks that equilibrated with unfractionated air. Other carriers of atmospheric argon are pyroxene microlites and minor phases decomposing at intermediate temperatures that were probably contaminated upon eruption by fractionated atmospheric rare gases. Our high-resolution stepheating and stepcrushing analyses of low vesicularity samples with extraordinary high solar-like 20Ne/22Ne indicate successful discrimination of unfractionated air as a contamination source and suggest an upper mantle 40Ar/36Ar of 32,000 ± 4000 and a Hawaiian mantle plume source 40Ar/36Ar ratio close to 8000.  相似文献   

8.
To document the plume-ridge interaction at the Galapagos Spreading Center (GSC), we present neon 3-isotope analyses performed on vesicles-trapped volatiles of MORB glasses dredged along the ridge axis between 86°W and 98°W. 4He-40Ar-CO2 relative abundances were also measured in order to study gas loss in this context and discern between source and degassing effects. Neon isotopic compositions are in the MORB range with 21Ne/22Ne ratios extrapolated to the 20Ne/22Ne mantle ratio of 12.5 varying between 0.053 and 0.072. Unradiogenic plume-like compositions were not measured. The 4He-40Ar-CO2 relative abundances are highly variable along the ridge, for example 4He/40Ar ratio varies between 3 and 433, but these variations can be fully explained by a simple model of Rayleigh distillation, with a single volatile source composition for the entire GSC. Magma fractional crystallisation, which increases in the plume influenced zone, seems to be the main motor for degassing. As other geochemical and geophysical studies indicate a significant plume influence on the GSC, these results suggest the plume component feeding the ridge is either degassed or else different from the plume core.  相似文献   

9.
对华南前寒武系变质岩浆杂岩稀有气体He、Ne、Ar和Xe的系统研究表明:扬子克拉通基底为含高3He的下地壳"原始岩石层",(3He/4He)×10-6比值为2.8~4.6;而华夏板块基底变质岩浆杂岩则是在缺乏3He、低(3He/4He)×10-8比值(3.15~17.7)的构造环境下形成的大陆中-上地壳变质岩浆杂岩层,反映出两者基底性质迥然不同。华南中-新生代爆破岩筒He同位素组成相反,相对稳定的扬子克拉通(3He/4He)×10-8比值仅0.18~4.22,而郯庐-四会-吴川断裂以东,中-新生代活动地块(太平洋构造域)(3He/4He)×10-8比值高达3.7~20.5。He同位素表明郯庐-四会-吴川断裂带为切割深至地幔的边界深大断裂,是扬子克拉通与华夏板块间的边界且控制了燕山期火山-侵入岩浆向西扩展。Ar同位素组成表明华南大陆中-新生代地幔形成接近"均一"的地幔组份。136Xe/130Xe-129Xe/130Xe相关组份表明它们具有地幔柱岩石同位素组成特征。  相似文献   

10.
《Applied Geochemistry》1998,13(4):441-449
Noble gas elemental and isotopic compositions have been measured as well as the abundance of C and its isotopic ratios in 11 glasses from submarine pillow basalts collected from the Mariana Trough. The 3He/4He ratios of 8.22 and 8.51 Ratm of samples dredged from the central Mariana Trough (∼18°N) agree well with that of the Mid-Ocean Ridge Basalt (MORB) glasses (8.4±0.3 Ratm), whereas a mean ratio of 8.06±0.35 Ratm in samples from the northern Mariana Trough (∼20°N) is slightly lower than those of MORB. One sample shows apparent excess of 20Ne and 21Ne relative to atmospheric Ne, suggesting incorporation of solar-type Ne in the magma source. There is a positive correlation between 3He/4He and 40Ar/36Ar ratios, which may be explained by mixing between MORB-type and atmospheric noble gases. Excess 129Xe is observed in the sample which also shows 20Ne and 21Ne excesses. Observed δ13C values of ∼20°N samples vary from −3.76‰ to −2.80‰, and appear higher than those of MORB, and the corresponding CO2/3He ratios are higher than those of MARA samples at ∼18°N, suggesting C contribution from the subducted slab.  相似文献   

11.
Carbon and noble gas isotope analyses are reported for bubbling gas samples from the Tengchong volcanic geothermal area near the Indo-Eurasian suture zone. All samples contain a resolvable component of mantle-derived 3He. Occurrence of mantle-derived 3He coincides with surface volcanism. However, 3He occurs over a larger geographic areathan do surface volcanics. δ13C values for CO2 and CH4 vary from -33.4‰ to 1.6 ‰ and from -52.8‰ to -2.8‰, respectively. He and C isotope systematics indicate that CO2 and CH4 in the CO2-rich gases originated predominantly from magmatic component mixed with crustal CO2 produced from carbonate. However, breakdown of organic matter and near-surface processes accounts for the CH4 and CO2 in N2-rich gases. 3He/4He ratio distribution pattern suggests that mantle-derived He and heat sources of high-temperature system in central Tengchong originate from a hidden magma reservoir at subsurface. CO2-rich gases with the highest 3He/4He ratio (5.2 Ra) may be representative of the  相似文献   

12.
The Northwest Shelf of the Delaware Basin, SE New Mexico is the site of several large and productive oil and gas fields. The most productive reservoirs are located in the late Pennsylvanian Morrow and early Permian Abo formations. Production from the latter more important play is predominately from fluvial Abo red beds of the Pecos Slope Field. The oxidizing conditions implied by the reddish color of the formation require an external hydrocarbon source. To test the existing migration model for the region and constrain the location of potential hydrocarbon sources, we measured the elemental and isotopic composition of noble gases produced along with the hydrocarbons. We found the hydrocarbons to be highly enriched in radiogenic 4He, 40*Ar and nucleogenic 21*Ne [F(4He) = 44,000-250,000; 40Ar/36Ar = 400-3145; 21Ne/22Ne = 0.044-0.071]. The greatest enrichments occur in the Pecos Slope gas fields. The hydrocarbons also contain three independent nonradiogenic noble gas components each with an atmospheric isotopic composition. One component is most likely air-saturated water (ASW). The second component is enriched in the heavy noble gases [F(130Xe) > 8.5] and is derived from the hydrocarbon sources. The third component is enriched in Ne [F(20Ne) > 0.8] that we believe is degassed from sources within the reservoirs. This component is correlated with but decoupled from the dominant source of radiogenic 4He and 40*Ar. Very high concentrations of 4He (up to ∼1% by volume) in the Pecos slope reservoirs require a source external to the reservoirs, such as the underlying Precambrian basement granites and sedimentary equivalents. Structural buckles cutting through the Pecos field may act as high flux vertical pathways for the radiogenic 4He. If the hydrocarbons in the Pecos slope fields have migrated northward from the deeper Delaware Basin, as suggested by compositional trends, then perhaps the buckles also play an important role in the distribution and filling of the Pecos slope reservoirs.  相似文献   

13.
Pb, Sr and Nd isotope variations are correlated in diverse lavas erupted at small seamounts near the East Pacific Rise. Tholeiites are isotopically indistinguishable from MORB (206Pb/204Pb=18.1–18.5; 87Sr/86Sr=0.7023–0.7028; 143Nd/144Nd=0.51326-0.51308); associated alkali basalts always show more radiogenic Pb and Sr signatures (206Pb/204Pb=18.8–19.2; 87Sr/86Sr=0.7029–0.7031) and less radiogenic Nd (143Nd/144Nd=0.51289–0.51301). The isotopic variability covers 80% of the variability for Pacific MORB, due to the presence of small-scale heterogeneity in the underlying mantle. Isotope compositions also correlate with trace element ratios such as La/Sm. Tholeiites at these seamounts have 3He/4He between 7.8–8.7 R A(R A= atmospheric ratio), also indistinguishable from MORB. He trapped in vesicles of alkali basalts, released by crushing in vacuo, has low 3He/4He (1.2–2.6 R)Ain conjunction with low helium concentrations ([He]<5×10–8 ccSTP/g). In many cases post-eruptive radiogenic ingrowth has produced He isotope disequilibrium between vesicles and glass in the alkali basalts; subatmospheric 3He/4He ratios characterize the He dissolved in the glass which is released by melting the crushed powders. The narrow range of 3He/4He in the vesicles of the alkali basalts suggests that low 3He/4He is a source characteristic, but given their low [He] and high (U + Th), pre-eruptive radiogenic ingrowth cannot be excluded as a cause for low inherited 3He/4He ratios. Pb, Sr and Nd isotope compositions in lavas erupted at Shimada Seamount, an isolated volcano on 20 m.y. old seafloor at 17°N, are distinctly different from other seamounts in the East Pacific (206Pb/204Pb=18.8–19.0, 87Sr/ 86Sr0.7048 and 143Nd/144Nd0.51266). Relatively high 207Pb/204Pb (15.6–15.7) indicates ancient (>2 Ga) isolation of the source from the depleted upper mantle, similar to Dupal components which are more prevalent in the southern hemisphere mantle. 3He/4He at Shimada Seamount is between 3.9–4.8 R A. Because the helium concentrations range up to 1.5×10–6, the low 3He/4He can not be due to radiogenic accumulation of 4He in the magma for reasonable volcanic evolution times. The low 3He/4He may be due to the presence of enriched domains within the lithosphere with high (U + Th)/He ratios, possibly formed during its accretion near the ridge. Alternatively, the low 3He/4He may be an inherent characteristic of an enriched component in the mantle beneath the East Pacific. Collectively, the He-Pb-Sr-Nd isotope systematics at East Pacific seamounts suggest that the range of isotope compositions present in the mantle is more readily sampled by seamount and island volcanism than by axial volcanism. Beneath thicker lithosphere away from the ridge axis, smaller degrees of melting in the source regions are less efficient in averaging the chemical characteristics of small-scale heterogeneities.  相似文献   

14.
The noble gases (He, Ne, Ar, Kr and Xe) are powerful geochemical tracers because they have distinctive isotopic compositions in the atmosphere, crust and mantle. This study illustrates how noble gases can be used to trace fluid origins in high-temperature metamorphic and mineralising environments; and at the same time provides new information on the composition of noble gases in deeper parts of the crust than have been sampled previously.We report data for H2O and CO2 fluid inclusions trapped at greenschist to amphibolite facies metamorphic conditions associated with three different styles of mineralisation and alteration in the Proterozoic Mt Isa Inlier of Australia. Sulphide fluid inclusions are dominated by crustal 4He. However, co-variations in fluid inclusion 20Ne/22Ne, 21Ne/22Ne, 40Ar/36Ar and 136Xe/130Xe indicate noble gases were derived from three or more reservoirs. In most cases, the fluid inclusions elemental noble gas ratios (e.g. Ne/Xe) are close to the ranges expected in sedimentary and crystalline rocks. However, the elemental ratios have been modified in some of the samples providing evidence for independent pulses of CO2, and interaction of CO2 with high-salinity aqueous fluids.Compositional variation is attributed to mixing of: (i) magmatic fluids (or deeply sourced metamorphic fluids) characterised by basement-derived noble gases with 20Ne/22Ne ∼ 8.4, 21Ne/22Ne ∼ 0.4, 40Ar/36Ar ∼ 40,000 and 136Xe/130Xe ∼ 8; (ii) basinal-metamorphic fluids with a narrow range of compositions including near-atmospheric values and (iii) noble gases derived from the meta-sedimentary host-rocks with 20Ne/22Ne ∼ 8-9.8, 21Ne/22Ne < 0.1, 40Ar/36Ar < 2500 and 136Xe/130Xe ∼ 2.2.These data provide the strongest geochemical evidence available for the involvement of fluids from two distinct geochemical reservoirs in Mt Isa’s largest ore deposits. In addition the data show how noble gases in fluid inclusions can provide information on fluid origins, the composition of the crust’s major lithologies, fluid-rock interactions and fluid-fluid mixing or immiscibility processes.  相似文献   

15.
The He, Ne, and Ar isotopic composition of fluid inclusions in ore and gangue minerals were analyzed to determine the source of volatiles in the high-grade Goldfield and Tonopah epithermal Au-Ag deposits in southwestern Nevada, USA. Ar and Ne are mainly atmospheric, whereas He has only a minor atmospheric component. Corrected 3He/4He ratios (with atmospheric He removed) range widely from 0.05 to 35.8 times the air 3He/4He ratio (RA), with a median of 1.43 RA. Forty-one percent of measured 3He/4He ratios are ≥4 RA, corresponding to ≥50% mantle He assuming a mantle ratio of 8 RA. These results suggest that mafic magmas were part of the magmatic-hydrothermal system underlying Goldfield and Tonopah, and that associated mantle-sourced volatiles may have played a role in ore formation. The three highest corrected 3He/4He ratios of 17.0, 23.7, and 35.8 RA indicate a primitive mantle He source and are the highest yet reported for any epithermal-porphyry system and for the Cascades arc region. Compiled 3He/4He measurements from epithermal-porphyry systems in subduction-related magmatic arcs around the world (n = 209) display a statistically significant correlation between 3He/4He and Au-Ag grade. The correlation suggests that conditions which promote higher fluid inclusion 3He/4He ratios (abundance of mantle volatiles and focused upward volatile transport) have some relation to conditions that promote higher Au-Ag grades (focused flow of metal-bearing fluids and efficient chemical traps). Results of this and previous investigations of He isotopes in epithermal-porphyry systems are consistent with the hypothesis posed in recent studies that mafic magmas serve an important function in the formation of these deposits.  相似文献   

16.
《Geochimica et cosmochimica acta》1999,63(23-24):4139-4156
We have measured the isotopes of He, Sr, Nd and Pb in a number of lava flows from the Galapagos Archipelago; the main goal is to use magmatic helium as a tracer of plume influence in the western volcanoes. Because the Galapagos lava flows are so well preserved, it is also possible to measure surface exposure ages using in situ cosmic-ray-produced 3He. The exposure ages range from <0.1 to 580 Ka, are consistent with other chronological constraints, and provide the first direct dating of these lava flows. The new age data demonstrate the utility of the technique in this important age range and show that the western Galapagos volcanoes have been erupting distinct compositions simultaneously for the last ∼10 Ka. The magmatic 3He/4He ratios range from 6.9 to 27 times atmospheric (Ra), with the highest values found on the islands of Isabela (16.8 Ra for Vulcan Sierra Negra) and Fernandina (23 to 27 Ra). Values from Santa Cruz are close to typical mid-ocean ridge basalt values (MORB, of ∼9 Ra) and Pinta has a 3He/4He ratio lower than MORB (6.9 Ra). These data confirm that the plume is centered beneath Fernandina which is the most active volcano in the archipelago and is at the leading edge of plate motion. The data are consistent with previous isotopic studies, confirming extensive contributions from depleted asthenospheric or lithospheric mantle sources, especially to the central islands. The most striking aspect of the helium isotopic data is that the 3He/4He ratios decrease systematically in all directions from Fernandina. This spatial variability is assumed to reflect the contribution of the purest plume component to Fernandina magmatism, and shows that helium is a sensitive indicator of plume influence. The highest 3He/4He ratios are found in volcanoes with lowest Na2O(8) and FeO(8), which may relate to source composition as well as degree and depth of melting. An excellent correlation is observed between 3He/4He and Nb/La, suggesting that the Galapagos plume source is characterized by high concentrations of Nb (and Ta). The major and trace element correlations demonstrate that helium is controlled by silicate melting and source variations rather than degassing and/or metasomatic processes. Although lavas with radiogenic isotopic compositions tend to have higher 3He/4He, the island-wide isotopic variability cannot be explained by simple two components mixing alone. The preferred model to explain the isotopic data includes a heterogeneous plume, centered at Fernandina, which undergoes polybaric melting, and spatial divergence and mixing with asthenospheric material at shallower depths. The unique regional pattern of the helium isotopic data suggests that helium is extracted more efficiently than other elements during the early stages of melting in the ascending plume.  相似文献   

17.
Noble gas abundances in basaltic glasses from ocean islands (OIBs) are generally lower than those of mid-oceanic ridge basalts (MORBs), contrary to most geodynamic models which usually require that the source of OIBs is less degassed (resulting in higher primordial noble gas abundances) and more trace element enriched (resulting in higher radiogenic noble gas abundances) than the MORB source. Therefore, noble gas abundances in OIBs are often thought to have been reduced by extensive gas loss from the magma before eruption.The extent of magmatic degassing can be tested as it will cause characteristic changes in the composition of the volatiles; notably the 4He/40Ar* ratio (where 40Ar* is 40Ar corrected for atmospheric contamination) will increase in residual volatiles due to the higher solubility of He relative to Ar. The degree of He-Ar fractionation for a given fraction of gas loss depends on the ratio of the solubilities, SHe/SAr, which is sensitive to (among other things) the CO2 and H2O content of the basalt at the time of degassing.From a global database of OIB and MORB glasses, we show that 4He/40Ar* ratios of MORB glasses are broadly consistent with degassing of a magma with an initial 40Ar of ≈1.5 × 10−5 ccSTP/g, i.e., similar to that of the “popping rock.” However, OIB glasses generally have lower 40Ar* concentration for a given 4He/40Ar*. While this would appear to require lower 40Ar* abundances in the undegassed OIB magmas, the higher volatile contents of OIBs will reduce SHe/SAr (relative to MORBs) during degassing. By modeling SHe/SAr in OIBs, it is possible to show that extensive degassing of OIBs can occur without dramatically increasing the 4He/40Ar* ratio. We show that undegassed 40Ar concentrations of OIB magmas were probably similar to those of MORBs.  相似文献   

18.
Noble gas analyses of the Ni-Fe of 9 L, 5 H and 2 LL chondrites quantitatively support previous suggestions of radiogenic 4He recoil and 3He deficits. Furthermore, noble gases in the Ni-Fe show evidence for in situ produced radiogenic 4He and in some cases for recoil loss of 38Ar and gain of 21Ne.The ratio of spallogenic 21Ne and 38Ar in the metal phase is found to correlate strongly with 3He/21Ne and 22Ne/21Ne in bulk samples of these chondrites. This is proof of the dependence of these ratios on the irradiation hardness experienced by the meteoroid in space. ‘Hardness indices’ n = 1.9–2.2 are found, indicating that on the average the stone meteoroids from which the samples came were smaller in mass than iron meteoroids. The spallogenic 21Ne/38Ar ratio in metallic Ni-Fe can be used with the semi-empirical production model deduced from the Grant iron meteorite to calibrate spallogenic 3He/21Ne and 4Ne/21Ne in bulk samples of L, LL and H chondrites for meteoroid size and sample location allowing the estimation of minimal meteoroid masses. 3He and 21Ne production rates calculated from previously determined 36Ar/38Ar exposure ages for four L chondrites indicate that they are probably not single-valued functions of the 3He/21Ne ratio. The ratio of 3He in bulk samples to 38Ar in metal samples of the same meteorite is constant (= 20 ± 3) whereas the ratio of 21Ne in the bulk to 38Ar in the metal varies by as much as a factor of two in correlation with 3He/21Ne.  相似文献   

19.
Mineral-melt partition coefficients of all noble gases (min/meltDi) have been obtained for olivine (ol) and clinopyroxene (cpx) by UV laser ablation (213 nm) of individual crystals grown from melts at 0.1 GPa mixed noble gas pressure. Experimental techniques were developed to grow crystals virtually free of melt and fluid inclusions since both have been found to cause profound problems in previous work. This is a particularly important issue for the analysis of noble gases in crystals that have very low partition coefficients relative to coexisting melt and fluid phases. The preferred partitioning values obtained for the ol-melt system for He, Ne, Ar, Kr, and Xe are 0.00017(13), 0.00007(7), 0.0011(6), 0.00026(16), and , respectively. The respective cpx-melt partition coefficients are 0.0002(2), 0.00041(35), 0.0011(7), 0.0002(2), and . The data confirm the incompatible behaviour of noble gases for both olivine and clinopyroxene but unlike other trace elements these values show little variation for a wide range of atomic radius. The lack of dependence of partitioning on atomic radius is, however, consistent with the partitioning behaviour of other trace elements which have been found to exhibit progressively lower dependence of min/meltDi on radius as the charge decreases. As all noble gases appear to exhibit similar min/meltDi values we deduce that noble gases are not significantly fractionated from each other by olivine and clinopyroxene during melting and fractional crystallisation. Although incompatible, the partitioning values for noble gases also suggest that significant amounts of primordial noble gases may well have been retained in the mantle despite intensive melting processes. The implication of our data is that high primordial/radiogenic noble gas ratios (3He/4He, 22Ne/21Ne, and 36Ar/40Ar) characteristic of plume basalt sources can be achieved by recycling a previously melted (depleted) mantle source rather than reflecting an isolated, non-degassed primordial mantle region.  相似文献   

20.
This study is focused on geothermal heat flow and the origin of non-hydrocarbons in natural gases in terms of the isotope geochemical characteristics of Ar, He, CO2 and N2 in natural gases from the Sanshui Basin, Guangdong Province. China.3He/4He ratios are of (1.60-6.39) × 10-6, and40Ar/36Ar ratios of 450–841. The carbon isotopic composition (δl3C PDB) of carbon dioxide ranges from -20‰ to -2‰. δl5N(air) ratios have a wider range of-57 ‰- +95 ‰. The isotope geochemical characteristics of non-hydrocarbons indicate that He, Ar and N2 in the gas reservoirs enriched in non-hydrocarbons were derived largely from the upper mantle. Non-hydrocarbons in gaseous hydrocarbon reservoirs consist mainly of crustal radiogenic He and40Ar and some mantle-derived He and Ar, as well as of13C-depleted carbon dioxide and nitrogen generated as a result of thermal decomposition of organic matter in strata. Carbon dioxide enriched in13C was derived largely from carbonate rocks and partially from the lower crust and upper mantle. Based on the relationship between geothermal heat flow (Q) and3He/4 He ratio in natural gases, the Q values for the area studied have been calculated. Similar Q values are reported from the upper mantle uplift area (77 mWm-2) in Huabei and the Tancheng-Lujiang Rift Zone (88 mWm-2). More than 60 percent of geothermal heat flow in the Sanshui Basin may have been derived from the upper mantle. The project is financially supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号