首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many shoreline studies rely on historical change rates determined from aerial imagery decades to over 50 years apart to predict shoreline position and determine setback distances for coastal structures. These studies may not illustrate the coastal impacts of short-duration but potentially high-impact storm events. In this study, shoreline change rates (SCRs) are quantified at five different sites ranging from marsh to sediment bank shorelines around the Albemarle-Pamlico estuarine system (APES) for a series of historical (decadal to 50-year) and short-term (bimonthly) time periods as well as for individual storm events. Long-term (historical) SCRs of approximately ?0.5 ± 0.07 m year?1 are observed, consistent with previous work along estuarine shorelines in North Carolina. Short-term SCRs are highly variable, both spatially and temporally, and ranged from 15.8 ± 7.5 to ?19.3 ± 11.5 m year?1 at one of the study sites. The influence of wave climate on the spatial and temporal variability of short-term erosion rates is investigated using meteorological observations and coupled hydrodynamic (Delft3D) and wave (SWAN) models. The models are applied to simulate hourly variability in the surface waves and water levels. The results indicate that in the fetch-limited APES, wind direction strongly influences the wave climate at the study sites. The wave height also has an influence on short-term SCRs as determined from the wave simulations for individual meteorological events, but no statistical correlation is found for wave height and SCRs over the long term. Despite the significantly higher rates of shoreline erosion over short time periods and from individual events like hurricanes, the cumulative impact over long time periods is low. Therefore, while the short-term response of these shorelines to episodic forcing should be taken into account in management plans, the long-term trends commonly used in ocean shoreline management can also be used to determine erosion setbacks on estuarine shorelines.  相似文献   

2.
Living shorelines are a shoreline stabilization strategy encompassing a range of vegetative to structural materials and serve as an alternative approach to the use of structures like bulkheads, which are known to aggravate erosion. Living shorelines are often installed with little to no long-term monitoring for effectiveness; specifically, there is a lack of quantitative data regarding their performance as a shoreline stabilization strategy. This study sought to assess the performance of living shorelines with sills, with respect to shoreline protection, by determining shoreline change rates (SCR) using geospatial analysis. Shoreline surveys were conducted using a real-time kinematic (RTK)-GPS unit at a total of 17 living shoreline projects and nine control segments at 12 sites along the coast of North Carolina. Current shoreline position was compared to historic (pre-installation) shoreline positions obtained from aerial imagery, dating to 1993. The average SCR among northern sites before installation was ??0.45?±?0.49 m year?1, and in southern sites, it was ??0.21?±?0.52 m year?1. After installation, average SCR was significantly less erosive at northern and southern sites with living shorelines, 0.17?±?0.47 and ??0.01?±?0.51 m year?1, respectively. Of the 17 living shoreline project segments, 12 exhibited a reduction in the rate of erosion; of those 12, six were observed to be accreting. This study supports the convention that living shorelines can reduce the rate of erosion and potentially restore lost shore zone habitat.  相似文献   

3.
Coastal shoreline hardening is intensifying due to human population growth and sea level rise. Prior studies have emphasized shoreline-hardening effects on faunal abundance and diversity; few have examined effects on faunal biomass and size structure or described effects specific to different functional groups. We evaluated the biomass and size structure of mobile fish and crustacean assemblages within two nearshore zones (waters extending 3 and 16 m from shore) adjacent to natural (native wetland; beach) and hardened (bulkhead; riprap) shorelines. Within 3 m from shore, the total fish/crustacean biomass was greatest at hardened shorelines, driven by greater water depth that facilitated access to planktivore (e.g., bay anchovy) and benthivore-piscivore (e.g., white perch) species. Small-bodied littoral-demersal species (e.g., Fundulus spp.) had greatest biomass at wetlands. By contrast, total biomass was comparable among shoreline types within 16 m from shore, suggesting the effect of shoreline hardening on fish biomass is largely within extreme nearshore areas immediately at the land/water interface. Shoreline type utilization was mediated by body size across all functional groups: small individuals (≤60 mm) were most abundant at wetlands and beaches, while large individuals (>100 mm) were most abundant at hardened shorelines. Taxonomic diversity analysis indicated natural shoreline types had more diverse assemblages, especially within 3 m from shore, although relationships with shoreline type were weak and sensitive to the inclusion/exclusion of crustaceans. Our study illustrates how shoreline hardening effects on fish/crustacean assemblages are mediated by functional group, body size, and distance from shore, with important applications for management.  相似文献   

4.
Aerial photographs, recording 12 positions of the shoreline and vegetation line over a 50-yr period, were used to investigate long-term ecotone displacement trends and the relationship between ecotone displacement and shoreline migration on Hog Island, Virginia. A robust regression modeling technique, originally developed for shoreline trend detection analyses, enabled examination of the direction, magnitude, and timing of changes in long-term ecotone displacement. Measurements were obtained at 277 shore normal transects spaced 50 m apart. The results show that long-term trends in ecotone displacement and shoreline movement are nonlinear for over three-fourths of the Hog Island coast. On average, the shoreline and vegetation line experienced reversals in 1972 and 1974, respectively. Rarely did the ecotones and shorelines move in tandem or synchronously. Concavity tests indicate that most of the shoreline and ecotone are currently moving seaward and the distance between the shoreline and vegetation line is decreasing through time. Evidence exists for a decennial time lag between the reversal of the shoreline and the ecotone and vice versa. The ecotone and shoreline trends apparently correspond to tidal inlet dynamics, individual storm events, storm climate, inherited topography (e.g., dune), and vegetation type.  相似文献   

5.
Submerged aquatic vegetation (SAV) is an ecologically and economically valuable component of coastal estuaries that acts as an early indicator of both degrading and improving water quality. This study aimed to determine if shoreline hardening, which is associated with increased population pressure and climate change, acts to degrade SAV habitat quality at the local scale. In situ comparisons of SAV beds adjacent to both natural and hardened shorelines in 24 subestuaries throughout the Chesapeake and Mid-Atlantic Coastal Bays indicated that shoreline hardening does impact adjacent SAV beds. Species diversity, evenness, and percent cover were significantly reduced in the presence of riprap revetment. A post hoc analysis also confirmed that SAV is locally affected by watershed land use associated with increased population pressure, though to a lesser degree than impacts observed from shoreline armoring. When observed over time, SAV recovery at the local level took approximately 3 to 4 years following storm impacts, and SAV adjacent to natural shorelines showed more resilience to storms than SAV adjacent to armored shorelines. The negative impacts of shoreline hardening and watershed development on SAV shown here will inform coastal zone management decisions as increasing coastal populations and sea level rise drive these practices.  相似文献   

6.
Anthropogenic modifications of estuarine environments, including shoreline hardening and corresponding alteration of water quality, are accelerating worldwide as human population increases in coastal regions. Estuarine fish species inhabiting temperate ecosystems are adapted to extreme variations in environmental conditions including water temperature, salinity, and dissolved oxygen across seasonal, daily, and hourly time scales. The present research utilized quantitative sampling to examine the spatiotemporal distribution of shore-zone estuarine fish species in association with four unique shoreline types across a range of water temperature and dissolved oxygen conditions. Fish were collected from the intertidal and shallow subtidal region of four shoreline types, Spartina alterniflora marsh, Phragmites australis marsh, riprap, and bulkhead, in the summer and fall of 2009 and 2010. Analyses were performed to (1) compare mean fish density among shoreline types across all water conditions and (2) explore relationships of the complete fish assemblage, three functional species groupings, and two fish species (Fundulus heteroclitus and Menidia menidia) to unique shoreline/water conditions. Significantly greater mean fish densities were found along S. alterniflora shorelines than armored shorelines. Several metrics including fish density, species richness, and occurrence rates suggest S. alterniflora shorelines may serve as a form of refuge habitat during periods of low dissolved oxygen and high temperatures for various species, particularly littoral-demersal species including F. heteroclitus. Potential mechanisms that could contribute to a habitat providing refuge during adverse water quality conditions include tempering of the adverse condition (decreased temperatures, increased dissolved oxygen), predation protection, and increased foraging opportunities.  相似文献   

7.
In many coastal regions throughout the world, there is increasing pressure to harden shorelines to protect human infrastructures against sea level rise, storm surge, and erosion. This study examines waterbird community integrity in relation to shoreline hardening and land use characteristics at three geospatial scales: (1) the shoreline scale characterized by seven shoreline types: bulkhead, riprap, developed, natural marsh, Phragmites-dominated marsh, sandy beach, and forest; (2) the local subestuary landscape scale including land up to 500 m inland of the shoreline; and (3) the watershed scale >500 m from the shoreline. From 2010 to 2014, we conducted waterbird surveys along the shoreline and open water within 21 subestuaries throughout the Chesapeake Bay during two seasons to encompass post-breeding shorebirds and colonial waterbirds in late summer and migrating and wintering waterfowl in late fall. We employed an Index of Waterbird Community Integrity (IWCI) derived from mean abundance of individual waterbird species and scores of six key species attributes describing each species’ sensitivity to human disturbance, and then used this index to characterize communities in each subestuary and season. IWCI scores ranged from 14.3 to 19.7. Multivariate regression model selection showed that the local shoreline scale had the strongest influence on IWCI scores. At this scale, percent coverage of bulkhead and Phragmites along shorelines were the strongest predictors of IWCI, both with negative relationships. Recursive partitioning revealed that when subestuary shoreline coverage exceeded thresholds of approximately 5% Phragmites or 8% bulkhead, IWCI scores decreased. Our results indicate that development at the shoreline scale has an important effect on waterbird community integrity, and that shoreline hardening and invasive Phragmites each have a negative effect on waterbirds using subestuarine systems.  相似文献   

8.
Shoreline is one of the rapidly changing landform in coastal area. So, accurate detection and frequent monitoring of shorelines are very essential to understand the coastal processes and dynamics of various coastal features. The present study is to investigate the shoreline changes along the coast between Kanyakumari and Tuticorin of south India, where hydrodynamic and morphologic changes occur continuously after the December 2004 tsunami. Multi-date satellite data of Indian Remote Sensing (IRS) satellites (1999, 2000, 2003, 2005, and 2006) are used to extract the shorelines. The satellite data is processed by using the ERDAS IMAGINE 9.1 software and analyzed by ArcGIS 9.2 workstation. The different shoreline change maps are developed and the changes are analyzed with the shoreline obtained from the Survey of India Toposheets (1969). The present study indicates that accretion was predominant along the study area during the period 1969–1999. But recently (from 1999 onwards), most of the coastal areas have experienced erosion. The study also indicates the reversal of shoreline modifications in some coastal zones. The coastal areas along the headlands have experienced both erosion and accretion. Though the coastal erosion is due to both natural and anthropogenic activities, the coastal zones where sand is mined have more impacts and relatively more rate of erosion than that of other zones. Improper and in-sustainable sand mining leads to severe erosion problem along this area. So the concept of sustainable management should be interpreted in the management of the near-shore coastal sand mining industry.  相似文献   

9.
The duration of shoreline occupation at a given sea‐level, coastal response to sea‐level change and the controls on preservation of various shoreline elements can be recognized by detailed examination of submerged shorelines on the continental shelf. Using bathymetric and seismic observations, this article documents the evolution and preservation of an incised valley and lithified barrier complex between ?65 m and ?50 m mean sea‐level on a wave‐dominated continental shelf. The barrier complex is preserved as a series of aeolianite or beachrock ridges backed by laterally extensive back‐barrier sediments. The ridges include prograded cuspate lagoonal shoreline features similar to those found in contemporary lagoons. The incised valley trends shore‐parallel behind the barrier complex and records an early phase of valley filling, followed by a phase of extensive lagoonal sedimentation beyond the margins of the incised bedrock valley. Sea‐level stability at the outer barrier position (ca ?65 m) enabled accumulation of a substantial coastal barrier that remained intact during a phase of subsequent slow sea‐level rise to ?58 m when the lagoon formed. These lagoonal sediments are stripped seawards by bay ravinement processes which caused the formation of several prograded marginal cuspate features. An abrupt rise in sea‐level to ?40 m, correlated with melt‐water pulse 1B, enabled the preservation of thick lagoonal sediments at the top of the incised valley fill and preservation on the sea bed of the cemented core of the barriers. This situation is unique to subtropical coastlines where early diagenesis is possible. The overlying sandy sediment from the uncemented upper portion of the barriers is dispersed by ravinement, partly burying the ridges and protecting the underlying sediments. The high degree of barrier or shoreline preservation is attributed to rapid overstepping of the shoreline, early cementation in favourable climatic conditions and the protection of the barrier cores by sand sheet draping.  相似文献   

10.
Increased freshwater and nutrient runoff associated with coastal development is implicated in dramatically altering estuarine communities along eastern US shorelines. We examined effects of three categories of shoreline development on high-marsh environments within Murrells Inlet, South Carolina, USA by measuring sediment nutrients, porewater salinity, plant species diversity, and above- and belowground plant biomass. Effects on new plant growth also were examined in plot clearing and transplantation experiments. Greater nutrient availability in sediments along developed shorelines was reflected in greater aboveground biomass and nitrogen storage in Juncus roemerianus plant tissue. Plant species composition was not significantly different among levels of shoreline development. Zinc concentrations were greater in sediments from developed shorelines and may represent an easily measured indicator of shoreline development. Recently accelerating shoreline development in the southeastern USA may alter plant production, nitrogen storage, and sediment metal content in salt marshes.  相似文献   

11.
津冀海岸线现状、变化特征及保护建议   总被引:1,自引:0,他引:1  
根据覆盖全区的3期遥感影像和实地调查,以及对滨海新区和滦河口2个典型区更深入的案例研究(包括回溯至1870年、1950年的基准岸线及逐年遥感信息),对津冀沿海海岸线现状进行解译和分类,并分析岸线变化特征及成因。津冀沿海现状岸线总长度894km,可以划分为自然岸线、半开发岸线和人工岸线3类,长度分别为90km、329km和475km。1950年以前为自然因素主导的岸线变化,1950年以后变为人类活动主导的岸线向海推进,逐渐加强的人类活动至2010年达到顶峰。在全球海面上升和区域地面下沉的大背景下,海岸线的自然演化趋势应该是向陆蚀退,但是人类活动主导的岸线变化却表现为违反自然趋势的向海推进。今后,向海推进最前沿的围海造陆区将受到来自海洋越来越强烈的影响,亟需加强监测和防护。兼顾环境保护与开发两方面的长远需求,建议赋予海岸线新的定义与内涵,划定岸线保护红线,恢复部分岸线的自然属性。  相似文献   

12.
Seagrasses provide a number of critical ecosystem services, including habitat for numerous species, sediment stabilization, and shoreline protection. Ariel photography is a useful tool to estimate the areal extent of seagrasses, but recent innovations in radiometrically calibrated sensors and algorithm development have allowed identification of benthic types and retrieval of absolute density. This study demonstrates the quantitative ability of a high spatial resolution (1 m) airborne hyperspectral sensor (3.2 nm bandwidth) in the complex coastal waters of Saint Joseph’s Bay (SJB). Several benthic types were distinguished, including submerged and floating aquatic vegetation, benthic red algae, bare sand, and optically deep water. A total of 23.6 km2 of benthic vegetation was detected, indicating no dramatic change in vegetation area over the past 30 years. SJB supported high seagrass density at depths shallower than 2 m with an average leaf area index of 2.0?±?0.6 m2 m?2. Annual seagrass production in the bay was 13,570 t C year?1 and represented 41 % of total marine primary production. The effects of coarser spatial resolution were investigated and found to reduce biomass retrievals, underestimate productivity, and alter patch size statistics. Although data requirements for this approach are considerable, water column optical modeling may reduce the in situ requirements and facilitate the transition of this technique to routine monitoring efforts. The ability to quantify not just areal extent but also productivity of a seagrass meadow in optically complex coastal waters can provide information on the capacity of these environments to support marine food webs.  相似文献   

13.
Shorelines around many estuaries and coastal embayments are rapidly eroding (approximately several meters/year), with more rapid erosion rates expected in the future due to natural and anthropogenic stressors. In response, a variety of techniques have been used to stabilize shorelines, but there are limited quantitative, long-term data available about their effects on the sedimentary environment immediately adjacent to them (i.e., the nearshore). This study evaluated changes in sediment characteristics (mud and organic content) and accumulation rates associated with installation of breakwaters, riprap, and living shorelines with (“hybrid”) and without (“soft”) a structural component. 210Pb (half-life 22.3 years) geochronologies were used to identify horizons in core profiles that corresponded to years when structures were built. Sites with naturally eroding shorelines (i.e., no structures) were used as a control group at which any sedimentary changes represent broad environmental trends, in contrast to changes at the protected sites that also include the influence of structures. Observations were placed within the context of modeled wave climate, shoreline-erosion rates, land use, dominant sediment source, and the apparent effect on submersed aquatic vegetation (SAV) inhabiting the nearshore sedimentary environment. The main conclusion of this study is that there was no “one size fits all” answer to anticipated impacts of structures on nearshore sedimentary environments. Instead, specific changes associated with structures depended on individual site characteristics, but could be predicted with multiple linear regression models that included structure type, shoreline-erosion rate, dominant sediment source, and land use. Riprap or breakwater installation had either positive or no obvious impact on SAV at six of seven sites but negatively impacted SAV at one riprapped site. No obvious impacts on SAV were observed at living shoreline sites.  相似文献   

14.
Private docks are common in estuaries worldwide. Docks in Massachusetts (northeast USA) cumulatively overlie ~ 6 ha of salt marsh. Although regulations are designed to minimize dock impacts to salt marsh vegetation, few data exist to support the efficacy of these policies. To quantify impacts associated with different dock designs, we compared vegetation characteristics and light levels under docks with different heights, widths, orientations, decking types and spacing, pile spacing, and ages relative to adjacent control areas across the Massachusetts coastline (n = 212). We then evaluated proportional changes in stem density and biomass of the dominant vegetation (Spartina alterniflora and Spartina patens) in relation to dock and environmental (marsh zone and nitrogen loading) characteristics. Relative to adjacent, undeveloped habitat, Spartina spp. under docks had ~ 40% stem density, 60% stem biomass, greater stem height and nitrogen content, and a higher proportion of S. alterniflora. Light availability was greater under taller docks and docks set at a north-south orientation but did not differ between decking types. Dock height best predicted vegetation loss, but orientation, pile spacing, decking type, age, and marsh zone also affected marsh production. We combined our proportional biomass and stem elemental composition estimates to calculate a statewide annual loss of ~ 2200 kg dry weight of Spartina biomass (367 kg per ha of dock coverage). Managers can reduce impacts through design modifications that maximize dock height (> 150 cm) and pile spacing while maintaining a north-south orientation, but dock proliferation must also be addressed to limit cumulative impacts.  相似文献   

15.
The Pleistocene/Holocene history of Abu Quir bay and the adjacent shoreline has been studied using textural, petrological and geotechnical information obtained from 33 boreholes. The sedimentary vertical sequence is as follows reading from bottom to top: Late Pleistocene shelf sand and stiff mud, Late Pleistocene/Holocene transgressive sand, Holocene calcareous shelf mud, Holocene nearshore sand, prodelta mud, delta plain lagoonal and marsh mud, delta front mud and sand and coastal sand of beach and dunes. These units are produced as a response to shoreline fluctuation, resulting from a wide variety of deltaic and shelf environments. The study identifies delta lobes of the former Canopic branch which was located in the western part of the bay.  相似文献   

16.
The present study investigates the impact of wave energy and littoral current on shorelines along the south-west coast of Kanyakumari, Tamil Nadu, India. The multi-temporal Landsat TM, ETM+ images acquired from 1999 to 2011 were used to demarcate the rate of shoreline shift using GIS-based Digital Shoreline Analysis System. The statistical analysis such as net shoreline movement and end point rate were determined from the multi-temporal shoreline layers. Moreover, the wave energy and seasonal littoral current velocity were calculated for each coastal zone using mathematical equations. The results reveal that the coastal zones, which include Kanyakumari, Kovalam, Manavalakurichi and Thengapattinam coasts, consisting of maximum wave energy along with high velocity of littoral current, have faced continuous erosion processes. The estimated wave energy along these zones ranges from 6.5 to 8.5 kJ/km2 and the observed current velocity varies from 0.22 to 0.32 m/s during south-west and north-east monsoons. The cumulative effect of these coastal processes in the study area leads to severe erosion that is estimated as 300.63, 69.92, 54.12 and 66.11 m, respectively. However, the coastal zones, namely Rajakkamangalam, Ganapathipuram, Muttam and Colachel, have experienced sediment deposits due to current movement during the north-east monsoon. However, the trend changes during the south-west monsoon as a result of sediment drift through backwash. The spatial variation of shoreline and its impact on wave energy and the littoral current have been mapped using the geo-spatial technology. This study envisages the impact of coastal processes on site-specific shorelines. Hence, the study will be effective for sustainable coastal zone management.  相似文献   

17.
Distributions of mangroves in coastal wetlands are influenced by abiotic conditions and the net effect of biotic interactions, including competition, facilitation, and consumer pressure. In coastal wetlands, early successional shrubs, herbs, and grasses may facilitate recruitment of mangroves through multiple mechanisms, including amelioration of environmental conditions, propagule trapping, and structural support. In Mosquito Lagoon, FL, we observed an aggregated distribution of Rhizophora mangle propagules along vegetated shorelines with Batis maritima and Sarcocornia perennis and hypothesized that this distribution was a result of propagule trapping by the vegetation. We designed a field experiment to evaluate retention of R. mangle propagules on vegetated and unvegetated shorelines in Mosquito Lagoon. Significant differences were found in the retention time of mangrove propagules at each shoreline type, with vegetated shorelines retaining propagules significantly longer than unvegetated shorelines. Results from this study help to define facilitative mechanisms which may be important in successional processes of coastal wetlands and have direct restoration applications. Successful recovery of mangroves at restoration sites may be facilitated by establishment of B. maritima and S. perennis, when natural propagule sources are available, or through planting mangrove seedlings into existing stands of these halophytes when restoration areas are propagule-limited.  相似文献   

18.
Fringing marshes are important but often overlooked components of estuarine systems. Due to their relatively small size and large edge to area ratio, they are particularly vulnerable to impacts from adjacent upland development. Because current shoreland zoning policies aim to limit activities in upland buffer zones directly next to coastal habitats, we tested for relationships between the extent of development in a 100-m buffer adjacent to fringing salt marshes and the structure of marsh plants, benthic invertebrates, and nekton communities. We also wanted to determine useful metrics for monitoring fringing marshes that are exposed to shoreline development. We sampled 18 fringing salt marshes in two estuaries along the coast of southern Maine. The percent of shoreline developed in 100-m buffers around each site ranged from 0 to 91 %. Several variables correlated with the percent of shoreline developed, including one plant diversity metric (Evenness), two nekton metrics (Fundulus heteroclitus %biomass and Carcinus maenas %biomass), and several benthic invertebrate metrics (nematode and insect/dipteran larvae densities in the high marsh zone) (p?<?0.05). Carcinus maenas, a recent invader to the area, comprised 30–97 % of the nekton biomass collected at the 18 sites and was inversely correlated with Fundulus %biomass. None of these biotic metrics correlated with the other abiotic marsh attributes we measured, including porewater salinity, marsh site width, and distance of the site to the mouth of the river. In all, between 25 and 48 % of the variance in the individual metrics we identified was accounted for by the extent of development in the 100-m buffer zone. Results from this study add to our understanding of fringing salt marshes and the impacts of shoreline development to these habitats and point to metrics that may be useful in monitoring these impacts.  相似文献   

19.
20.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号