首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
本文报道了天然Ⅱ型CaCO3 矿物。该矿物发现于海洋表层沉积物,成分与方解石、文石及六方球方解石相同,但结构完全不同,它们共同组成了天然CaCO3 的同质多象变体。天然Ⅱ型CaCO3 矿物的空间群为P21/c,单位轴长为a0= 0.6290±0.0002 nm,b0= 0.4934±0.0002 nm,c0= 0.7979±0.0003nm,β= 107.571°±0.002°,Z= 4,单胞体积为0.23605±0.1749nm3;理论密度为2.82 g/cm3,实测值为2.76 g/cm3;实测硬度H= 4.天然Ⅱ型CaCO3 矿物是在深水环境中较高静水压力下形成的珊瑚体生物矿物。  相似文献   

2.
隧道TBM开挖过程中经常会遇到复合岩层,在这种地质环境下,隧道掘进机(tunnel boring machine,简称TBM)开挖过程中的隧道围岩强度很难估计,隧道开挖掌子面和围岩容易发生坍塌。为了提高隧道掘进效率、预防事故发生,对开挖隧道围岩强度进行实时估算方面的研究很有必要。在重庆轨道九号线隧道TBM施工中,通过室内试验和现场实测数据发现,TBM推力FN与岩石强度成正比、TBM扭矩推力比T/FNT为扭矩)与贯入度p0.5成正比例关系。针对砂质泥岩、砂岩和灰岩组成的复合岩层,提出了一种利用现场实测推力FN和扭矩T的值来快速估算开挖隧道围岩强度的方法,进一步对TBM实测数据进行线性拟合,从而得到估算公式中两个常数α1α2的取值方法,并在10多个隧道实际工程中得到验证。结果表明,对于这种复合岩层地质环境,两个常数α1α2的值与滚刀数量n和滚刀直径d相关。该研究成果为实时快速估算开挖隧道围岩强度提供了一种新的切实可行的思路,能提高隧道TBM施工的可靠性和安全性,具有重要的应用价值。  相似文献   

3.
海南岛白垩纪古地磁结果及其构造地质意义   总被引:5,自引:0,他引:5  
对海南岛地区白垩系鹿母湾组和报万组碎屑岩219个独立定向岩芯样品(29个采点)的岩石磁学和古地磁学研究表明,白垩纪的碎屑岩以赤铁矿为主要载磁矿物。逐步热退磁分析表明,绝大多数样品可分离出特征剩磁分量。综合前人的结果,获早白垩世特征剩磁方向D=6.5°,I=42.7°,κ=73.4,α95=8.2°;晚白垩世特征剩磁方向D=6.7°,I=44.7°,κ=125.5,α95=5.4°。其早白垩世古纬度24.8°(+6.2°/-5.8°),晚白垩世古纬度26.3°(+4.6°/-4.0°);均位于现在地理位置以北约5°~6°。与华南板块东南缘白垩纪的古地磁数据对比表明,晚白垩世海南地块仍是华南板块的一部分。海南岛白沙断裂东西两侧早白垩世古地磁数据的差异,表明存在一个北东向的构造走滑带,白沙断裂可能是华南沿海北东向构造带的南延部分。海南岛白垩纪古地磁结果也表明,相对印支地块,海南岛在早白垩世时发生了25°左右局部顺时针旋转。推测此局部旋转很可能与晚侏罗世—晚白垩世早期,印度洋开始第一次海底扩张,印度板块向北运动有关。  相似文献   

4.
对印支地块思茅地区始新世陆相红层进行古地磁研究,获得勐伴剖面特征剩磁方向为Ds=118.2°,Is=22.1°,k=31.6,α95=10.9°;勐腊剖面特征剩磁方向为Ds=47.6°,Is=22.8°,k=20.2,α95=5.9°。其特征剩磁方向与前人研究结果基本一致。利用Hodych等的磁倾角校正方法得到校正磁倾角为28.4°±4.3°,对前人的数据重新进行E/I统计得到的校正磁倾角值为30.7°,置信区间为[25.4°,35.9°],两种不同方法得到了较一致的结果,思茅地区的古近纪磁倾角显示了一定程度的偏低。E/I磁倾角偏低检验方法在应用时存在一定的局限性,变形微弱地层的古地磁学数据适合进行E/I磁倾角偏低校正,以避免倾伏褶皱或差异性旋转变形作用对E/I磁倾角偏低校正的影响。Hodych等提出的磁倾角校正方法是现今比较可靠的磁倾角校正方法。结合前人印支地块的古地磁研究成果,本次研究结果表明印支地块思茅地区自始新世以来相对于华南板块向南滑移量约500km。  相似文献   

5.
通过对柴达木地块天峻县组合玛地区晚二叠世13个采点的系统古地磁测定,揭示了一组高温特征剩磁分量.实验结果表明,采样剖面获得的晚二叠世古地磁结果具有正、反极性,其特征剩磁方向为:Dg=333.7°,Ig=37.3°,Kg=35.4,N=9,α95 =8.8;Ds=333.9°,Is=41.7°,Ks=69.9,α95 =6.2°,相对应的古地磁极位置为:64.0°N,342.4°E,A95=5.9°,古纬度为24.0°N.这一高温分量通过了倒转检验,我们认为这一高温特征剩磁分量很可能代表了研究区晚二叠世时期的原生特征剩磁.通过对比塔里木地块晚石炭-晚二叠世古地磁结果,发现两块体在晚石炭世存在明显的古纬度差(16.6±9.3°),而在晚二叠世其古纬度差(3.5±5.4°)在古地磁误差范围内并没有明显差别,从构造意义上说,说明柴达木地块在晚二叠世已是塔里木地块的一部分,结合地质资料,认为柴达木地块在晚二叠世时古地理位置处于塔里木地块的南缘或西南缘,这表明柴达木/塔里木地块间的古阿尔金断裂的形成时代不可能早于晚石炭世时,很可能形成于晚二叠世以后.  相似文献   

6.
通过对青藏高原北部阿尔金断裂东缘早白垩世-第三纪红层与玄武岩38个采点的系统古地磁测定,获得了研究区早白垩世-第三纪高温特征剩磁分量。结果表明,昌马乡早白垩世红层与玄武岩剖面层面坐标下高温特征剩磁平均方向(Ds=32.8°,Is=59.4°,κs=36.2,α95=8.1°)和北大窖早白垩世玄武岩剖面层面坐标下高温特征剩磁平均方向(Ds=335.4°,Is=55.1°,κs=34,α95=9.6°)均通过了褶皱检验,可能代表岩石形成时的原生剩磁。旱峡地区早白垩世地层层面坐标下高温特征剩磁平均方向(Ds=26.1°,Is=49.5°,κs=28.6,α95=7.3°)和红柳峡早第三纪地层层面坐标下高温特征剩磁平均方向(Ds=355.4°,Is=48.3°,κs=135.8,α95=7.9°),这两组高温特征剩磁方向在地理坐标下均远离现代地磁场方向,且具有正、反双极性特征,说明其也可能代表了岩石形成时的原生剩磁方向。结合已有阿尔金断裂及周边早白垩世-第三纪古地磁结果,提出柴达木块体在新生代印度/欧亚大陆碰撞挤压下并没有发生明显的整体顺时针旋转作用,青藏高原东北地区的块体旋转作用是阿尔金断裂左旋走滑作用在青藏高原东北缘转换的重要表现形式。  相似文献   

7.
朱学亮  邵生俊  沈晓钧  邵帅  刘小康 《岩土力学》2022,43(10):2735-2743
黄土边坡中竖直裂隙的发育往往会对边坡稳定产生影响。相对于平面应变机制,建立三维破坏机制下边坡稳定性分析方法更能接近实际边坡失稳情况。基于塑性极限分析上限法,考虑预先存在竖直裂隙的三维黄土边坡不同破坏机制(坡面破坏、坡脚破坏和坡底破坏),建立能量平衡方程及其无量纲临界高度值γH/c表达式,采用随机搜索法得到了临界高度的上限解。分析了约束宽度、边坡坡度、内摩擦角以及裂隙深度对三维竖直裂隙黄土边坡临界高度值的影响。结果表明:对于坡脚破坏机制,临界高度值随着裂隙深度的增加而减小,减小至临界裂隙深度 (δ /H)min后,裂隙深度的增加不再影响临界高度值;临界裂隙深度随着坡度β 的增大而增大,随着内摩擦角φ 的增大而减小。当约束宽度B/H<0.8时,大多数破坏机制为坡面破坏。当约束宽度B/H=0.8、内摩擦角φ =10° 及约束宽度B/H=0.6、内摩擦角φ =15° 时,边坡的破坏从坡面破坏机制逐渐过渡到坡脚破坏机制。存在竖直裂隙的黄土边坡比完整边坡具有更小的临界高度,约束宽度及内摩擦角会对三维黄土边坡破坏机制产生影响。  相似文献   

8.
张箭  戚瑞宇  宗晶瑶  丰土根 《岩土力学》2022,43(7):1833-1844
采用刚性滑块构建两种圆形隧道失稳环向开挖面破坏模式,利用编制的非线性规划程序求解隧道失稳环向开挖面支护力系数σT /cσT为均布支护荷载,c为有效黏聚力)最优上限解及地层破坏模式,揭示地层参数对隧道稳定性的影响,提出简单实用的极限支护力简化公式。研究结果表明:不排水条件下,当隧道埋深比H/DH为埋深,D为隧道直径)和重度系数γD/cγ 为重度)较小时,破坏区域主要集中在隧道中上部,随着H/DγD/c增大,滑移线起始位置沿着隧道轮廓逐渐向隧道底部扩展,破坏区域向水平方向扩展。排水条件下,地层破坏模式主要有3种。当内摩擦角ϕ γD/c较大时,随着剪胀系数的减小,极限支护力和地层破坏范围变化较大,甚至可能引起破坏模式的改变。针对不同深度提出的极限支护力简化公式可快速获得隧道环向开挖面极限支护力。  相似文献   

9.
华北克拉通东北缘处于构造运动活跃地区,古地磁研究可为构造演化和岩浆热事件提供依据。笔者在吉林辉南地区中寒武统32个采点共采集246块样品进行了岩石学、岩石磁学及系统热退磁实验。古地磁实验表明,徐庄组砂质泥岩主要磁性矿物是赤铁矿和磁铁矿,张夏组灰岩主要磁性矿物是颗粒较小的磁铁矿和黄铁矿,且均发生了重磁化,并记录了稳定的中温分量,前者中温分量地理坐标平均方向为D/I=10.9°/50.8°,α95=11.7°,对应的极位置为76°N,264.6°E,A95=13°,与早白垩世岩浆活动记录的古地磁极位置一致;后者中温分量地理坐标平均方向为D/I=29.1°/59.0°,α95=6.5°,对应的极位置为68°N,213.7°E,A95=8.4°,与第四纪火山岩记录的古地磁极位置一致。综合区域地质背景分析,早白垩世一第四纪,吉林辉南及邻区古地磁记录的2次较为强烈的构造热事件,以及因敦化-密山断裂带左旋走滑运动造成的北向运移形成的古纬度差,一定程度上对华北克拉通东北缘起到双重改造作用。  相似文献   

10.
氟碳钙铈矿的电子衍射研究   总被引:1,自引:0,他引:1       下载免费PDF全文
内蒙古白云鄂博的氟碳钙铈矿,经电子衍射研究,观察到三种多型:4H,P6α=7.12Å c''=56.4Å;6R,R3 α=7.12Å c''=84.6Å; 3R,R3 α=7.12Å c'=42.3Å。其中4H 为新多型。湖北竹山氟碳钙铈矿仅观察到一种多型6R。白云鄂博样品中发现3R 与6R 共晶格取向连生,以及3R 型共格双晶。  相似文献   

11.
Four distinct components of natural remanent magnetization were isolated from a single site in welded tuffs in the Upper Cretaceous Kisin Group of the Sikhote Alin mountain range, Russia. In order to contribute toward a basis for an interpretation of multicomponent magnetization, rock magnetic experiments were performed on the welded tuffs. All four magnetization components essentially reside in magnetite. The lowest-temperature component up to 300 °C (component A: D=349.3°, I=60.9°, α95=7.3°, N=7) is a present day viscous magnetization. The third-removed component (component C: D=41.4°, I=51.8°, α95=3.5°, N=8), isolated over the temperature range of 450–560 °C, is a primary remanence. The second- and fourth-demagnetized components (component B: D=174.7°, I=−53.1°, α95=21.2°, N=3 and component D: D=188.1°, I=−64.5°, α95=4.0°, N=8, respectively) are secondary magnetizations related to a thermal event in Sikhote Alin between 66 and 51 Ma. Components B and D were acquired through different remagnetization processes. Component B is ascribed to a thermoviscous remanent magnetization carried by single-domain magnetite, and component D is a chemical remanent magnetization.  相似文献   

12.
《Precambrian Research》1999,93(2-3):201-213
New palaeomagnetic results are presented from the recently dated Palaeoproterozoic ultramafic Konchozero sill, and associated basalts (three sites, 38 oriented samples). Three stable components of remanence have been isolated during thermal and alternating field demagnetisation. The component I, with a mean direction of D=103°, I=40°, k=18, α95=11° (N=11 samples), pole position of 14°S, 282°E, has been obtained from the unaltered deeper part of the sill and from baked schists. The study of the baked contact confirms the conclusion that component I is supposed to be primary and corresponds to the Sm–Nd age of the sill of 1974±27 Ma. The palaeopole of component I is not consistent with the accepted Fennoscandian apparent polar wander path (APWP) for the period 2120–1880 Ma, and for that part the Fennoscandian APWP should be revised. Two other components (component II: D=349°, I=39°, k=35, α95=6°, N=19 samples, pole position 49°N, 231°E; and component III: D=17°, I=41°, k=44, α95=5°, N=19 samples, pole position 50°N, 190°E) fit the APWP well, with palaeomagnetically estimated ages of ca. 1860 and 1760 Ma respectively.  相似文献   

13.
Jurassic to Cretaceous red sandstones were sampled at 33 sites from the Khlong Min and Lam Thap formations of the Trang Syncline (7.6°N, 99.6°E), the Peninsular Thailand. Rock magnetic experiments generally revealed hematite as a carrier of natural remanent magnetization. Stepwise thermal demagnetization isolates remanent components with unblocking temperatures of 620–690 °C. An easterly deflected declination (D = 31.1°, I = 12.2°, α95 = 13.9°, N = 9, in stratigraphic coordinates) is observed as pre-folding remanent magnetization from North Trang Syncline, whereas westerly deflected declination (D = 342.8°, I = 22.3°, α95 = 12.7°, N = 13 in geographic coordinates) appears in the post-folding remanent magnetization from West Trang Syncline. These observations suggest an occurrence of two opposite tectonic rotations in the Trang area, which as a part of Thai–Malay Peninsula received clockwise rotation after Jurassic together with Shan-Thai and Indochina blocks. Between the Late Cretaceous and Middle Miocene, this area as a part of southern Sundaland Block experienced up to 24.5° ± 11.5° counter-clockwise rotation with respect to South China Block. This post-Cretaceous tectonic rotation in Trang area is considered as a part of large scale counter-clockwise rotation experienced by the southern Sundaland Block (including the Peninsular Malaysia, Borneo and south Sulawesi areas) as a result of Australian Plate collision with southeast Asia. Within the framework of Sundaland Block, the northern boundary of counter-clockwise rotated zone lies between the Trang area and the Khorat Basin.  相似文献   

14.
The Jurassic paleogeographic position of the Pontides is not well studied because of insufficient paleomagnetic data. For this reason, a paleomagnetic study was carried out in order to constrain the paleolatitudinal drift of the Turkish blocks during the Jurassic period. A total of 32 sites were sampled from volcanic and volcanoclastic rocks of the Lower/Middle Jurassic Kelkit formation (Eastern Pontides), Mudurnu formation (Sakarya continent) and Upper Jurassic–Lower Cretaceous Ferhatkaya formation exposed around Amasya region (Eastern Pontides). Rock magnetic experiments demonstrate that the main ferromagnetic mineral is pseudo-single-domain titanomagnetite in these rocks. Paleomagnetic analysis revealed two main components of the natural remanent magnetization during stepwise thermal and alternating field demagnetization. The first component is a low-coercivity (unblocking temperature) component with a direction sometimes similar to that of the earth’s present field or a viscous component. The second component, which is interpreted as the characteristic remanent magnetization (ChRM) direction, has low to high coercivity properties between 20 and 100 mT or unblocking temperatures between 300 and 580°C. A positive fold test at the 95% level of confidence proved that the ChRM of the sites is primary. Paleomagnetic directions calculated for the Kelkit formation in the Eastern Pontides have a mean direction of D = 334.8°, I = 49.7°, α 95 = 7.1° after tilt-correction. A mean direction of D = 332.2°, I = 48.5°, α 95 = 14.6° was obtained from the volcanoclastic rocks of the Mudurnu formation, and D = 324.3°, I = 43.3°, α 95 = 9.5° was calculated for the Upper Jurassic–Lower Cretaceous limestones/Ferhatkaya formation of the Amasya region. The Jurassic rocks in the Eastern Pontides and Mudurnu region are considered to represent products of the rifted Neo-Tethys ocean, while the Upper Jurassic–Lower Cretaceous sediments in Amasya are related to basin-filling materials. The data suggest that the Kelkit formation was formed at 30.5°N paleolatitude and the equivalent Mudurnu formation at 29.5°N paleolatitude. The paleolatitude of the Eastern Pontides indicates that this rifting block was separated from Eurasia by a marginal basin instead of being a part of Eurasia. The lower paleolatitude of the Amasya region at 24.8°N in the Upper Jurassic to Lower Cretaceous clearly indicates southward drift of the Turkish blocks during the Jurassic to Lower Cretaceous period together with the motion of Eurasia.  相似文献   

15.
To constrain the age of Australian opal formation, we have undertaken a paleomagnetic study of oxidised ironstone ‘nuts’ from Yowah, Queensland. Following standard methods, we have calculated a mean direction of declination D = 191.4°, inclination I = 61.7° (α95 = 4.0°), indicating a paleomagnetic pole position at latitude λp = 71.3°S, longitude ?p = 119.4°E (A95 = 5.3°). The direction comprises both normal and reverse polarities that fail a reversal test most probably owing to contamination by small recent/present-day components. The mean direction should not be significantly affected. A chi-square comparison with paleomagnetic poles for dated Cenozoic rocks in eastern Australia, poles derived from the Global Moving Hotspot Reference Frame and the Cenozoic pole path for North America, appropriately transferred to Australian coordinates, yields a mean age estimate of 35 ± 7 Ma, i.e. late Eocene to early Oligocene. This is interpreted as the age of the ironstone formation, which places a maximum age for the formation of precious Yowah opal. This result confirms and tightens the age for the nearby Canaway weathered profile.  相似文献   

16.
《Precambrian Research》2004,128(1-2):167-188
Thirty-nine oriented block samples of iron-formation were collected at 13 sites, including opposite limbs of major folds, from the 1.88-Ga Sokoman Formation (Knob Lake Group) in the Schefferville–Knob Lake area of the central New Québec Orogen, northern Québec. The samples assayed up to 80.24% Fe2O3T (54.08% Fe), implying Fe-enrichment of the iron-formation up to ore grade. Anisotropy of magnetic susceptibility measurements on 245 standard specimens indicate a well preserved bedding-parallel fabric in the iron-formation, suggesting minimal alteration of the magnetic mineralogy since deposition and/or a mimetic secondary magnetic mineralogy. The iron-formation has not been internally deformed since the magnetic mineralogy was established. Analyses by variable-field translation balance and X-ray diffraction showed that the predominant magnetic mineral is hematite but a small amount of magnetite also is present in most samples. Following low-temperature pre-treatment as appropriate, stepwise thermal and alternating-field demagnetization of 218 specimens revealed a low-temperature, post-folding component (maximum Tub≈400 °C, D=27.1°, I=20.1°, α95=10.9°, from seven sites; pole position of 40.6°S, 257.0°E), and components carried by magnetite (maximum Tub≈580 °C, D=35.8°, I=3.9°, α95=9.1°, from 10 sites; pole position of 29.6°S, 250.9°E) and hematite (maximum Tub≈680 °C, D=40.0°, I=1.6°, α95=18.6°, from seven sites; pole position of 26.8°S, 247.0°E). The components carried by magnetite and hematite are pre-, syn- and post-folding depending on the sampling site, indicating that the magnetization was acquired continuously with deformation in the New Québec Orogen at 1.84–1.83 Ga. No evidence was found for acquisition of magnetization during the Mesozoic, when many of the iron oxide orebodies in the Schefferville–Knob Lake area are thought to have formed. Our findings imply that an episode of Fe-enrichment of iron-formation in the Sokoman Formation involved the circulation of hydrothermal fluids related to late Paleoproterozoic orogenesis. Such orogenic circulation of fluids may have contributed to the development of hematitic orebodies in the central New Québec Orogen.  相似文献   

17.
The Lake District terrane of northern England comprises Upper Cambrian–Silurian sediments and volcanics accumulated at the northern margin of the Avalonian Plate during growth and demise of the Iapetus Ocean. Ocean closure and suturing resulted in Late Ordovician and Acadian tectonism and were accompanied by emplacement of a large regional batholith. Palaeomagnetic study of intrusive igneous rocks, including application of thermal demagnetization, field tests and principal component analysis, identifies a history of Ordovician to Devonian magnetization. Late plutons (Shap and Skiddaw granites and/or aureoles) record a shallow dipolar (A3) axis (mean declination/inclination (D/I=278/+17°) dating from emplacement in late Early Devonian times (c. 395 Ma). Although this axis is recorded as a sporadic overprint in older rocks, no pervasive remagnetization is attributable to batholith emplacement. Instead, the Carrock Fell Complex Layered Gabbros have a mid- to late Ordovician (A1) remanence (D/I)=17·4/−58·1°, 36 samples, α95=4·8°) predating regional F2 folding. Later events in this igneous complex comprise the Carrock Fell Granophyre with a post-folding Ordovician remanence, and Round Knott Dolerite with a remanence linked to hydrothermal alteration late in the Ordovician magmatic episode. A Late Ordovician (Ashgill) palaeofield is also defined by remanence (A2) in the Threlkeld–St John's Microgranite and aureole (438 Ma, D/I=236·5/63·3°, 41 samples, α95=4·7°). Other intrusions carrying a remanence predating the Acadian deformation include the Great Cockup Picrite (458 Ma, D/I=43·2/−31·8°, 31 samples, α95=7·7°) and basic intrusives in the aureole of the Eskdale Granite (429 Ma, D/I=174·5/25·8°, 32 samples, α95=8·8°). Collectively the palaeomagnetic data from this terrane identify a hairpin in the apparent polar wander path during Late Ordovician (Caradoc–Ashgill) times corresponding to ‘soft’ closure of the Iapetus suture and accompanying deformation. The same motion is recognized in contemporaneous data from the Welsh Caledonides where declinations are rotated by c. 55° relative to contemporaneous results from the Lake District. Adjustment for this (probable late Acadian) rotation beings fold trends of the Paratectonic Caledonides into alignment and identifies a parallel mid- to late Ordovician destructive plate margin comprising forearc (Lake District) and backarc (North Wales). This arc was oriented latitudinally in mid-southerly latitudes during formation and the bulk of the magmatism occurred during a single normal-polarity chron. The relationships between magnetization and folding in both the Lake District and Welsh Borderlands identify the importance of Late Ordovician deformation along this arc during collision of Avalonia and Laurentia. Arc-related volcanism was succeeded in Silurian times by parallel foreland basins embracing the Welsh Basin and southern Lake District as the Laurentian Plate overrode the Avalonian Plate. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding the Cenozoic vertical-axis rotation in the Tibetan Plateau is crucial for continental dynamic evolution. Paleomagnetic and rock magnetic investigations were carried out for the Oligocene and Miocene continental rocks of the Hoh Xil basin in order to better understand the tectonic rotations of central Tibet. The study area was located in the Tongtianhe area located in the southern part of the Hoh Xil basin and northern margin of the Tanggula thrust system in central-northern Tibet. A total of 160 independently oriented paleomagnetic samples were drilled from the Tongtianhe section for this study. The magnetic properties of magnetite and hematite have been recognized by measurements of magnetic susceptibility vs. temperature curves and unblocking temperatures. The mean directions of the Oligocene Yaxicuo Group in stratigraphic coordinates(Declination/Inclination = 354.9°/29.3°, k = 33.0, α_(95) = 13.5°, N =5 Sites) and of the Miocene Wudaoliang Group in stratigraphic coordinates(Declination/Inclination = 3.6°/36.4°, k = 161.0, α_(95) = 9.7°, N =3 Sites) pass reversal tests, indicating the primary nature of the characteristic magnetizations. Our results suggested that the sampled areas in the Tuotuohe depression of the Hoh Xil basin have undergone no paleomagnetically detectable rotations under single thrusting from the Tanggula thrust system. Our findings, together with constraints from other tectonic characteristics reported by previous paleomagnetic studies, suggest tectonic rotations in the Cuoredejia and Wudaoliang depressions of the Hoh Xil basin were affected by strike-slip faulting of the Fenghuo Shan-Nangqian thrust systems. A closer examination of geological data and different vertical-axis rotation magnitudes suggest the tectonic history of the Hoh Xil basin may be controlled by thrust and strike-slip faulting since the Eocene.  相似文献   

19.
The apparent polar wander (APW) path from the Tarim block consists of palaeo-magnetic poles ofDevonian (λ=16°N, ψ= 165° E. A_(95)=4°). Late Carboniferous (λ=41° N, ψ=160° E, A_(95)=4°).Permian (λ=61°N, ψ=177° E. A_(95)=9°). Early Triassic (λ=69° N. ψ=183° E. A_(95)=11°) andJurassic/Cretaceous (λ=65° N, ψ=214° E. A_(95)=6°) times. On the basis of this APW path, it is con-cluded that the Tarim block was subducted beneath the Kazakstan plate between Devonian and Permiantimes. The Tarim, North China and South China blocks were sutured between the Early Triassic and EarlyCretaceous. Tarim had moved eastward some 2000 km relative to Siberia since the Cretaceous.  相似文献   

20.
A palaeomagnetic study is reported from the lavas of Eocene, Miocene and Pliocene age cropping out immediately to the north of the North Anatolian Fault Zone (NAFZ) in the Re?adiye–Mesudiye region of central-eastern Anatolia. Rock magnetic investigations identify a high percentage of multi-domained magnetite as the dominant ferromagnet in these rocks and this probably accounts for a relatively poor response to alternating field and thermal demagnetisation. Thirty of 37 units yielded acceptable groupings of characteristic magnetisation directions. An earlier study indicated small anticlockwise crustal block rotation in this region since Upper Cretaceous times (D/I?=?347/50°), and our study indicates that this was overtaken by clockwise rotation in Eocene times (D/I?=?40/47°), although sample size control from the Palaeogene is poor. Results from later Miocene (D/I?=?2/62°) and Pliocene (D/I?=?0/53°) volcanic rocks indicate that no significant tectonic rotation has occurred in the north of the NAFZ in Neogene times. This contrasts with rotations in the weaker crust comprising the Anatolian collage south of the NAFZ, where differential and sometimes large anticlockwise rotations occurred during the latter part of the Neogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号