首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
利用京津冀地区80个环境监测站PM_(2.5)浓度的逐时监测资料和常规气象站的观测资料,分析了2013年1月京津冀地区3次典型重污染天气过程PM_(2.5)浓度的分布和演变特征,选取PM_(2.5)浓度快速增长时段的风场特征分析外来源对北京地区污染输送的影响。结果表明:2013年1月京津冀地区存在3个PM_(2.5)浓度高值中心,分别位于石家庄—保定、廊坊和唐山地区。北京地区外来源主要来自河北省中南部的石家庄—保定及廊坊一带,主要通过边界层偏南风远距离输送影响北京地区,边界层辐合线和逆温结构加剧了污染物在北京地区的累积。随着静稳时间的增长,PM_(2.5)污染物向燕山和太行山前输送堆积,造成北京地区PM_(2.5)浓度高于河北省中南部地区,北京市郊区PM_(2.5)浓度高于城区。  相似文献   

2.
研究使用全球大气化学传输模式GEOS-Chem高分辨率(1/4°×5/16°)区域嵌套版本评估2014年亚洲-太平洋经济合作峰会(APEC)期间不同地区不同污染物减排对北京地区PM_(2.5)(粒径小于2.5μm的气溶胶颗粒,本文中定义为硫酸盐、硝酸银、铵盐、一次有机碳和黑碳气溶胶浓度之和)浓度降低的不同影响。在2014年10月15日至11月29日期间,模拟结果表明:模式可以重现观测结果中PM_(2.5)及主要气态污染物(一氧化碳、二氧化氮和二氧化硫)浓度的日变化趋势。在APEC期间,模拟PM_(2.5)浓度相比会议前期和会议后期下降55.9%–58.5%,与观测结果具有较好的一致性。敏感性实验结果表明:APEC期间华北地区氮氧化物和一次有机碳的减排对于北京地区PM_(2.5)浓度的降低影响最为显著,相应减排措施致使北京地区PM_(2.5)浓度分别下降5.7%和4.6%。同时,对氨气排放的控制可以有效地降低整个华北地区在APEC期间的PM_(2.5)浓度。  相似文献   

3.
本文利用2014年全年北京市12个空气质量监测站的逐小时PM_(2.5)地面观测资料,以及Terra卫星和Aqua卫星的MODIS 3 km气溶胶光学厚度(AOD)产品,分析了地面PM_(2.5)和两颗卫星AOD的时空分布特征,并在时空匹配的基础上,建立了AOD与PM_(2.5)浓度之间的回归模型。结果表明:PM_(2.5)浓度在城区高、郊区低,最低值位于定陵站,城区站和郊区站的逐时PM_(2.5)浓度的日变化分别呈"双峰型"和"单峰型";两颗卫星AOD数值也均是城区高、郊区低,沿山区的边界有明显的AOD梯度,且城区上午Terra卫星的AOD高于下午Aqua卫星的AOD,而郊区上、下午的AOD基本相同;Aqua卫星AOD与PM_(2.5)的确定系数(R2)较Terra卫星AOD与PM_(2.5)的确定系数平均高0.11,且城区站点两颗卫星AOD与PM_(2.5)相关性均较郊区站点AOD与PM_(2.5)相关性偏高;综合来看,Aqua卫星的AOD与城区的PM_(2.5)相关系数最高,即Aqua卫星的AOD更适于监测和反演城区地面的PM_(2.5)。  相似文献   

4.
利用浙江宁波7个县(市)区的能见度、雾、霾、风速、相对湿度等气象资料和细颗粒物PM_(2.5)浓度数据,运用统计分析、后向轨迹模拟及聚类分析等方法研究了宁波地区能见度的时空分布特征及其影响因素。结果表明:1980—2013年,宁波地区能见度总体呈由西北到东南逐渐转好的空间分布特征,且中南部呈逐年下降态势,而北部则呈上升趋势,这与风速和相对湿度减少有关,但不同区域其主要影响因子存在差异。能见度和PM_(2.5)浓度均有明显的季节和日变化特征,且二者呈明显反位相,相关系数为-0.532,其中冬季PM_(2.5)浓度最高,能见度最低,夏季反之;13:00—17:00为PM_(2.5)浓度谷值、能见度峰值,01:00—08:00为PM_(2.5)浓度峰值、能见度谷值。气团输送轨迹分析表明,宁波地区共有来自5个方位的6类轨迹气团,其中西北方向的轨迹4对该区PM_(2.5)浓度影响最大,偏东方向的轨迹6对PM_(2.5)浓度影响最小,能见度最好,而对能见度影响最大的是来自西北方向的轨迹2和偏西方向的轨迹3。  相似文献   

5.
WRF模式对夏季黑河流域气温和降水的模拟及检验   总被引:1,自引:0,他引:1  
利用NCEP/DOE再分析资料驱动中尺度区域模式WRF对1999 2008年夏季(6 8月)黑河流域及周边地区气温和降水进行了模拟,并检验了区域气候模式在山区复杂地形条件下的模拟性能,客观评估了复杂地形条件下气候模拟的性能。气温和降水空间分布的对比分析表明,高分辨率WRF模式较粗分辨率的再分析资料能更精细地模拟出复杂地形条件下山区气温和降水的分布特征,充分体现了高海拔山区复杂地形对气温和降水空间分布的影响。通过BSS指标对气温、降水模拟的定量评估表明,在复杂地形条件下,WRF模式可以在几乎所有观测站点提高气温模拟的准确性,也可以为复杂山区没有观测站点地区气温的空间分布和量值提供数据支持。对降水量模拟的准确性低于气温模拟,半数的站点模拟值较再分析资料更接近观测值,位于祁连山东南侧站点降水量模拟值偏大,可能与WRF模式中地形对水汽输送的抬升作用有关,也可能与观测站点对该区域的代表性有关。  相似文献   

6.
北京地区奥运期间大风灾害的定量评估   总被引:5,自引:3,他引:2  
根据北京1971~2006年大风历史资料,对奥运期间(6~10)大风灾害的风险进行了评估.北京的春季大风日数比较多,7~9月大风日数比较少;平均每年6~10月奥运期间出现大风总日数通常为2~3天,最多5天,夏季是适合北京举办奥运会的季节.为了定量评估奥运期间大风灾害的风险,统计了1971~2006年6~10月每次出现大风日的站点数并进行归一化处理,得出奥运期间大风灾害不同等级的空间分布.在大风灾害后果等级小值时,整个北京地区大风灾害风险分布基本一致;在大风灾害后果大值时,北京的大风风险区呈南北走向分布,南部特别是西南部大风风险大,此特点可能与夏季雷雨大风及北京地形有关.  相似文献   

7.
利用NCEP/DOE再分析资料驱动中尺度区域模式WRF对1999 2008年夏季(6 8月)黑河流域及周边地区气温和降水进行了模拟,并检验了区域气候模式在山区复杂地形条件下的模拟性能,客观评估了复杂地形条件下气候模拟的性能。气温和降水空间分布的对比分析表明,高分辨率WRF模式较粗分辨率的再分析资料能更精细地模拟出复杂地形条件下山区气温和降水的分布特征,充分体现了高海拔山区复杂地形对气温和降水空间分布的影响。通过BSS指标对气温、降水模拟的定量评估表明,在复杂地形条件下,WRF模式可以在几乎所有观测站点提高气温模拟的准确性,也可以为复杂山区没有观测站点地区气温的空间分布和量值提供数据支持。对降水量模拟的准确性低于气温模拟,半数的站点模拟值较再分析资料更接近观测值,位于祁连山东南侧站点降水量模拟值偏大,可能与WRF模式中地形对水汽输送的抬升作用有关,也可能与观测站点对该区域的代表性有关。  相似文献   

8.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

9.
亚青会期间南京地区大气冰核的观测分析   总被引:1,自引:0,他引:1  
高任杰  银燕  蒋惠  袁亮  李琦 《气象科学》2017,37(2):141-150
2013年8月2—26日亚青会期间对南京地区进行了大气冰核的观测采样,同时结合气溶胶、气象要素等观测资料,研究了南京地区大气冰核浓度的分布特征,探究在污染管控措施下大气气溶胶的变化是否对冰核浓度产生影响。结果表明,大气气溶胶浓度在污染管控的措施下明显降低,冰核浓度在多种因素影响下没有明显降低的变化趋势,但有明显的日变化特征。燃放烟花的空气污染时刻,大气冰核浓度随污染物浓度的增加会明显增加。当活化湿度达到水面过饱和,温度范围为-12~-23℃时,南京夏季的冰核浓度范围为0.38~50.55 L~(-1)。将活化温度和冰面过饱和度同时加入到参数化公式中得到大气冰核浓度N(T,S_i)=0.003 1exp(-0.254 9T+0.161 6S_i)。进一步分析冰核浓度与PM_(2.5)、PM_(10)、PM_(10)-PM_(2.5)的关系,发现冰核浓度与PM_(10)-PM_(2.5)的相关性较高,相关系数为0.55,说明大粒径气溶胶粒子更容易充当冰核,大粒径气溶胶在冷云过程中起着更为重要的作用。  相似文献   

10.
利用北京南郊观象台2016年3月1日-2017年2月28日β射线法与TEOM法观测的PM_(10)质量浓度观测数据,通过t检验、线性回归和相关分析等方法对两种方法观测的小时、日、周、月、季等数据进行相关性分析。结果表明:两种方法观测的PM_(10)小时平均质量浓度总体的线性回归方程相关系数R~2为0.870;在低浓度范围(PM_(10)50μg·m~(-3))时二者为微弱相关(R~2=0.073);中等浓度范围(50μg·m~(-3)≤PM_(10)350μg·m~(-3))时二者为低度相关(R~2为0.257~0.346);高浓度范围(PM_(10)≥350μg·m~(-3))时二者为高度相关(R~2=0.686)。二者日平均PM_(10)质量浓度数据总体的R~2为0.929;二者PM_(10)质量浓度小时数据周相关系数为0.598~0.980。二者月平均PM_(10)质量浓度数据间的相关系数为0.628~0.976;二者季节的R~2为0.627~0.944,呈现冬季的秋季的春季的夏季的。由此可发现,两种观测方法观测的PM_(10)质量浓度的结果总体呈显著性的线性相关关系,且浓度越高,相关性越强。  相似文献   

11.
利用第三代空气质量预报模式LOTOS-EUROS(Long Term Ozone Simulation-European Operational Smog)对2018年中国长三角地区细颗粒物(PM2.5)浓度的时空分布进行数值模拟,通过对比模拟结果与地面观测值,验证模式对PM2.5长期特征模拟的合理性并探讨长三角地区PM2.5的时空分布特征。结果表明:LOTOS-EUROS模式可以较好地再现中国长三角地区PM2.5浓度的时空分布特征,监测站点观测值和模拟值的整体相关系数达到0.64,可以用于长三角地区细颗粒物的模拟。长三角地区PM2.5浓度呈冬高夏低,西北高东南低的特征。冬季PM2.5浓度高值出现在长三角地区的西北部,安徽省等地区的浓度水平最大值可达到160 μg·m-3;春季和秋季PM2.5浓度的高值集中在30°N以北、120°E以西地区,浓度为40-80 μg·m-3;而夏季PM2.5浓度水平大幅度降低,大部分地区维持在20-40 μg·m-3,低值中心出现在长三角地区东南部沿海城市,低于10 μg·m-3,最低值可达5 μg·m-3。  相似文献   

12.
通过对2015年1—12月上海崇明岛崇南地区颗粒物(PM_(2.5)、PM_(10))浓度的连续监测,研究了PM_(2.5)、PM_(10)在不同季节的动态变化特征及与其他因子(SO_2、NO_2、O_3)的相关性,分析了风向风速和降雨对颗粒物浓度的影响。结果表明:崇明岛PM_(2.5)和PM_(10)浓度的季节变化明显,呈现冬季的春季的秋季的夏季的的特征,冬季PM_(2.5)和PM_(10)小时浓度均值分别为0.058 mg/m~3和0.085 mg/m~3,夏季PM_(2.5)和PM_(10)均值分别为0.034 mg/m~3和0.054 mg/m~3。PM_(2.5)和PM_(10)浓度分别与SO_2浓度和NO_2浓度显著正相关,与O_3显著负相关。全年来看,在西南风向时PM_(2.5)和PM_(10)浓度较高,这主要受该方向上游吴淞工业区、宝钢、石洞口电厂、罗店工业区等工业排放影响;从高浓度颗粒物(PM_(2.5)质量浓度≥0.115 mg/m~3)来向看,北和西北风向时出现高浓度颗粒物的频率最高,这主要是受到我国北方采暖季大气颗粒物输送过程对崇明岛区域的脉冲式污染影响所致;PM_(2.5)、PM_(10)实时浓度与相应的风速呈显著负相关。降雨量大于5 mm或持续3 h及以上的连续降雨对大气颗粒物起到显著的湿清除作用,降雨后PM_(2.5)和PM_(10)质量浓度分别降低了68.0%和66.9%,降雨时和雨后PM_(2.5)浓度为0.025~0.033 mg/m~3,均低于我国环境空气PM_(2.5)的一级浓度限值。  相似文献   

13.
依据吐鲁番市2015年3月—2016年2月的PM_(10)、PM_(2.5)和气象资料,利用统计分析,探讨吐鲁番市PM_(10)和PM_(2.5)浓度的变化特征及其与气象要素的关系。结果表明:冬季PM2.5与PM10浓度的平均值最高(106 ug/m3、184 ug/m~3),春季次之(63 ug/m~3、163 ug/m~3),夏季最低(33 ug/m~3、95ug/m~3),且冬季二者浓度的平均值比夏季分别高大约69%、48%。11月至次年2月,每个月中PM_(2.5)和PM_(10)的污染程度在轻度污染以上的天数相比其它月份较多。PM_(10)与PM_(2.5)的日变化曲线特征呈现"双峰双谷"的特点;PM_(2.5)与PM_(10)的比值在冬季达到了60%~80%,这说明吐鲁番冬季主要以PM2.5污染为主;PM_(2.5)和PM_(10)与能见度之间存在极其显著的相关性,相关系数分别为-0.904、-0.792,与单一气象要素(如相对湿度、风速、温度等)的相关性不明显,但不同气象要素的共同作用对其有显著影响。  相似文献   

14.
利用2011—2013年北京市朝阳区国家一般气象站PM_(2.5)、O_3、NO、NO_x、CO和SO_2的大气成分监测资料,分析了朝阳区6种主要大气污染物浓度不同时间尺度的变化特征.结果表明:2011—2013年朝阳区PM_(2.5)浓度呈明显增长的趋势,达到重度污染等级的日数增多;而O_3、NO、NO_x、CO和SO_2等气态污染物的年平均浓度变化较小,无明显增长的趋势,5种气态污染物浓度季节差异明显.除O_3浓度为夏季高、冬季低外,PM_(2.5)、NO、NO_x、CO和SO_2浓度均为夏季低、冬季高,可能与冬季采暖期排放的污染物增多有关.污染物浓度的日变化除O_3呈单峰型外,其他5种污染物浓度日变化均大致呈双峰型,可能与人类活动及天气条件有关.朝阳区与宝联、顺义、上甸子地区等代表"城市—近郊—远郊站点的污染物浓度日变化存在极大的差异性,其中PM_(2.5)浓度差异最明显,朝阳站PM_(2.5)浓度日变化呈双峰型,宝联站PM_(2.5)浓度日变化呈三峰型,昌平和上甸子站PM_(2.5)浓度为峰值出现在夜间的单峰型日变化.由此可见,不同地区因城市化发展程度不同,导致局地污染物浓度存在明显的差异.  相似文献   

15.
依据吐鲁番市2015年3月—2016年2月的PM_(10)、PM_(2.5)和气象资料,利用统计分析,探讨吐鲁番市PM_(10)和PM_(2.5)浓度的变化特征及其与气象要素的关系。结果表明:冬季PM2.5与PM10浓度的平均值最高(106 ug/m3、184 ug/m~3),春季次之(63 ug/m~3、163 ug/m~3),夏季最低(33 ug/m~3、95ug/m~3),且冬季二者浓度的平均值比夏季分别高大约69%、48%。11月至次年2月,每个月中PM_(2.5)和PM_(10)的污染程度在轻度污染以上的天数相比其它月份较多。PM_(10)与PM_(2.5)的日变化曲线特征呈现"双峰双谷"的特点;PM_(2.5)与PM_(10)的比值在冬季达到了60%~80%,这说明吐鲁番冬季主要以PM2.5污染为主;PM_(2.5)和PM_(10)与能见度之间存在极其显著的相关性,相关系数分别为-0.904、-0.792,与单一气象要素(如相对湿度、风速、温度等)的相关性不明显,但不同气象要素的共同作用对其有显著影响。  相似文献   

16.
利用2007年祁连山地形云的观测试验资料,分析了祁连山夏季西南气流背景下地形云的演化过程,得到了祁连山地形云发展和演变的概念模型。(1)祁连山地形云的水汽主要分布在3500~6500m的范围内,对流层中层的西南气流将水汽由南向北输送到祁连山区。(2)祁连山区水汽比较丰沛,凝结高度和自由对流高度均较低,当湿气团抬升到凝结高度以上时对流有效位能很容易释放,形成有利于产生降水的云系。(3)祁连山每个山峰南北侧昼间的谷风会在山峰辐合抬升,众多山峰形成的祁连山群谷风的抬升作用下容易形成沿山脊排列的中β对流云带,在高空西南气流的推动下移到北侧,是造成北侧降水比南侧大的原因之一。  相似文献   

17.
利用地面细颗粒物(PM2.5)浓度和气象常规观测资料、地基 AERONET观测资料、GFED生物质燃烧排放清单和大气化学—天气耦合模式WRF-Chem,模拟研究了华北地区2014年10月气象要素和大气污染物的时空演变,重点关注北京10月7~11日的一次重霾事件及其天气形势、边界层气象特征、输送路径、PM2.5及其化学成分浓度变化等特征,以及秸秆燃烧对华北和北京地区细颗粒物浓度和地面短波辐射的影响。与观测资料的对比结果显示,模式可以很好地模拟北京地区地面气象要素和PM2.5质量浓度,考虑秸秆燃烧排放源可以明显改进北京PM2.5浓度模拟的准确性,但在重度污染情况下,模式总体上低估气溶胶光学厚度和高估地面短波辐射。10月7~11日北京地区重霾事件主要是不利气象条件下人为污染物累积和区域输送造成,也受到华北地区南部秸秆燃烧的影响。河南北部、河北南部和山东西部大面积秸秆燃烧释放的气态污染物和颗粒物在南风的作用下输送至北京,秸秆燃烧对北京地区地面PM2.5、有机碳(OC)、硝酸盐、铵盐、硫酸盐和黑碳(BC)的平均贡献率分别为24.6%、36.8%、23.2%、22.6%、7.1%和19.8%,秸秆燃烧产生的气溶胶可以导致北京地面平均短波辐射最大减小超过20 W m-2,约占总气溶胶导致地表短波辐射变化的24%。  相似文献   

18.
利用2014—2016年宁波市镇海地区逐时气象观测资料和大气成分监测资料,对宁波地区霾天气的变化特征进行统计分析。结果表明:2014—2016年宁波地区霾天气小时出现频率为28.8%,湿霾出现频率为61.0%。近3 a宁波地区霾天气小时出现频率呈下降趋势,秋冬季(11月至翌年1月)霾天气小时出现频率较高,夏季(6—8月)霾天气小时出现频率较低;从日变化来看,霾天气小时出现频率峰值集中出现在上午09时和夜间20—23时。宁波地区重度霾的PM_(2.5)、PM_(10)颗粒物浓度为轻微霾的2.13倍和1.92倍,干霾颗粒物浓度高于湿霾,宁波地区霾天气的颗粒物组成较稳定,PM_(2.5)/PM_(10)比重为0.7左右。宁波地区颗粒物浓度与风速和降水量的相关性较好,春季和夏季风速与PM_(2.5)浓度的相关性较高,秋季和冬季风速与PM_(10)浓度的相关性较高;降水与PM_(10)浓度的相关性高于PM_(2.5)浓度。静稳天气时地面风速小易造成细颗粒物浓度的积累增长,冬季西北偏北风和东北风是影响宁波地区PM_(2.5)浓度变化的重要输送路径,当风向为西北风时,冬季和春季PM_(10)浓度增加明显。  相似文献   

19.
利用44个自动站的小时观测资料,详细分析了北京地区近15年来气温、风速、相对湿度和有效温度的分布和变化情况,结果表明:1)北京地区年平均气温、风速和有效温度都显著地受到了地形分布的影响,相对湿度没有表现出明显的地形差异。研究时段内,北京整体呈变干变暖。区域上,气温与有效温度增幅最大的区域集中在平原中心城区,西北和东北部的远郊山区增幅最小,相对湿度降低的程度在区域上较为平均;2)按有效温度的热感受等级划分,北京地区冬季平均热感受属于“寒冷”,年、春季和秋季平均热感受属于“冷”,夏季平均热感受属于“温暖”。春季、夏季和冬季变干变暖明显,秋季则存在明显的区域差异;3)北京地区年平均气候适宜日数在全年中占比41.3%。气候适宜日数变化在区域间差异较大,超过半数站点表现出“气候适宜日数”的减少。由于整体上的变干变暖趋势,导致春季“气候适宜日数”整体在增加,夏季“气候适宜日数”整体在减少。秋季的“气候适宜日数”没有表现出统一的趋势。冬季的热感受主要集中于寒冷日和冷日,“气候适宜日数”很少。  相似文献   

20.
杨浩  许冠宇  白永清  刘琳 《气象》2018,44(11):1454-1463
基于湖北省PM_(2.5)大气成分逐日监测数据和高分辨率气象再分析资料,利用EOF方法对2015—2016年湖北省近两年冬季月份PM_(2.5)的污染分型并分析其天气特征,探讨PM_(2.5)质量浓度与大尺度环流因子相关性,并计算得到海平面气压指数。结果表明:冬季PM_(2.5)质量浓度湖北中部高于东西部,时间序列上存在较大波动,且近两年有明显下降趋势。湖北省冬季PM_(2.5) EOF前4个特征向量时间系数的方差贡献为86. 2%,能够反映PM_(2.5)空间场的主要特征。湖北省PM_(2.5)污染的天气型特征主要有两类:传输型污染和本地累积型,前者造成的PM_(2.5)污染浓度高于后者。传输型分别表现出全区污染、西部污染和中北部污染,全区污染时段湖北近地层以偏北气流为主,有利于将北方地区PM_(2.5)输送到湖北省;西部污染在于偏东气流将东部污染物以及沿海地区水汽输送到湖北省,同时受鄂西山脉的阻挡,污染物在湖北省西部地区聚积;中北部污染表现为东北和西北气流的汇集效应。本地累积型在静稳天气条件和地形共同作用下造成湖北东部污染和中南部污染。三种传输型污染物输送通道分别为北路输送、东路输送和东北路输送。东亚冬季风系统的高层东亚大槽和低层大陆冷高压减弱时,PM_(2.5)质量浓度增加。关键区的海平面气压相关指数与湖北省PM_(2.5)质量浓度和EOF第一模态时间系数相关性较好,对预报预测有一定指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号