首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
将军山—白水断裂是渭河盆地北缘断裂东段的一分支,位于将军山、东太白山山前,向北东延伸至白水县境内,已有资料及研究成果认为其为晚更新世活动断裂。通过地貌地质调查、音频大地电磁法勘探、浅层地震勘探、钻孔联合剖面探测、第四纪沉积物年代测试等方法,对将军山—白水断裂的展布与活动性进行研究。结果表明该断裂总体走向为NE向,倾向S,为一山前隐伏断裂,最新活动时代为中更新世晚期,未发现晚更新世以来活动的证据,判断其为中更新世活动断层。  相似文献   

2.
黄卿团  付萍  郑韶鹏 《地震地质》2007,29(3):578-596
通过对福建东南沿海海拔50m以下几个地貌面的时代确定,研究了长乐-诏安NE向断裂带和与之相交切的NW向断裂带第四纪以来的活动性。结果表明:区内50m以下几个地貌面分为侵蚀-剥蚀阶地和堆积阶地,属晚更新世以来几个时期所形成;断裂在切割某个地貌面时,其地貌面的形成年代可确定为该断裂的活动年代;长乐-诏安NE向断裂带中的平潭青峰-东山澳角断裂的有些地段为晚更新世晚期(Q3p)活动断裂,垂直滑动速率为1.1~2.2mm/a;长乐-东山前梧断裂主要活动时代在中更新世(Q2p);九龙江下游NW向断裂带中的江东桥(北溪)-海沧断裂,其NW段江东桥(北溪)断裂为早第四纪(Q1p-2)断裂,SE段海沧-钱屿断裂为晚更新世(Qp3)活动断裂  相似文献   

3.
在1:5万活断层地质地貌填图的基础上,对韩城断裂的构造地貌特征及晚第四纪活动性进行了详细研究。依据断裂的构造地貌、活动性及几何展布特征等将断裂自北向南分为3段:西硙口至盘河段、盘河至行家堡段和行家堡至义井段。断裂的活动性自NE向SW是逐渐变弱的。西硙口至盘河段为典型的盆山地貌,全新世活动,全新世中期以来的垂直滑动速率估算0.8mm/a;盘河至行家堡段,断裂沿黄土台地前缘展布,晚更新世晚期活动,晚更新世晚期以来的垂直滑动速率约为0.49mm/a;行家堡至义井段,断裂伸入渭河盆地北部黄土塬中,晚更新世早期黄土中发育裂隙及砂土液化现象。  相似文献   

4.
陈国浒  单新建  李建华 《地震》2007,27(2):131-138
利用遥感影像多分辨率、 多光谱以及多传感器相结合的方法, 对浙江宁波地区约1900 km2范围的断裂活动性进行分析判读。 根据断裂的影像特征, 将所判读的断裂分为晚更新世活动, 早、 中更新世活动及第四纪活动不明显3类, 同时对主要断裂的活动性进行了详细分析。 宁波地区主要发育NNE向、 NE向和NW向三组活动构造。 其中NNE向育王山山前断裂, 在TM、 MSS和SPOT影像上都表现出清晰的断层形迹, 切过三处冲积洪积扇, 晚更新世有活动。 走向20°的老鹰山与走向55°的清凉山截然相接显示的线性影像反映出NE向算山-曹隘断裂的形迹, 断裂向宁波盆地延伸, 为宁波盆地规模最大的隐伏断裂。 多时相MSS影像上, 显示出NW向新乐—宝幢和宁波—莫枝活动断层的形迹, 它是深部构造活动在地表的反映, 与走向45°的算山—曹隘断裂, 可能是一组地壳破裂网络。  相似文献   

5.
吉林省舒兰-伊通断裂的分段及其地震活动性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
舒兰-伊通断裂带是吉林省东部的一条大型右旋走滑断裂带,近NE向延伸100多公里,它构成了伊通盆地和舒兰盆地的重要地质边界.通过野外构造地貌考察,对舒兰-伊通断裂的分段性及其地震活动性进行了初步研究.估算出舒兰-伊通断裂北段(舒兰段)晚更新世的垂直滑动速率为0.89~1.3 mm/a,其他段为早-中更新世活动断裂.依据地质构造背景,应用测震学的基本方法,讨论舒兰一伊通断裂带的地震活动特征,由地震活动在时空强显示的一些规律性,认为近期该区域中强地震活动可能处于较弱势状态.  相似文献   

6.
莱州湾海域郯庐断裂带活断层探测   总被引:21,自引:0,他引:21       下载免费PDF全文
利用浅地层剖面仪对郯庐断裂带莱州湾段进行了活断层探测,发现郯庐断裂带主干断裂在第四纪晚期以来具有明显的活动,继承了晚第三纪以来的主要构造活动特点,仍是这一区域的主导性构造. 西支KL3断裂由多条高角度正断裂组成,最新活动时代为晚更新世晚期至全新世早期,受到一系列错断晚更新世晚期沉积的北东或近东西向断裂的切割;东支龙口断裂由两段右阶斜列的次级断层组成,沿断裂带不但有明显的晚第四纪断错活动,而且还发育北北东向晚第四纪生长褶皱,表现出明显的晚更新世晚期至全新世活动特征. 在山东陆地区也发现了与龙口断裂相对应的安丘——莒县断裂,安丘段由一系列右阶斜列的次级断层组成. 从安丘向北至莱州湾凹陷,郯庐断裂带东支活断层构成了一条右旋单剪变形带,每一个次级活断层段相当于带内理论上次级压剪面,在第四纪晚期以来仍以右旋走滑活动为主要特征.   相似文献   

7.
南汀河西支断裂北东段最新活动性分析   总被引:8,自引:0,他引:8  
南汀河西支断裂由南西段、中段和北东段组成,被认为是滇西南临沧地区规模最大的活动断裂。南汀河西支断裂北东段(盘河农场一云县盆地段)顺盘河、南桥河展布,延伸至云县盆地。通过分析该段断裂的活动表现、断裂活动环境及地震活动表现,认为南汀河西支断裂北东段最新活动大致在中更新世一晚更新世,晚第四纪活动较弱。  相似文献   

8.
灵丘盆地位于山西地堑系的东北部,曾于1626年发生7级地震.文中通过解译SPOT5影像、分析SRTM3数据和野外调查,对该盆地进行宏观的构造地貌分析和对比,结合探槽以及地质剖面确定主要活动断层的几何分布和最新活动特征,进而探讨灵丘地震的发震构造.结果显示:太白维山山前断裂大部分段落最新活动时代限于晚更新世晚期.NE向的水涧-落水河断裂灵丘县城以西段造成同级地貌面高差约6m,其中最新活动在地表残留高约1m的断层陡坎,县城及以东段无明显地貌表现;NW向的华山河断裂具有枢纽断层特征,在盆地北部断裂向西倾并造成华山河Ⅰ级阶地两侧约10m的高差,在盆地南部断裂向东倾,剖面和相关地貌揭示该断裂在南段为一条高角度的活动正走滑断裂;据此认为,1626年灵丘地震为水涧-落水河断裂西段和NW向的华山河断裂共轭作用的结果.  相似文献   

9.
2004年西藏懂错M_S 5.6地震的宏观烈度调查与控震构造分析   总被引:3,自引:0,他引:3  
地表调查结果表明,发生在西藏中部的2004年懂错MS5.6地震的极震区位于懂错东侧的贡巴淌—怕尔淌之间,最大烈度为Ⅶ度,宏观震中的地理坐标:31.70°N,91.26°E。此次地震是懂错盆地东缘边界断裂活动的结果。该断裂带是一条长40km左右、NNE走向的全新世活动正断层,在断裂带的北段发育可能形成于全新世晚期的古地震地表破裂带。地表的晚第四纪断裂活动和近期的地震活动特征显示,蓬错-懂错-错那-安多地堑系构成了西藏中部一个重要的长约120km的NE向地震活动带,其北段和中南段是其中应变积累时间更长的地段  相似文献   

10.
涉县断裂为太行山隆起区内涉县盆地的控盆构造,走向由NE转为近EW向,倾向NW/N,中部在井店东被EW向断裂错断,是控制涉县盆地的一组断裂。本文采用地质地貌调查、河流阶地分析和地质测年等方法,研究了涉县断裂晚第四纪活动特征。研究发现,涉县断裂带由多组断裂构成,带宽约200m,在清漳河两侧表现为山前的陡崖地貌、基岩破碎变形带,具有正断兼走滑特征,在基岩变形带上部发育走向NNE向和NWW向次级滑动面,次级滑动面错断第四系黄土,最新活动到晚更新世;断裂在盆地区通过,地表形成低缓陡坎,断裂错断Q2-3地层,表现为上陡下缓的正断层。通过对涉县断裂两侧清漳河河流阶地、夷平面和地层年龄综合分析,估算涉县断裂晚更新世以来平均垂直滑动速率为0.06~0.08mm/a,中更新世以来平均垂直滑动速率为0.22~0.34mm/a,垂直差异活动主要发生于中更新世期间。  相似文献   

11.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

12.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

13.
Along the northern piedmont of Mt. Lishan, the characteristics and locations of the active normal Lishan fault in west of Huaqing Pool provide important evidences for determining the seismotectonic environment, seismic stability evaluation of engineering in the eastern Weihe Basin. After reviewing the results from high-density resistivity method, seismic profile data, geological drillhole section and trenching in west of the Huaqing Pool, it is found that the strike of western normal Lishan Fault changes from EW direction at the eastern part to the direction of N60°W, and the fault consists of two branches, dipping NE with a high dip angle of~75°. The artificial shallow seismic profile data reveals that the attitude of strata near Lishan Fault mainly dips to south, which is presumed to be related to the southward tilt movement of Mt. Lishan since the Cenozoic. The section of geological drillhole reveals that since the late middle Pleistocene, the displacement of the paleo-soil layer S2 is about 10m. And the maximum displacement of western Lishan Fault recorded in the paleo-soil layer S1 reaches 7.8m since the late Pleistocene. In addition, evidences from trench profile show that the western Lishan Fault was active at least 3 times since Malan loess deposition with 14 C dating age(32 170±530)Cal a BP. The multiple activities of the Lishan Fault result in a total displacement about 3.0m in the Malan loess layer L1. The latest activity of the western Lishan Fault produced a displacement of about 0.9m in the early Holocene loess layer L0((8 630±20)Cal a BP)and caused obvious tensile cracks in the Holocene dark leoss layer S0((4 390±20)Cal a BP). Briefly, we have obtained a vertical movement rate of about 0.11~0.19mm/a since the Holocene((8 630±20)Cal a BP)in the western extension of the Lishan Fault, the recurrence interval of earthquakes on the fault is about(10.7±0.5)ka, and the co-seismic surface rupture in a single event is inferred to be about 0.9m.  相似文献   

14.
On the basis of dividing and comparison of the Neogene strata and their bottoms revealed by 7 drill holes in Taikang area, we completed 101 seismic profiles with a total length of 4991km. Seismic data were compared and interpreted. The results indicate that Xinzheng-Taikang Fault, as a blind fault extending from Xinzheng to Taikang, which was considered as an EW striking fault from Xuchang to Taikang before, is the boundary of Taikang uplift and Zhoukou depression, controlling the sedimentation since Neogene Period. So we named the fault the Xinzheng-Taikang Fault, which is composed of two branches, mainly, the east and west branches. The west branch strikes northwest, dipping northeast with steep angles, and the fault plane extending more than 140km in length. As revealed on the seismic profiles, the eastern segment of the west branch is normal fault, while the west segment of the branch shows characteristics of strike-slip fault. The east branch trends NW-NEE, dipping SW-SSE with the length of about 50km. Two branches form a minus flower structure, indicating the strike slip-extension tectonic background. The bottom of Neogene strata is offset about 120m by the east branch, 20m by the west branch, and the bottom of Quaternary is probably offset too. Meanwhile, latest studies suggest that the composite strip of the two branches of Xinzheng-Taikang Fault, which is a tectonic transfer zone, is the subduction zone between the two strike-slip faults. The tectonic stress tends to be released by the east-west branch fault, and the zone should be the seismogenic structure for the recent seismicity in Taikang area. In 2010, the latest earthquake ofMS4.7 occurred in this area, causing 12 people wounded. The seismogenic structure was considered to be the Xinzheng-Taikang Fault. So locating the fault exactly is of great importance to disaster prevention.  相似文献   

15.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

16.
河北省怀安盆地北缘断裂活动性研究   总被引:2,自引:0,他引:2  
本文以野外地质调查为主,讨论了怀安盆地北缘断裂的几何展布和活动特征,并进行了断裂的活动性分段,对断裂的运动学特片也进行了探讨,研究认为,该断裂是一条第四纪活动断裂,以东段活动性最强,Q3^2以来平均垂滑动速率达0.21-0.22mm/a;中段活动次之,西段活动较弱,整个断裂活动年代有自西南向东北迁移的趋势。最后,文章对1626年25/4级地震的震中位置作了讨论。  相似文献   

17.
The NE margin of Tibetan plateau outspreads northeastward in late Cenozoic. The west Qinling locates at intervening zone among Tibetan plateau, Sichuan Basin and Ordos block, and is bounded by East Kunlun Fault in the southwest, the north margin of West Qinling Fault in the northeast, and the Longmen Shan Fault in the southeast. The west Qinling has been experiencing intense tectonic deformation since late Cenozoic, accompanying by uplift of mountains, downward incision of rivers, frequent moderate-strong earthquakes, vertical and horizontal motion of secondary faults, and so on. A series of "V-shape" faults are developed in the transfer zone between East Kunlun Fault and north margin of West Qinling Fault. The NWW-NW striking faults include Tazang Fault, Bailongjiang Fault, Guanggai Shan-Die Shan Fault, and Lintan-Dangchang Fault; EW-NEE-NE striking faults include Ha'nan-Qingshanwan-Daoqizi Fault, Wudu-Kangxian Fault, Liangdang-Jiangluo Fault, and Lixian-Luojiapu Fault. Among them, the Southern Guanggai Shan-Die Shan Fault (SGDF)is one of the principle branch which accommodates strain partitioning between the East Kunlun Fault and the north margin of west Qinling Fault. Although some works have been done and published, the geometry of SGDF is still obscure due to forest cover, bad traffic, natural and manmade reworks. In this paper, we collected remote sensing images with various resolutions, categories, imaging time. The selected images include composite map of Landsat image (resolution is 28.5m among 1984-1997, and 14.5m among 1999-2003), Landsat-8 OLI image (15/30m), Gaofen-1 (2m/8m), Pleiades (0.5m/2m), DEM (~25m)and Google Earth image (submeter resolution). After that, we reinforced tectonic information of those images by Envi5.2 software, then we interpreted SGDF from those images. As indoor interpretation fulfilled, we testified indoor interpretation results through geomorphological and geological investigation. Finally, we got fault distribution of SGDF. Conclusions are as follows:First, remote sensing image selection and management is crucial to indoor interpretation, and image resolution is the only factor we commonly consider before, however, things have changed in places where there is complex weather and dense vegetation. Image categories, imaging time and bands selected for compositing in pretreatment and etc. should all be taken into consideration for better interpretation. Second, SGDF distributes from Lazikou town in the west, extending through Pingding town, Zhou County, Huama town, then terminating at Majie town of Wudu district in the east, the striking direction is mainly NWW, and it could be roughly divided into 3 segments:Lazikou-Heiyusi segment, Pingding-Huama segment, and Huama-Majie segment, with their length amounting to 47km, 32.5km, 47km, respectively. The arrangement pattern between Lazikou-Heiyusi segment and Pingding-Huama segment is right-stepping, and the arrangement pattern is left-stepping bending between Pingding-Huama segment and Huama-Majie segment. Third, SGDF controlled magnificent macro-topography, such as fault cliff, fault facet, which often constitute the boundary of intermontane basins or erosional surfaces to west of Minjiang River. Micro-geomorphic expressions were severely eroded and less preserved, including fault scarps, fault troughs, sinistral offset gullies and geomorphic surfaces. Finally, SGDF mainly expresses left-lateral dominated motion, only some short branch faults with diverting striking direction exhibit vertical dominated motion. The left-lateral dominated component with little vertical motion of SGDF is consistent with regional NWW-striking faults as Tazang Fault, Bailongjiang Fault and Lintan-Dangchang Fault, also in coincidence with regional boundary faults such as east Kunlun Fault and north margin of west Qinling Fault, illustrating regional deformation field is successive in west Qinling, and NWW striking faults show good inheritance and transitivity on differential slip rate between east Kunlun Fault and west Qinling Fault. The geometry of SGDF makes quantitative studies possible, and also provides scientific basis for keeping construction away from fault traces.  相似文献   

18.
It is well known that the slip rate of Kunlun Fault descends at the east segment, but little known about the Awancang Fault and its role in strain partitioning with Kunlun Fault. Whether the sub-strand(Awancang Fault) can rupture simultaneously with Kunlun Fault remains unknown. Based on field investigations, aerial-photo morphological analysis, topographic surveys and 14C dating of alluvial surfaces, we used displaced terrace risers to estimate geological slip rates along the Awancang Fault, which lies on the western margin of the Ruoergai Basin and the eastern edge of the Tibetan plateau, the results indicate that the slip rate is 3mm/a in the middle Holocene, similar to the reduced value of the Kunlun Fault. The fault consists of two segments with strike N50° W, located at distance about 16km, and converged to single stand to the SE direction. Our results demonstrate that the Awancang fault zone is predominantly left-lateral with a small amount of northeast-verging thrust component. The slip rates decrease sharply about 4mm/a from west to east between the intersection zone of the Awancang Fault and Kunlun Fault. Together with our previous trenching results on the Kunlun Fault, the comparison with slip rates at the Kunlun fault zone suggests that the Awancang fault zone has an important role in strain partitioning for east extension of Kunlun Fault in eastern Tibet. At the same time, the 15km long surface rupture zone of the southeast segment was found at the Awancang Fault. By dating the latest faulted geomorphologic surface, the last event may be since the 1766±54 Cal a BP. Through analysis of the trench, there are four paleoearthquake events identified recurring in situ on the Awancang Fault and the latest event is since (850±30)a BP. The slip rate of the Awancang Fault is almost equivalent to the descending value of the eastern part of the east Kunlun Fault, which can well explain the slip rate decreasing of the eastern part of the east Kunlun Fault(the Maqin-Maqu segment)and the characteristics of the structure dynamics of the eastern edge of the Tibet Plateau. The falling slip rate gradient of the eastern Kunlun Fault corresponds to the geometric characteristic. It is the Awancang Fault, the strand of the East Kunlun Fault that accommodates the strain distribution of the eastward extension of the east Kunlun Fault. This study is helpful to seismic hazard assessment and understanding the deformation mechanism in eastern Tibet.  相似文献   

19.
The northern margin of the Qinghai-Tibet Plateau is currently the leading edge of uplift and expansion of the plateau. Over the years, a lot of research has been carried out on the deformation and evolution of the northeastern margin of the Qinghai-Tibet Plateau, and many ideas have been put forward, but there are also many disputes. The Altyn Tagh Fault constitutes the northern boundary of the Qinghai-Tibet Plateau, and there are two active faults on the north side of the Altyn Tagh Fault, named Sanweishan Fault with NEE strike and Nanjieshan Fault with EW strike. Especially, studies on the geometric and kinematic parameters of Sanweishan Fault since the Late Quaternary, which is nearly parallel with the Altyn Tagn Fault, are of great significance for understanding the deformation transfer and distribution in the northwestward extension of the Qinghai-Tibet Plateau. Therefore, interpretation of the fault landforms and statistical analysis of the horizontal displacement on the Sanweishan Fault and its newly discovered western extension are carried out in this paper. We believe that the Sanweishan Fault is an important branch of the eastern section of the Altyn Tagh fault zone. It is located at the front edge of the northwestern Qinghai-Tibet Plateau and is a left-lateral strike-slip and thrust active fault. Based on the interpretation of satellite imagery and microgeomorphology field investigation of Sanweishan main fault and its western segments, it's been found that the Sanweishan main fault constitutes the contact boundary between the Sanweishan Mountain and the alluvial fans. In the bedrock interior and on the north side of the Mogao Grottoes, there are also some branch faults distributed nearly parallel to the main fault. The main fault is about 150km long, striking 65°, mainly dipping SE with dip angles from 50° to 70°. The main fault can be divided into three segments in the spatial geometric distribution:the western segment(Xizhuigou-Dongshuigou, I), which is about 35km long, the middle segment(Dongshuigou-Shigongkouzi, Ⅱ), about 65km long, and the east segment(Shigongkouzi-Shuangta, Ⅲ), about 50km long. The above three segments are arranged in the left or right stepovers. In the west of Mingshashan, it's been found that the fault scarps are distributed near Danghe Reservoir and Yangguan Town in the west of Minshashan Mountain, and we thought those scarps are the westward extension of the main Sanweishan Fault. Along the main fault and its western extension, the different levels of water system(including gullies and rills)and ridges have been offset synchronously, forming a series of fault micro-geomorphology. The scale of the offset water system is proportional to the horizontal displacement. The frequency statistical analysis of the horizontal displacement shows that the displacement has obvious grouping characteristics, which are divided into 6 groups, and the corresponding peaks are 3.4m, 6.7m, 11.4m, 15m, 22m and 26m, respectively. Among them, 3.4m represents the coseismic displacement of the latest ancient earthquake event, and the larger displacement peak represents the accumulation of coseismic displacements of multi-paleoearthquake events. This kind of displacement characterized by approximately equal interval increase indicates that the Sanweishan Fault has experienced multiple characteristic earthquakes since the Late Quaternary and has the possibility of occurrence of earthquakes greater than magnitude 7. The distribution of displacement and structural transformation of the end of the fault indicate that Sanweishan Fault is an "Altyn Tagh Fault"in its infancy. The activities of Sanweishan Fault and its accompanying mountain uplift are the result of the transpression of the northern margin of the Qinghai-Tibet Plateau, representing one of the growth patterns of the northern margin of the plateau.  相似文献   

20.
The Sanweishan fault is located in the northern margin of the Tibetan plateau. It is a branch of the Altyn Tagh fault zone which extends to the northwest. A detailed study on Late Quaternary activity characteristics of the Sanwei Shan Fault can help understanding the strain distribution of the Altyn Tagh fault zone and regional seismic activity and northward growth of the Tibetan plateau. Previous research on this fault is insufficient and its activity is a controversial issue. Based on satellite images interpretation, field investigations and geological mapping, this study attempts to characterize this feature, especially its activity during Late Quaternary. Trench excavation and sample dating permit to address this issue, including determination of paleoseismic events along this fault. The results show that the Sanweishan fault is a large-scale active structure. It starts from the Shuangta reservoir in the east, extending southward by Shigongkouzi, Lucaogou, and Shugouzi, terminates south of Xishuigou, with a length of 175km. The fault trends in NEE, dipping SE at angles 50°~70°. It is characterized by left-lateral strike-slip with a component of thrust and local normal faulting. According to the geometry, the fault can be divided into three segments, i.e. Shuangta-Shigongkouzi, Shigongkouzi-Shugouzi and Shugouzi-Xishuigou from east to west, looking like a left-or right-step pattern. Plenty of offset fault landforms appear along the Sanweishan Fault, including ridges, left-lateral strike-slip gullies, fault scarps, and fault grooves. The trench study at the middle and eastern segments of the fault shows its activity during Late Pleistocene, evidenced by displaced strata of this epoch. Identification marks of the paleoearthquakes and sample dating reveal one paleoearthquake that occurred at(40.3±5.2)~(42.1±3.9) ka.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号