首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
20世纪以来,随着全球气候变暖加剧,冰川和积雪普遍退缩,严重影响到人类的生存和社会经济的可持续发展,这一问题在我国西北干旱区的博格达峰地区及其周边地区尤为突出。以博格达峰地区为例,利用1990—2016年Landsat 5与Landsat 8遥感影像,对比分析归一化积雪指数(NDSI)、归一化冰雪指数(NDSII)、归一化主成分雪指数(NDPCSI)和缨帽转换湿度指数(WET)在博格达峰地区监测冰川和积雪的能力,同时结合研究区周边气温、降水数据和研究区地形数据,探讨博格达峰地区冰川和积雪面积变化与区域地形、气候间的响应关系。结果表明:(1) WET相对于NDSIINDSINDPCSI精度值更高,可以替代NDSINDSII监测博格达峰地区冰川和积雪面积。(2) 博格达峰地区冰川和积雪面积呈持续退缩的趋势。1990—2016年,冰川和积雪面积减少率约20.07%,且年退缩率不断增加。(3) 高程、坡度和坡向对冰川和积雪面积变化的影响较显著,山地阴影对其影响较弱,气温的升高是冰雪面积减少的主要因素。  相似文献   

2.
积雪是影响气候变化的重要因子,准确、及时的获取积雪覆盖范围,进行动态变化监测意义重大。利用MODIS数据进行土库曼斯坦积雪监测,提取积雪信息的研究较少。利用MODIS L1B 500 m分辨率数据,通过几何校正、去云预处理,应用归一化差分积雪指数(NDSI)算法和综合阈值判别法,获取了土库曼斯坦2011年11月~2012年4月山区积雪覆盖范围和面积等数据信息,揭示了土库曼斯坦山区积雪发生的时空特征。土库曼斯坦南部的科佩特山区是该国降雪的核心地区,积雪面积均在1月达到最大值,随后积雪面积随温度的升高而减少。山区积雪面积、月均气温、月降雨量之间存在着显著的相关性,其相关系数分别为0.742 9和0.568 4。结果表明,在监测时段积雪面积随气温的降低、降雨量的减少而增加。  相似文献   

3.
基于MODIS数据中国天山积雪面积时空变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
基于2011-2015年MOD10A2积雪产品和气象数据,通过几何校正、去云预处理,应用归一化差分积雪指数算法等获取中国境内天山山区积雪覆盖面积数据,分析了积雪面积的时空变化特征及与气温降水的关系。结果表明:(1)年内积雪面积呈单峰变化,9月开始积累,次年1月达峰值,3月气温回暖消融加速,至7月最小。春秋季波动较大但没有明显的增减趋势,夏季积雪面积最小,冬季最大且呈减小趋势。(2)2001-2015年积雪覆盖面积整体上呈减少趋势,积雪覆盖率最大值的波动比最小值的波动更加剧烈。(3)积雪覆盖率随着海拔升高而增大,海拔<1 500 m区域积雪覆盖率低于10%,海拔>4 500 m以上区域平均可达70%,为常年稳定积雪区。积雪覆盖率在西北坡最高,南坡最低。(4)年均气温升高是积雪覆盖面积减小的主因,年积雪覆盖面积变化与年降水量变化保持一致的下降趋势。  相似文献   

4.
李慧融 《干旱区地理》2020,43(6):1567-1572
积雪是我国西北干旱半干旱区重要的水资源,也是影响全球气候变化的重要因子之一。 目前光学影像反射率和雷达亮温数据是积雪遥感领域的主要数据,本文首次结合两类遥感数据估 算积雪深度,并比较偏最小二乘法和机器学习算法(人工神经网络、支持向量机和随机森林算法) 在积雪深度估算方面的表现。以锡林郭勒盟 2012—2015 年积雪深度数据为例,基于反射率和亮度 温度相结合的积雪深度估算精度优于单个数据源,且随机森林算法表现最好,均方根误差为 2.93 cm,满足实际应用的需求。研究结果对我国西北地区水资源分布、生态环境评估等研究具有重要 意义。  相似文献   

5.
本文给出了1986-1987年冬春两季积雪辐射平衡的数据以及积雪辐射平衡与短波辐射平衡、长波辐射平衡的同步变化关系;指出了短波辐射平衡对融雪的积极作用,强调了积雪反射率对融雪过程的负反馈机制;并将积雪辐射平衡与融土辐射平衡进行了类比;从能量平衡的观点对不同容重的积雪融化速率进行了分析.该文的结果对研究积雪融化具有重要意义。  相似文献   

6.
积雪覆盖度对沙尘暴的影响分析   总被引:8,自引:2,他引:6  
李彰俊  郝璐  李兴华 《中国沙漠》2008,28(2):338-343
采用遥感监测内蒙古中西部地区积雪覆盖度数据以及地面气象观测站1961—2005年沙尘天气观测资料,以沙尘暴、扬沙发生日数为定量指标,分析了内蒙古中西部地区积雪覆盖度与沙尘暴、扬沙发生日数的关系。研究结果表明,在内蒙古中西部地区,积雪覆盖度与沙尘天气的发生有负相关关系,但地表积雪覆盖对沙尘暴的抑制作用要小于对扬沙的抑制作用,这种负相关关系在1—3月较11—12月更为显著。积雪覆盖度决定了积雪的影响范围,而积雪日数则决定了这种影响持续的时间,综合考虑这两种因素,构建了积雪指数用以反映积雪的这种空间和时间的共同作用。积雪指数能较好地反映积雪日数与积雪覆盖度对沙尘天气的综合作用。  相似文献   

7.
利用NOAA-AVHRR数据进行积雪监测与制图的方法研究   总被引:8,自引:2,他引:6  
本文在总结分析国内外现有方法的基础上,并根据大量的实验研究,介绍了利用NOAA-AVHRR遥感数据进行积雪监测和流域雪盖制图的方法。文章侧重介绍了AVHRR数据在积雪制图应用中的数据处理方法。也较为详细地介绍了利用遥感数据和地形数据的复合进行积雪信息提取的方法。研究表明:在地形相对复杂的地区使用AVHRR数据进行积雪监测和制图,采用监督分类的方法可获得较为理想的分类结果。利用GIS的空间分析方法,实现遥感和地形数据的复合分是积雪遥感制图高效和实用的方法之一。  相似文献   

8.
天山西部山地冬季积雪能量交换特征分析   总被引:1,自引:0,他引:1  
本文研究了天山西部冬季积雪的能量交换特征,分析了在严寒的冬季积雪总辐射,反射,长波辐射的日变化及积雪内部的能量收支和传递过程,研究表明,积雪总辐射,反射辐射由于受太阳高度角的影响具有明显的日变化,积雪层与大气交界处的热流交换最为剧烈,0.4m以下雪层热流交换已不受外界大气环境影响,而是保持着几乎固定的数值。  相似文献   

9.
新疆天山和北疆地区是我国三大稳定积雪区之一,积雪反照率的变化显著地影响其地表吸收的太阳辐射能量。2018年1~3月,在新疆天山和北疆地区进行了积雪反照率观测,发现研究区的积雪反照率存在明显的时空差异。时间上,由于受到气温变化的影响,研究区的积雪反照率整体呈现下降的趋势,而且不同时期的下降幅度有差异,1月末~3月初反照率的降低相比1月初~1月末反照率降低更加明显。空间上,由于受到污化物的影响,各区域(阿勒泰地区、塔城地区、天山北坡和伊犁河谷)的积雪反照率之间存在差异,其中天山地区(天山北坡和伊犁河谷)的积雪反照率低于北疆地区(阿勒泰地区和塔城地区),天山北坡的反照率最低;在积雪稳定期及消融期,污化物对积雪反照率的影响最为明显。  相似文献   

10.
本文利用天山积雪雪崩研究站的历史资料分析了影响稳定积雪形成的初始气候条件,对降雪量的月间分布、降雪及气温与地温对稳定积雪的影响进行了阐述。  相似文献   

11.
基于MODIS数据的雪深反演--以天山北坡经济带为例   总被引:7,自引:0,他引:7  
应用中分辨率成像光谱仪(MODIS)数据进行雪深遥感反演理论和方法的研究.利用全波 段地物光谱仪对不同深度的积雪进行反射光谱值野外量测且同步测定雪深,通过分析雪深和 反射光谱值的关系确定反演雪深的MODIS最佳观测通道,应用新疆地区冬季MODIS 1B数据, 以天山北坡经济带为实验区,结合该区域同期气象台地面雪深观测记录数据建立雪深遥感反 演数学公式.雪深反演结果与实测值对比表明,应用MODIS数据进行大区域雪深反演时 ,其结果具有分辨率高、监测范围广的特点,可以清楚反映积雪覆盖范围和雪深空间分布特征,对地表径流量计算、农业开发等具有应用价值.  相似文献   

12.
青藏高原东南部海拔高,地形复杂,云量大,准确掌握该地区的积雪分布特征对于积雪灾害防治非常重要。论文以2013—2019年冬季积雪积累期云量符合要求的35景高分一号(GF-1)影像为基础,将全色影像和多光谱影像融合为2 m分辨率影像,通过目视解译获取了研究区积雪的空间分布特征,结合改进后的30 m分辨率SRTM DEM,探讨了地形对积雪分布的影响。结果表明:积雪像元在研究区范围内占比为33.1%。积雪的垂直分布特征明显:积雪在高程带4000~5000 m(高海拔)处分布较集中,积雪面积占比为18.1%;在高程带0~2000 m、2000~3000 m和6000~7000 m处积雪面积占比均不到0.1%。积雪在北坡、东北坡的分布比例较高,均为15%以上;在南坡、西坡、西南坡、东南坡分布比例较低,均为10%左右。将基于GF-1影像获取的积雪分布分别与同日获取的根据MODIS V6积雪产品计算的积雪比例(MODIS FSC)和积雪分布的对比表明,64.4%的MODIS FSC像元绝对误差不超过10%,MODIS积雪分布产品对含雪像元的漏分率和误分率平均为33.8%和32.7%,说明MODIS积雪产品在研究区的精度还具有较高的不确定性,其对低覆盖积雪反演的精度较差。这表明利用MODIS积雪产品研究青藏高原东南部积雪的时空变化特征时还需要对其积雪反演算法进行改进,同时亟需加强地面观测和基于多源遥感数据的积雪研究。研究结果可为青藏高原东南部雪冰灾害防治提供支撑。  相似文献   

13.
MODIS雪深反演数学模型验证及分析   总被引:3,自引:1,他引:3  
在MODIS卫星遥感积雪监测的基础上,利用雪深反演数学模型、积雪指数NDSI和多光谱阈值等相结合的方法,对2004年以来新疆北疆地区的积雪分布状况进行了反演和计算,并利用2004年11月~2005年3月冬季北疆地区气象台站雪深数据和2004年12月~2006年1月加密野外实测雪深数据,对反演雪深数据进行了验证及分析,北疆各地除塔城地区反演精度为83.2%以外,其它地区反演精度达85.2%以上,平均反演精度达86.2%;野外实测数据验证反演精度达92%以上。  相似文献   

14.
用EOS/MODIS资料反演积雪深度参量   总被引:4,自引:1,他引:4  
利用EOS/MODIS可见光、近红外及短红外多通道资料以及新疆地区积雪深度气象台站实测资料等,在考虑积雪性质包括积雪粒子相态、积雪年龄等的差异以及积雪区的下垫面条件包括地表粗糙度、土地覆盖类型等的不同的情况下进行积雪分类,在此基础上,建立EOS/MODIS积雪深度反演模型,实现深度在30 cm以内的积雪深度反演的主要原理、思路及方法,并对模型的反演结果进行了验证。结果表明,利用该模型对30 cm以内的积雪进行深度反演计算,其精度能达到80%以上。  相似文献   

15.
陈鹏  王勇  张青  李悦 《干旱区地理》2020,43(2):434-439
风云三号D星(FY-3D)是我国新一代极轨气象卫星,中分辨率光谱成像仪Ⅱ(MERSI-Ⅱ)是其携带的核心传感器之一,MERSI-Ⅱ实现了云、气溶胶、水汽、陆地表面特性、海洋水色等大气、陆地、海洋参量的高精度定量反演。选取2018年7、8月无云时相的FY-3D/MERSI-Ⅱ数据对天山中段终年积雪进行归一化积雪指数(NDSI)的计算。结合高分辨率Landsat-8影像,利用混淆矩阵对FY-3D/MERSI-Ⅱ数据计算结果与同期MODIS日积雪产品数据MOD10A1进行精度对比分析。结果表明:FY-3D/MERSI-Ⅱ图像平均总体精度为0.855,MOD10A1图像平均总体精度为0.820,FY-3D/MERSI-Ⅱ积雪覆盖提取平均总体精度比MOD10A1积雪覆盖提取平均总体精度高0.035。FY-3D/MERSI-Ⅱ的Kappa系数平均值为0.659,MOD10A1的Kappa系数平均值为0.558,FY-3D/MERSI-Ⅱ的Kappa系数平均值大于MOD10A1的Kappa系数平均值。故FY-3D/MERSI-Ⅱ数据提取积雪覆盖面积精度更高,更接近高分辨率Landsat-8影像目视解译结果。  相似文献   

16.
由于冰雪的存在及缺乏地面观测站点资料,高寒地区的水文模拟研究一直面临很大的困难。遥感数据能够提供大范围时空尺度上的地面信息对无资料地区有很大帮助。MODIS数据具有较高的时空分辨率深受人们关注。本文以长江上游泥曲流域为例,探求将MODIS遥感数据与地面气温数据相结合对新安江模型径流模拟的帮助,方法步骤如下:(1)建立MODIS雪覆盖面积与流域周围站气温关系,获取气温阈值;(2)依据气温阈值判别降水形式并计算融雪水当量;(3)将雨雪分离后的降水信息输入新安江模型模拟径流,并与新安江模拟结果(未考虑雨雪分离)和实测径流进行比较。研究结果显示改进方案(考虑雨雪分离)模拟效果更好,将有助于提高新安江模型在高寒无资料地区的径流模拟精度,为高寒无资料地区水资源管理及生态需水研究提供帮助。  相似文献   

17.
利用MODIS和Landsat TM/ETM+遥感数据,得出研究区的积雪面积,同时结合精伊公路规划图及地形图,分析了公路沿线可能存在风吹雪和雪崩的危险区,并提出相应的防治措施。结果表明:研究区近5年来11月到次年3月是积雪最丰富时期,9月、10月、4月和5月积雪较少。近5年来积雪呈增加趋势,最大积雪时间集中在2009—2010年积雪季。MODIS积雪数据精度在积雪面积越大时,精度越高;积雪面积越小时,精度越低。精伊公路东线走廊K60以上路段和西线走廊K100以上路段风吹雪对公路影响较大;精伊公路北段的雪崩的可能性很小;东线走廊K60~K77段和西线走廊K90~K110段有一定的雪崩灾害;西线走廊K58~K90段有较大的雪崩危害。并提出防治措施。  相似文献   

18.
A major proportion of discharge in the Aksu River is contributed from snow-and glacier-melt water. It is therefore essential to understand the cryospheric dynamics in this area for water resource management. The MODIS MOD10A2 remotesensing database from March 2000 to December 2012 was selected to analyze snow cover changes. Snow cover varied significantly on a temporal and spatial scale for the basin. The difference of the maximum and minimum Snow Cover Fraction(SCF) in winter exceeded 70%. On average for annual cycle, the characteristic of SCF is that it reached the highest value of 53.2% in January and lowest value of 14.7% in July and the distributions of SCF along with elevation is an obvious difference between the range of 3,000 m below and 3,000 m above. The fluctuation of annual average snow cover is strong which shows that the spring snow cover was on the trend of increasing because of decreasing temperatures for the period of 2000-2012. However, temperature in April increased significantly which lead to more snowmelt and a decrease of snow cover. Thus, more attention is needed for flooding in this region due to strong melting of snow.  相似文献   

19.
Coupled hydrological and atmospheric modeling is an efficient method for snowmelt runoff forecast in large basins. We use short-range precipitation forecasts of mesoscale atmospheric Weather Research and Forecasting (WRF) model combining them with ground-based and satellite observations for modeling snow accumulation and snowmelt processes in the Votkinsk reservoir basin (184,319 km2). The method is tested during three winter seasons (2012–2015). The MODIS-based vegetation map and leaf area index data are used to calculate the snowmelt intensity and snow evaporation in the studied basin. The GIS-based snow accumulation and snowmelt modeling provides a reliable and highly detailed spatial distribution for snow water equivalent (SWE) and snow-covered areas (SCA). The modelling results are validated by comparing actual and estimated SWE and SCA data. The actual SCA results are derived from MODIS satellite data. The algorithm for assessing the SCA by MODIS data (ATBD-MOD 10) has been adapted to a forest zone. In general, the proposed method provides satisfactory results for maximum SWE calculations. The calculation accuracy is slightly degraded during snowmelt periods. The SCA data is simulated with a higher reliability than the SWE data. The differences between the simulated and actual SWE may be explained by the overestimation of the WRF-simulated total precipitation and the unrepresentativeness of the SWE measurements (snow survey).  相似文献   

20.
基于MODIS积雪产品的高亚洲融雪末期雪线高度遥感监测   总被引:4,自引:0,他引:4  
以2001—2016年逐日MODIS积雪产品为主要数据源,在高亚洲区域发展了大尺度融雪末期雪线高度的遥感提取方法,并对其2001—2016年的时空变化特征进行了分析。提取方法首先对逐日的MODIS积雪覆盖率产品进行去云处理,获得积雪覆盖日数(SCD)数据集;并用冰川年物质平衡观测数据、融雪末期Landsat数据对提取终年积雪的MODIS SCD阈值进行率定;最后以MODIS SCD提取的终年积雪面积结合地形“面积—高程”曲线实现大尺度融雪末期雪线高度信息的提取。结果表明:① 高亚洲融雪末期雪线高度的空间异质性较强,总体上呈南高北低的纬度地带性分布规律;并因受山体效应的影响,雪线高度由高海拔地区向四周呈环形逐渐降低的特点。② 高亚洲2001—2016年融雪末期雪线高度总体上表现为明显的增加趋势。在744个30 km的监测格网中,24.2%的格网雪线高度呈显著增加,而仅0.9%的格网呈显著下降。除兴都库什、西喜马拉雅外,其他地区雪线高度均表现为升高趋势,显著上升的地区主要分布在天山、喜马拉雅中东部和念青唐古拉山等,其中以东喜马拉雅升高最为显著(8.52 m yr -1)。③ 夏季气温是影响高亚洲融雪末期雪线高度变化的主要因素,两者具有显著的正相关关系(R = 0.64,P < 0.01)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号