首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xinjiang Tianshan is a serial natural property that has been nominated for World Heritage status.This paper presents a systematically comprehensive and comparative analysis of the heritage resources of Xinjiang Tianshan according to the World Heritage criteria.Its biological,ecological and aesthetic values,which are of global importance, are documented.It is concluded that Xinjiang Tianshan meets the world heritage criteria(vii)and (ix).Xinjiang Tianshan is compared with other mountain world heritage sites,mountains in Central Asia,the Tianshan Mountains outside China,and with the protected areas of the Tianshan Mountains on the Tentative List for World Heritage Sites,so as to provide objective data for the world heritage application.  相似文献   

2.
1INTRODUCTIONAtpresent,theresearchofnaturaldisastershasgotadvancesintimesequence,butitdevelopsslowlyinspacesequence,especialy...  相似文献   

3.
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5°C in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.  相似文献   

4.
Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period.  相似文献   

5.
The Changbai Mountains and the Appalachian Mountains have similar spatial contexts. The elevation, latitude, and moisture gradients of both mountain ranges offer regional insight for investigating the vegetation dynamics in eastern Eurasia and eastern North America. We determined and compared the spatial patterns and temporal trends in the normalized difference vegetation index (NDVI) in the Changbai Mountains and the Appalachian Mountains using time series data from the Global Inventory Modeling and Mapping Studies 3rd generation dataset from 1982 to 2013. The spatial pattern of NDVI in the Changbai Mountains exhibited fragmentation, whereas NDVI in the Appalachian Mountains decreased from south to north. The vegetation dynamics in the Changbai Mountains had an insignificant trend at the regional scale, whereas the dynamics in the Appalachian Mountains had a significant increasing trend. NDVI increased in 55% of the area of the Changbai Mountains and in 95% of the area of the Appalachian Mountains. The peak NDVI occurred one month later in the Changbai Mountains than in the Appalachian Mountains. The results revealed a significant increase in NDVI in autumn in both mountain ranges. The climatic trend in the Changbai Mountains included warming and decreased precipitation, and whereas that in the Appalachian Mountains included significant warming and increased precipitation. Positive and negative correlations existed between NDVI and temperature and precipitation, respectively, in both mountain ranges. Particularly, the spring temperature and NDVI exhibited a significant positive correlation in both mountain ranges. The results of this study suggest that human actives caused the differences in the spatial patterns of NDVI and that various characteristics of climate change and intensity of human actives dominated the differences in the NDVI trends between the Changbai Mountains and the Appalachian Mountains. Additionally, the vegetation dynamics of both mountain ranges were not identical to those in previous broader-scale studies.  相似文献   

6.
Mountain block recharge(MBR), an important water resource, is a widespread process that recharges lowland aquifers. However, little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan. Here, we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling. MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain. To verify the performance of the model, mean absolute error and root mean square error were used. Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m~3/yr, accounting for 2.2% of the total precipitation that falls in the mountains. Additionally, 53.3% of that precipitation enters the plain aquifer via runoff, totaling 2,652.68 million m~3/yr. The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains. Through numerical modeling of groundwater, MBR coming from bedrock was found to be significant, accounting for 14% of total aquifer recharge in the plain, only after the portion of runoff seepage. This research contributes to a deeper understanding of MBR, and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.  相似文献   

7.
Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km~2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km~2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.  相似文献   

8.
CLIMATICTRENDINDICATEDBYVARIATIONSOFGLACIERSANDLAKESINTHETIANSHANMOUNTAINS¥HuRuji;YangChuande;MaHong;JiangFengqing(XinjiangIn...  相似文献   

9.
气候变暖背景下高海拔山区融雪(冰)以及强降水引发的洪水愈加难以预测,通过山区雨雪分离可判定引发洪水的温度条件,从而为山洪准确预报提供简单而科学的参考依据。本研究以昆仑山提孜那甫河流域为例,基于流域内不同海拔气象站2012-2016年的降水以及温度数据,结合MOD10A2积雪数据,采用温度积分法和概率统计方法,利用研究期内的平均温度,确定出不同降水形态对应的温度条件,以达到雨雪分离的目的。研究结果表明,莫木克站最大温和积温分别达到20.91 ℃和51.82 ℃时,降水可判定为降雨,最大温和积温分别低于18.13 ℃,43.69 ℃时,降水可判定为降雪;库地站最大温和积温分别达到14.51 ℃,33.17 ℃时,降水可判定为降雨,最大温和积温分别低于13.57 ℃,31.68 ℃时,降水可判定为降雪;西合休站最大温和积温分别达到9.43 ℃,19.53 ℃时,降水可判定为降雨,最大温和积温分别低于8.22 ℃,19.4 ℃时,降水可判定为降雪。利用流域内气象站点附近乡镇的气象统计数据对温度条件及分离结果进行验证,在海拔2000 m以下、2000~3000 m以及3000 m以上不同海拔地区的准确率分别为92.86%、79.49%以及88.3%。本研究可为判别洪水类型和洪水预报提供科学参考。  相似文献   

10.
Stable oxygen isotopes in precipitation contain meaningful environmental information on a synoptic scale and can be applied to diagnose hydrometeorological processes.A series of rainstorms occurred at the southern Tianshan Mountains during the period from May to June 2013,and the event-based precipitation was sampled along the mountain range from west to east.Based on δ18 O values in precipitation samples as well as the corresponding meteorological parameters,the moisture transport paths during the sampling period were identified.In late-May(stage 1),isotopes in precipitation collected generally showed a depleting trend.In mid-June(stage 2),there was no coherent trend of isotopes in precipitation for these stations,and only isotope values in Aksu showed a continually depleting trend.Checking other meteorological proxies during the sampling period,the event-based precipitation isotopes sensitively reflected the moisture process.In central Asia,both the westerly and monsoon moisture can be delivered to cause extreme precipitation events,and the isotopic information provides an alternative tool to investigate the atmospheric processes.  相似文献   

11.
The characteristics of climatic change and river runoff, as well as the response of river runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p=0.05), while slightly increased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects river runoff by influencing temperature and precipita-tion. The NAO and precipitation had apparent significant correlations with the river runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s river runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased river runoff in the west of the northern Xinjiang.  相似文献   

12.
The poor distribution of meteorological stations results in a limited understanding of the precipitation pattern in the Tianshan Mountains. The spatial patterns of precipitation over the mid Tianshan Mountains were characterized based on the TRMM 3B43 monthly precipitation data. By comparing satellite estimates with observed data, it shows that TRMM 3B43 data underestimate the precipitation in mountain region. Regression models were developed to improve the TRMM 3B43 data, using geographic location and topographic variables extracted from DEM using GIS technology. The explained variance in observed precipitation was improved from 64% (from TRMM 3B43 products alone) to over 82% and the bias reduced by over 30% when location and topographic variables were added. We recalculated all the TRMM 3B43 monthly precipitation grids for the period 1998 to 2009 using the best regression models, and then studied the variation patterns of precipitation over the mid Tianshan Mountains. The results are well explained by a general understanding of the patterns of precipitation and orographic effects. This indicated that the Tianshan Mountains strongly influences the amount and distribution of precipitation in the region. This is highlighted by the confinement of the precipitation maxima to the windward (northern slope). And complex vertical changes in the provenance and distribution of precipitation, like that a negative increasing rate of precipitation in the vertical direction exists in the north but does not in south. The results have also revealed large gradients and different patterns in seasonal precipitation that are not simply related to elevation, the distribution of precipitation may also be affected by other seasonal factors such as the sources of moist air, wind direction and temperature.  相似文献   

13.
Snow cover is characterized by the high albedo, low thermal conductivity, and notable heat transition during phase changes. Thus, snow cover significantly affects the ground thermal regime. A comparison of the snow cover in high latitudes or high-altitude snowy mountain regions indicates that the eastern Tianshan Mountains (China) show a characteristically thin snow cover (snow depth below 15 cm) with remarkable temporal variability. Based on snow depth, heat flux, and ground temperature from 2014 to 2015 in the Urumqi River source, the spatialtemporal characteristics of snow cover and snow cover influences on the thermal conditions of active layer in the permafrost area were analyzed. During the autumn (Sept. - Oct.), thin and discontinuous snow cover can noticeably accelerate the exothermic process of the ground, producing a cooling effect on the shallow soil. During the winter (Nov. - Mar.), it is inferred that the effective thermal insulation starts with snow depth exceeding 10 cm during early winter. However, the snow depth in this area is generally below 15 cm, and the resulting snow-induced thermal insulation during the winter is very limited. Due to common heavy snowfalls in the spring (Apr. to May), the monthly mean snow thickness in April reached to 15 cm and remained until mid-May. Snow cover during the spring significantly retarded the ground warming. Broadly, snow cover in the study area exerts a cooling effect on the active layer and plays a positive role in the development and preservation of permafrost.  相似文献   

14.
全球气候变化背景下,“一带一路”沿线国家农田生态系统脆弱性直接影响着所在国家或地区的粮食安全问题。本文基于农田生态系统总初级生产力(GPP),使用定量的脆弱性评价方法,系统分析了“一带一路”沿线国家农田生态系统脆弱性的空间分布特征及其对气候变化的响应。结果表明:① “一带一路”沿线国家农田生态系统脆弱性普遍处于较高的程度,77.1%的农田生态系统表现为中度和重度脆弱,且农田生态系统脆弱性呈现出明显的空间分异格局,中亚、西亚和蒙古脆弱性较高,中国、东南亚和南亚的脆弱性处于中等水平,俄罗斯、独联体和中东欧脆弱性较低;② 1980年以来“一带一路”沿线农田生态系统暖干化趋势明显,暖干化区域面积占64.06%,暖干化是“一带一路”沿线国家农田生态系统气候变化的主要特征;③ 农田生态系统脆弱性由低到高的气候变化区依次为暖湿区、冷湿区、暖干区、冷干区。暖湿区农田生态系统脆弱性最低,而冷干区农田生态系统脆弱性最高。气温和降水的变化及其耦合关系控制着农田生态系统脆弱性程度,其中降水变化趋势是影响农田生态系统脆弱性的重要因子。本研究为“一带一路”沿线国家应对和解决粮食安全问题,促进农业可持续发展,为加强各国之间的农业国际合作提供科学依据和有益参考。  相似文献   

15.
Deforestation and other Land Use and Land Cover (LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper, Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period. Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency. The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.  相似文献   

16.
伊宁至阿克苏铁路由北至南需2次翻越天山, 北侧那拉提山越岭段自然气候恶劣、地质环境复杂, 线路方案的设计、选择明显受地质条件的约束, 前期选线勘测需要彻底摸清区内各类地质问题。在分析区域地质构造背景的基础上, 采用高分二号、Landsat8卫星影像和航空高分辨率影像等多源数据, 对区内存在的恰普河中游及巩乃斯镇东滑坡群、近EW-NEE向地震活动断裂带、巩乃斯河上游危岩落石区等关键地质问题开展了详细的解译分析, 结合现场调查, 对其发育位置、规模、形态、稳定性等进行了评价, 为外业工程地质勘察、线路方案比选提供了可靠的基础资料, 充分发挥了遥感技术在复杂山区铁路勘察中的指导作用。   相似文献   

17.
The Arctic sea ice minimum records appeared in the Septembers of 2007 and 2012, followed by high snow cover areas in the Northern Hemisphere winters. The snow cover distributions show different spatial patterns in these two years: increased snow cover in Central Asia and Central North America in 2007, while increased snow cover in East Asia and northwestern Europe in 2012. The high snow cover anomaly shifted to higher latitudes in winter of 2012 compared to 2007. It is noticed that the snow cover had positive anomaly in 2007 and 2012 with the following conditions: the negative geopotential height and the related cyclonic wind anomaly were favorable for upwelling, and, with the above conditions, the low troposphere and surface air temperature anomaly and water vapor anomaly were favorable for the formation and maintenance of snowfalls. The negative geopotential height, cyclonic wind and low air temperature conditions were satisfied in different locations in 2007 and 2012, resulting in different spatial snow cover patterns. The cross section of lower air temperature move to higher latitudes in winter of 2012 compared to 2007.  相似文献   

18.
The dynamics of snow cover differs greatly from basin to basin in the Songhua River of Northeast China, which is attributable to the differences in the topographic shift as well as changes in the vegetation and climate since the hydrological year (HY) 2003. Daily and flexible multi-day combinations from the HY 2003 to 2014 were produced using Moderate Resolution Imaging Spectroradiometer (MODIS) from Terra and Aqua remote sensing satellites for the snow cover products in the three basins including the Nenjiang River Basin (NJ), Downstream Songhua River Basin (SD) and Upstream Songhua River Basin (SU). Snow cover duration (SCD) was derived from flexible multiday combination each year. The results showed that SCD was significantly associated with elevation, and higher SCD values were found out in the mountainous areas. Further, the average SCDs of NJ, SU and SD basins were 69.43, 98.14 and 88.84 d with an annual growth of 1.36, 2.04 and 2.71 d, respectively. Binary decision tree was used to analyze the nonlinear relationships between SCD and six impact factors, which were successfully applied to simulate the spatial distribution of depth and water equivalent of snow. The impact factors included three topographic factors (elevation, aspect and slope), two climatic factors (precipitation and air temperature) and one vegetation index (Normalized Difference Vegetation Index, NDVI). By treating yearly SCD values as dependent variables and six climatic factors as independent variables, six binary decision trees were built through the combination classification and regression tree (CART) with and without the consideration of climate effect. The results from the model show that elevation, precipitation and air temperature are the three most influential factors, among which air temperature is the most important and ranks first in two of the three studied basins. It is suggested that SCD in the mountainous areas might be more sensitive to climate warming, since precipitation and air temperature are the major factors controlling the persistence of snow cover in the mountainous areas.  相似文献   

19.
Glacier variations in the Tibetan Plateau and surrounding mountain ranges in China affect the livelihood of over one billion people who depend on water from the Yellow, Yangtze, Brahmaputra, Ganges and Indus rivers originating in these areas. Based on the results of the present study and published literature, we found that the glaciers shrank 15.7% in area from 1963 to 2010 with an annual area change of -0.33%. The shrinkage generally decreased from peripheral mountain ranges to the interior of Tibet.The linear trends of annual air temperature and precipitation at 147 stations were 0.36°C(10a)~(-1) and 8.96 mm(10a)~(-1) respectively from 1961 to 2010. The shrinkage of glaciers was well correlated with the rising temperature and the spatial patterns of the shrinkage were influenced by other factors superimposed on the rising temperature such as glacier size, type, elevation, debris cover and precipitation.  相似文献   

20.
新疆NDVI时空特征及气候变化影响研究   总被引:1,自引:0,他引:1  
基于新疆50个气象测站2003-2010年逐日降水、气温资料,结合逐月归一化植被覆盖影像资料,利用趋势分析、R/S分析、模糊C均值聚类、图像处理等方法,系统分析了全疆NDVI时空变化特征及其可持续性,并探究NDVI与气候因子(气温、降水)之间的相关性。研究表明:植被覆盖及气象因子年际间差异不大,呈现出整体稳定的态势,但年内变化明显。北疆/天山北坡水热条件优良、植被长势最好,且植被长势对气候因子的滞后效应并不明显且滞后时间短。天山南坡/天山东段次之,而南疆植被覆盖程度最差,南疆/天山南坡植被长势对气候因子(降水、气温)存在明显的滞后效应,植被生长受气温、降水限制性更大,且气温作为主要因子,对天山南坡植被生长的限制作用表现得更为突出。总体上,新疆植被覆盖呈持续性变化,现有植被覆盖情况基本保持不变,但呈退化趋势的面积大于得到改善的面积,在一定程度上与人类活动有很大关系,探查植被长势的变化趋势并及时做出相应调整,不仅能为新疆地区的植被保护以及植被恢复工作提供一定的科学依据,更能够为合理有效地安排农作物生产提供重要的理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号