首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
中国历史山洪灾害分布特征研究   总被引:2,自引:0,他引:2  
中国山洪灾害发生频繁,区域分布差异性明显且难以预报,关于山洪灾害分布特征的研究对于山洪灾害预警、山洪灾害防治区规划等具有重要意义。本文以历史山洪灾害点为基础数据,以6个一级地貌大区(东部平原低山丘陵大区(Ⅰ)、东南低山丘陵平原大区(Ⅱ)、华北-内蒙东中山高原大区(Ⅲ)、西北高中山盆地高原大区(Ⅳ)、西南中低山高原盆地大区(Ⅴ)、青藏高原高山极高山盆地谷地大区(Ⅵ))为基本分析单元,统计对比不同地貌区域内山洪灾害数目、密度,并进一步分析山洪灾害随高程、高程标准差以及50年一遇6 h雨量(H6-50)的分布情况,从而获得中国历史山洪灾害的主要分布特征。结果表明:山洪灾害集中分布于东南低山丘陵平原大区及西南中低山高原盆地大区,占全国山洪灾害的60%左右。6 h雨量(H6-50)处于240~280 mm区域山洪灾害密度最大。高程标准差小于30 m区域山洪灾害密度较大。东南低山丘陵平原大区高程处于10~50 m间,高程标准差小于30 m,雨量(H6-50)在150~270 mm间地区山洪灾害密度较大;西南中低山高原盆地大区山洪灾害集中分布于高程600 m以下,高程标准差小于50 m,雨量(H6-50)大于120 mm地区。以地貌区划结果为基本分析单元相对于行政界线而言更有助于分析山洪灾害分布特征。  相似文献   

2.
The Western Carpathians are located out of world main natural hazardous zones. Human casualties are related more to snow avalanches in connection with mountain hiking, some individuals yearly by flooding and rarely by forest fires. Economic lost about 0.1 to 0.2 %, exceptionally up to 0.8 % of the gross domestic product (GDP) proportionally to the Carpathian regions of particular countries. Natural disasters are linked, except of the above mentioned events, to infrequent small and medium scale earthquakes, landslides, and erosion. Records of the most harmful natural events are found in archives since the 16^th century. Their systematic study and factor analysis started from the end of the 19^th century, and protective measures and organization of impact mitigation developed during the 20^th century to minimize the risk.  相似文献   

3.
Introduction According to the definition of the United Nations Educational, Scientific and Cultural Organization (UNESCO), natural hazards are naturally-occurring physical phenomena caused either by rapid or slow onset events having atmospheric, geologic and hydrologic origins on solar, global, regional, national and local scales. They include earthquakes, volcanic eruptions, landslides, tsunamis, floods and drought. Natural hazards must not automatically cause disasters (UNESCO 2005). …  相似文献   

4.
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change.  相似文献   

5.
An understanding 0f variati0ns in vegetati0n c0ver in resp0nse t0 climate change is critical f0r predicting and managing future terrestrial ec0system dynamics. Because scientists anticipate that m0untain ec0systems will be m0re sensitive t0 future climate change c0mpared t0 0thers, 0ur 0bjectives were t0 investigate the impacts 0f climate change 0n variati0n in vegetati0n c0ver in the Qilian M0untains (QLM), China, between 2000 and 2011. T0 acc0mplish this, we used linear regressi0n techniques 0n 250-m MODIS N0rmalized Difference Vegetati0n Index (NDVI) datasets and mete0r0l0gical rec0rds t0 determine spati0temp0ral variability in vegetati0n c0ver and climatic fact0rs (i.e. temperature and precipitati0n). Our results sh0wed that temperatures and precipitati0n have increased in this regi0n during 0ur study peri0d. In additi0n, we f0und that gr0wing seas0n mean NDVI was mainly distributed in the vertical z0ne fr0m 2,700 m t0 3,600 m in elevati0n. In the study regi0n, we 0bserved significant p0sitive and negative trends in vegetati0n c0ver in 26.71% and 2.27% 0f the vegetated areas. C0rrelati0n analyses indicated that rising precipitati0n fr0m May t0 August was resp0nsible f0r increased vegetati0n c0ver in areas with p0sitive trends in gr0wing seas0n mean NDVI. H0wever, there was n0 similar significant c0rrelati0n between gr0wing seas0n mean NDVI and precipitati0n in regi0ns where vegetati0n c0ver declined thr0ugh0ut 0ur study peri0d. Using spatial statistics, we f0und that veeetati0n c0ver freauentlvdeclined in areas within the 2,500-3,100 m vertical z0ne, where it has steep sl0pe, and is 0n the sunny side 0f m0untains. Here, the p0sitive influences 0f increasing precipitati0n c0uld n0t 0ffset the drier c0nditi0ns that 0ccurred thr0ugh warming trends. In c0ntrast, in higher elevati0n z0nes (3,900-4,500 m) 0n the shaded side 0f the m0untains, rising temperatures and increasing precipitati0n impr0ved c0nditi0ns f0r vegetati0n gr0wth. Increased precipitati0n als0 facilitated vegetati0n gr0wth in areas experiencing warming trends at l0wer elevati0ns (2,000-2,400 m) and 0n l0wer sl0pes where water was m0re easily c0nserved. We suggest that spatial differences in variati0n in vegetati0n as the result 0f climate change depend 0n l0cal m0isture and thermal c0nditi0ns, which are mainly c0ntr0lled by t0p0graphy (e.g. elevati0n, aspect, and sl0pe), and 0ther fact0rs, such as l0cal hydr0l0gy.  相似文献   

6.
本文基于Landsat影像数据获取天山博格达自然遗产地土地覆盖分类,结合归一化植被指数(NDVI)和数字高程模型(DEM)构建“DEM-NDVI-土地覆盖分类”散点图分析研究区植被受海拔和坡向的水热空间变化影响的分布特征,通过概率统计分析提取博格达遗产地山地垂直带,并结合研究区的气温、降水数据和NDVI变化特征分析垂直带变化的原因。研究结果表明:① 本文利用“DEM-NDVI-土地覆盖分类”散点图,揭示了研究区1989年和2016年的NDVI值和分类类别随着海拔上升的变化特征,其中NDVI值随着海拔上升呈现“倒U形”变化,而不同分类类别在一定的海拔区间内呈现出聚集效应,且不同分类类别有明显的高程界限。② 1989年和2016年博格达遗产地山地垂直带分带上限分别为:1278 m和1185 m(温带荒漠草原带)、1784 m和1759 m(山地草原带)、2706 m和2730 m(山地针叶林带)、3272 m和3293 m(高山草甸带)、3636 m和3690 m(高山垫状植被带)。③ 博格达遗产地1989年和2016年山地垂直带受区域气温升高和降雨增加的影响有较为明显的改变,其中温带荒漠草原带最为敏感,其上限变化最大,向下收缩93 m;山地针叶林带的分布范围则向两侧扩张49 m;山地草甸带带宽基本保持不变,但整体上移了约20 m;冰雪带则受到全球气候变暖的影响向上退缩54 m。  相似文献   

7.
古雪线直接反映了冰期时的气候特征,因此雪线是古冰川研究最终要解决的问题。2017年笔者等基于蒙山雪线的初步研究,发现东亚地区存在的雪线低洼区,采用了东亚冷槽的概念来表述该槽状雪线低洼区,并初步绘制了东亚冷槽的雪线高程。本文主要介绍了山东段(蒙山-崂山)的研究情况。根据山东蒙山、崂山34个光释光、宇生核素等方法获得的冰碛年龄数据及对应冰期雪线高程研究,表明崂山的雪线比蒙山要低,且在MIS6之前的冰期,崂山东侧冰碛多被现代海面淹没。研究表明,我国东部的气候敏感度要明显强于西部高原区,冰期时强劲的北路寒潮是我国东部地区冰川形成的核心气候因素。  相似文献   

8.
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5°C in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.  相似文献   

9.
为了研究云中微物理量与台风降水的关系,选取0908号台风"莫拉克"作为个例,利用中国自主研发的全球区域同化预报系统对台风引起的暴雨过程进行了数值模拟。该模式系统中包含有详细的云微物理过程。结合TRMM卫星资料、MODIS云顶温度资料、FY-2卫星云图以及常规地面观测等资料与模式结果进行对比分析。分析结果表明,此次强降水主要发生在福建大部分地区以及浙江东南部地区,模拟6小时累积降水最大值超过90m,模式对此次暴雨的雨带位置及其走向都有较好的模拟。台风中云微物理量的垂直分布基本可以分为3层,由冰晶与雪组成的冰相层,一般位于100~400hPa;由云水和雨水组成的液相层,一般位于600hPa之下,以及由霰与云水、雨水形成的混合层,主要分布在400~600hPa。霰在暖区的融化以及云水、雨水的碰并是降水的主要来源。  相似文献   

10.
SNOW HAZARD REGIONALIZATION IN CHINA   总被引:1,自引:1,他引:0  
For the zoning of snow hazard in China, on the principles of (a) comprehensive analysis integrated with dominant factors, (b) multi-level division, and (c) serving the agriculture and stock-raising, transportation and communication, we first classified China into two large zones according to the situation of snow or no snow distribution. Secondly, based on the climate and landform, properties of snow cover and main features of snow hazard, the large zone of snow hazard can be classified into three second-level regions. In order to obviously reflect the difference of snow cover quantity and snow hazard type as well as hazardous degree, twenty subregions (third-level) of snow hazard are further divided in detail. In addition, the boundaries and the principal features of the differences between the various snow hazard regions are provided.  相似文献   

11.
积雪是地表最活跃的自然要素之一,其动态变化对气候、环境以及人类生活都产生了重要影响。本文利用MODIS积雪产品和IMS雪冰产品,首先通过Terra、Aqua双星合成和临近日合成去除MODIS积雪产品中的部分云像元,再与IMS融合,获取了青藏高原2002-2012年逐日无云积雪覆盖产品,并逐像元计算每个水文年的积雪覆盖日数(SCD)、积雪开始期(SCS)和积雪结束期(SCE),分析了不同生态分区积雪的时空变化特征,以及积雪开始期和结束期与温度、降水的关系。结果表明:青藏高原积雪分布存在明显的空间差异,南部喜马拉雅山脉和念青唐古拉山地区以及西部帕米尔高原和喀喇昆仑山脉为SCD的2个高值区,年均积雪日数在200 d以上。18.1%的区域SCS表现出明显的提前趋势,主要集中在青藏高原中东部;羌塘高原南部、念青唐古拉山西段以及川西地区有显著推迟趋势,占高原面积的8.5%。23.2%的区域SCE显著推迟,主要集中在果洛那曲高寒区、昆仑山区和念青唐古拉山地区;而仅有6.9%的区域表现出提前趋势,主要分布在高原西南部。总体上,不同生态单元内积雪开始与结束期受温度、降水的影响差异很大,表现出不同的空间格局与演变趋势。  相似文献   

12.
The multi-model assessment of glaciohydrological regimes can enhance our understanding of glacier response to climate change. This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge. This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB) under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM) and a distributed Glacio-hydrological Degree-day Model(GDM). Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988-1992 and 1993-1997. Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor, temperature, and precipitation gradients. The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment. However, MPDDM estimated 68% of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon, while GDM estimated 14% rain and baseflow contribution. Likewise, MPDDM calculated 32%, and GDM generated 86% of the annual river runoff from snow and ice melt. MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation, respectively. Similarly, GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period. The snow and ice melt is significant in sustaining river flow in the SRB, and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability. Based on the sensitivity analysis, both models' outputs are highly sensitive to the variation in temperature. Furthermore, compared to MPDDM, GDM simulated considerable variation in the river discharge in climate scenarios, RCP4.5 and 8.5, mainly due to the higher sensitivity of GDM model outputs to temperature change. The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components, unlike one reservoir baseflow module used separately in MPDDM. The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.  相似文献   

13.
Human settlements are the place where human beings live,among which the rural settlements can be regarded as a reflection of human-land relationship in mountain areas because their vertical distribution is greatly influenced by the specific geographical environment and ecological conditions of mountains.Based on field investigation,this paper uses physical,geographical,and ecological theories to make a comprehensive study of rural settlements and mountain disasters in the upper Min River,which is an ecologically fragile area with high-frequency disasters(collapse,landslide,debris flow,etc.) and a minority inhabit district.By applying these modern scientific theories,this paper attempts to shed some light on the relationship between rural settlements and mountain disasters.Consequently,an in-depth understanding of this relationship was achieved as follows:(1) Rural settlements and mountain disasters are mainly distributed in the intercepted flows of water and soil; and both quantity and quality of arable lands in mountains are important indicators of these flows.(2) The Small Watershed Management Project is a complex system of rural settlements and mountain disasters that interacts with and constrains the ecological system.By this project,the human survival will be better guaranteed.Being fundamental for the ecological reconstruction,the coupling mechanism of rural settlements and mountain disasters is not only an engine to promote harmonious development between human and nature,but also a bridge to link them.  相似文献   

14.
The aim of this study was to better understand the mechanisms of regional climate variation in mountain ranges with contrasting aspects as mediated by changes in global climate. It may help predict trends of vegetation variations in native ecosystems in natural reserves. As measures of climate response, temperature and precipitation data from the north, east, and south-facing mountain ranges of Shennongjia Massif in the coldest and hottest months(January and July), different seasons(spring, summer, autumn, and winter) and each year were analyzed from a long-term dataset(1960 to 2003) to tested variations characteristics, temporal and spatial quantitative relationships of climates. The results showed that the average seasonal temperatures and precipitation in the north, east, and south aspects of the mountain ranges changed at different rates. The average seasonal temperatures change rate ranges in the north, east, and south-facing mountain ranges were from –0.0210℃/yr to 0.0143℃/yr, –0.0166℃/yr to 0.0311℃/yr, and –0.0290 ℃/yr to 0.0084℃/yr, respectively, and seasonal precipitation variation magnitude were from –1.4940 mm/yr to 0.6217 mm/yr, –1.6833 mm/yr to 2.6182 mm/yr, and –0.8567 mm/yr to 1.4077 mm/yr, respectively. The climates variation trend among the three mountain ranges were different in magnitude and direction, showing a complicated change of the climates in mountain ranges and some inconsistency with general trends in global climate change. The climate variations were significantly different and positively correlated cross mountain ranges, revealing that aspects significantly affected on climate variations and these variations resulted from a larger air circulation system, which were sensitive to global climate change. We conclude that location and terrain of aspect are the main factors affecting differences in climate variation among the mountain ranges with contrasting aspects.  相似文献   

15.
We developed a vegetation geo-climatic zonation incorporating the zonal concept, gradient and discriminant analysis in Wasatch Range, northern Utah, USA. Mountainous forest ecosystems were sampled and described by vegetation, physiographic features and soil properties. The Snowpack Telemetry and National Weather Service Cooperative Observer Program weather station networks were used to approximate the climate of sample plots. We analysed vegetation and environmental data using clustering, ordination, classification, and ANOVA techniques to reveal environmental gradients affecting a broad vegetation pattern and discriminate these gradients. The specific objective was to assess and classify the response of the complex vegetation to those environmental factors operating at a coarse-scale climatic level. Ordination revealed the dominant role of regional, altitude-based climate in the area. Based on vegetation physiognomy, represented by five tree species, climatic data and taxonomic classification of zonal soils, we identified two vegetation geo-climatic zones: (1) a montane zone, with Rocky Mountain juniper and Douglas-fir; and (2) a subalpine zone, with Engelmann spruce and subalpine fir as climatic climax species. Aspen was excluded from the zonation due to its great ecological amplitude. We found significant differences between the zones in regional climate and landformgeomorphology/soils. Regional climate was represented by elevation, precipitation, and air and soil temperatures; and geomorphology by soil types. This coarsescale vegetation geo-climatic zonation provides a framework for a comprehensive ecosystem survey, which is missing in the central Rocky Mountains of the United States. The vegetationgeoclimatic zonation represents a conceptual improvement on earlier classifications. This framework explicitly accounts for the influence of the physical environment on the distribution of vegetation within a complex landscape typical of the central Rocky Mountains and in mountain ranges elsewhere.  相似文献   

16.
全球变暖导致气象灾害频发,尤其是极端天气事件。极端温度对公共健康的影响已成为当今研究的热点问题之一。相比于发达国家,中国在该领域研究起步较晚。虽然已有出色的成果,但在以下3个方面还略显不足:① 大多数研究基于一个城市或几个城市,缺乏基于大量数据的区域尺度的研究;② 已有研究往往按地理因素或行政单位来划分区域,而忽视区域内部温度的异质性;③ 相比高温热浪,鲜少有研究关注低温冷害的影响。针对上述问题,本文收集了中国疾病预防控制中心2007-2012年全国127个站点的数据,利用分布式滞后非线性模型,探究了中国5个温度带温度与居民非意外死亡之间的暴露-反应曲线。在此基础上,定义当地温度分布1%处的温度为极端低温,根据温度-死亡风险曲线,计算了冷害造成的死亡风险。结果表明,不同温度带的温度-死亡关系曲线呈现U型或J型。极端低温对北亚热带影响最小,其相对风险为1.27(95%CI: 0.94-1.72);对中亚热带影响最大,其相对风险为1.93(95%CI: 1.08-3.60)。随着温度带温度的升高,低温冷效应的影响呈现“M”型,这一特征与不同温度带经济发展有关。因此,不同地区的政府除了应着力提高地区经济发展外,还应根据地区特征,采取更积极有效的措施来应对低温冷害可能给当地公共健康造成的威胁。  相似文献   

17.
Regional climate models have become the powerful tools for simulating regional climate and its change process and have been widely used in China. Using regional climate models, some research results have been obtained on the following aspects: 1) the numerical simulation of East Asian monsoon climate, including exceptional monsoon precipitation, summer precipitation distribution, East Asian circulation, multi-year climate average condition, summer rain belt and so on; 2) the simulation of arid climate of the western China, including thermal effect of the Qinghal-Tibet Plateau, the plateau precipitation in the Qilian Mountains; and the impacts of greenhouse effects (CO2 doubling) upon climate in the western China; and 3) the simulation of the climate effect of underlying surface changes, including the effect of soil on climate formation, the influence of terrain on precipitation, the effect of regional soil degradation on regional climate, the effect of various underlying surfaces on regional climate, the effect of land-sea contrast on the climate formulation, the influence of snow cover over the plateau regions on the regional climate, the effect of vegetation changes on the regional climate, etc. In the process of application of regional climate models, the preferences of the models are improved so that better simulation results are gotten. At last, some suggestions are made about the application of regional climate models in regional climate research in the future.  相似文献   

18.
基于遥感解译、野外调查、光释光(OSL)测年和无人机地形测绘,对大别山东麓桐城-太湖段河流阶地发育特征与变形情况进行初步研究。结果表明:1)大别山东麓河流阶地发育较差,各中小型河流普遍发育一级阶地,少数大型河流发育2级阶地;2)大别山东麓河流T1阶地形成时代为晚更新世晚期至全新世早期(约25 ka BP~12 ka BP),T2阶地形成时代为晚更新世中期(约55 ka BP);3)郯庐断裂带大别山东麓段自河流T2阶地形成以来未发生明显活动,该段最新活动时代为中更新世。  相似文献   

19.
Mountainous basins like the Upper Indus Basin(UIB) of Gilgit Baltistan(GB) are dependent on seasonal snowmelt and glacier melt. Monitoring of the snow-covered area(SCA) is not only vital for the overall hydrology of the Indus basin but also important to the sustainable agriculture and hydropower system. The snow-covered area in the UIB of GB was investigated for changes over the last 18 years using the Moderate Resolution Imaging Spectroradiometer(MODIS) snow product. The study area was divided into five elevation zones ranging from 877-8564 meters above sea level(m ASL). In contrast to the global cryosphere related studies, SCA in the UIB is slightly increasing. Elevation based SCA analysis also indicated that SCA is slightly increasing in each elevation zone. However, a significant amount of snow is concentrated in areas above 5000 m ASL. Due to the strong correlation between SCA and precipitation, the precipitation data also follow a similar trend. Analysis of the climatic data suggests a statistically significant increase in total monthly precipitation and relative humidity, a slight decrease in mean monthly temperature and a significant upward tendency in monthly solar irradiance data. All these trends in combination with the increasing trend in global precipitation, winter westerly disturbances and orographic precipitation are the important factors behind the slightly increasing SCA in the study area. Our results though constrained by short observation period mainly contribute to the understanding of advancing snow cover and glaciers in Hindukush Karakoram.  相似文献   

20.
Precipitation type estimation and validation in China   总被引:7,自引:1,他引:6  
The results from three methods aimed at improving precipitation type(e.g., rain, sleet, and snow) estimation are presented and compared in this paper. The methods include the threshold air temperature(AT), threshold wet bulb temperature(WBT) and Koistinen and Saltikoff(KSS) methods.Dot graphs are plotted to acquire the threshold air temperature or the threshold wet bulb temperature using daily averaged air temperature, wet bulb temperature and precipitation data at 643 stations from 1961 to 1979(precipitation types are not labeled in the database from 1980 to present) in China. The results indicate that the threshold AT or WBT methods are not able to differentiate rain, sleet and snow in the most regions in China; sleet is difficult to differentiate from other precipitation types based on the two threshold methods. Therefore, one threshold AT and WBT method was used in this study to differentiate rain and snow. Based on GaussianKriging interpolation of threshold air temperature(T0and wet bulb temperature(Tw), the T0 and Tw contour lines and contour surfaces are calculated for China.Finally, a comparison between the KSS, AT and WBT methods are provided in which the KSS method is calculated based on air temperature and relative humidity. The results suggest that the KSS method is more appropriate for water phase estimation than are the other methods; the maximum precision for rain and snow is 99% and 94%, respectively. The AT method performs better than the WBT method when the critical air temperature is 2°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号