首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 40Ar/39Ar method with stepwise heating was used to date phengite and glaucophane in the contact zone of garnet glaucophanite an omphacite-garnet rock (eclogite) from the lower unit of the Maksyutov metamorphic complex. The correlation of the measured age and the sizes of the phengite flakes indicates that the behavior of radiogenic Ar in them was controlled by the mechanisms of volumetric diffusion. Taking into account the fact that all of the rocks have the same thermal history, the dates most close to the age of metamorphism are those of the largest phengite flakes from garnet glaucophanite: 392 Ma. The age values obtained on phengite from an omphacite-garnet rock sampled at the maximum distance from the contact are equal to 378 Ma and correspond to the time when the rocks cooled to temperatures below 350°C. The results of numerical simulations indicate that the metamorphic age is no younger than 400 Ma, and the linear cooling rate can be estimated at 3.40 ?0.75/+1.24°C/m.y. The maximum values of the phengite ages are consistent with the dates of glaucophane from three rock samples: 389–411 Ma.  相似文献   

2.
The Maksyutov complex (Southern Urals, Russia) is a well-preserved example of subduction-related high-pressure metamorphism. One of its two litho-tectonic units consists of rocks that experienced eclogite-facies conditions. Published 40Ar/39Ar data on phengite, U/Pb data on rutile, and Sm/Nd mineral data define a cluster of ages around 370 to 380 Ma. Nevertheless, no consensus exists as to the detailed interpretation of data and the exact age of eclogitization. We present new, high-precision internal mineral Rb/Sr isochrons for eclogite-facies metabasites, felsic eclogites, and eclogite-facies quartz veins. Nine isochrons, mainly controlled by omphacite and white mica phases, give concordant ages with an average value of 375 ± 2 Ma (2σ). Microtextural features, such as prograde growth zoning in eclogite-facies phases, suggest that the assemblages dated formed at a stage of prograde metamorphism. Sr-isotopic equilibria among eclogite-facies phases, and among eclogite-facies fluid veins and the host rocks, indicate that our ages reflect crystallization ages, related to the prograde-metamorphic, probably fluid-mediated eclogitization reactions. This interpretation is reinforced by data from fluid-precipitated quartzitic eclogites, whose modal composition, together with intergrowth relationships, conclusively imply closed-system behavior after crystallization. The possible occurrence of a pre-375 Ma event of ultra-high-pressure metamorphism (UHPM) in the Maksyutov complex is disproved by isotope systematics, microtextures, and mineral zoning patterns.  相似文献   

3.
The Maksyutov metamorphic complex is the first locality where coesite pseudomorphs in garnet were described. The importance of this discovery was not understood until ultrahigh-pressure (UHP) metamorphism was independently recognized in the Dora Maira Massif of the western Alps and the Western Gneiss Region of Norway. The coesite pseudomorphs are significant because they suggest that the lower unit of the Maksyutov complex probably underwent UHP metamorphism at depths greater than 80 km in a paleosubduction zone.

The Maksyutov complex, situated in the southern Ural Mountains of Russia, forms an elongate N-S belt along the boundary between the European and Russian plates. The complex contains two superimposed tectonic unitsa lower eclogite-bearing schist unit that underwent high-pressure (HP) to UHP metamorphism and an upper meta-ophiolite unit subjected to blueschist/greenschist-facies metamorphism. The lower unit lithologies range from quartzofeldspathic, to graphite-rich, to mafic-ultramafic compositions. Mineral assemblages of the metamorphosed mafic rocks include: (1) coesite (as pseudomorphs) + garnet + omphacite + rutile + zoisite; (2) jadeite + quartz (coesite) + garnet + kyanite ± paragonite; (3) garnet + omphacite + barroisite + rutile; and (4) garnet + glaucophane + lawsonite. The upper unit is characterized by sheets of serpentinite that contain lawsonite-bearing metarodingite and rare calcium-rich eclogite. A metamorphosed melange containing blocks of ultramafic, eclogite, and quartz-jadeite rocks is situated between the two units.

The UHP metamorphic event that affected the lower unit is characterized by recumbent folding and shear zones. Subsequent large-scale, left-lateral strike-slip movements deformed both tectonic units. These deep-crustal metamorphic structures are oriented at high angles relative to the younger, N-S-trending Main Uralian thrust and the left-lateral strike-slip movement that displaced the Maksyutov block.  相似文献   

4.
The high-pressure/low-temperature Maksyutov Complex is situated in the southern Urals between the Silurian/Devonian Magnitogorsk island arc and the East European Platform. The elongated N-S-trending complex is made up of two contrasting tectono-metamorphic units. Unit 1 consists of a thick pile of Proterozoic clastic sediments suggested to represent the passive margin of the East European Platform. The overlying unit 2, composed of Paleozoic sediments, volcanic rocks, and a serpentinite mélange with rodingites, is interpreted as a remnant of the Uralian Paleo-ocean. Devonian eastward subduction of oceanic crust beneath the Magnitogorsk island arc resulted in an incipient blueschist-facies metamorphism of unit 2 indicated by lawsonite pseudomorphs in the rodingites. While unit 2 was accreted to the upper plate, subduction of the continental passive margin caused the high-pressure metamorphism of unit 1. Buoyancy-driven exhumation of unit 1 into the forearc region led to its juxtaposition with unit 2 along a retrograde top-to-the-ENE shear zone. Further exhumation of the Maksyutov Complex into its present tectonic position was accomplished by later shear zones that were active as normal faults and are exposed along the margins of the complex. At the western margin a top-to-the-west shear zone juxtaposed a low-grade remnant of a Paleozoic accretionary prism (Suvanyak Complex) above the Maksyutov Complex. Along the eastern margin a top-to-the-east shear zone and the brittle Main Uralian Normal Fault emplaced the Maksyutov Complex against the Magnitogorsk island arc in the hanging wall.  相似文献   

5.
http://www.sciencedirect.com/science/article/pii/S1674987114000607   总被引:3,自引:0,他引:3  
The Qinling Complex of central China is thought to be the oldest rock unit and the inner core of the North Qinling Orogenic Belt (NQOB). Therefore, the Qinling Complex is the key to understanding the pre- Paleozoic evolution of the NQOB. The complex, which consists of metagraywackes and marbles, un- derwent regional amphibolite-facies metamorphism. In this study, we constrained the formation age of the Qinling Complex to the period between the late Mesoproterozoic and the early Neoproterozoic (ca. 1062-962 Ma), rather than the Paleoproterozoic as previously thought. The LA-ICP-MS data show two major metamorphic ages (ca. 499 and ca. 420-400 Ma) for the Qinling Complex. The former age is consistent with the peak metamorphic age of the high- and ultra-high pressure (HP-UHP) rocks in the Qinling Complex, indicating that both the HP-UHP rocks and their country rocks experienced intensive regional metamorphism during the Ordovician. The latter age may constrain the time of partial melting in the NQOB between the late Silurian and early Devonian. The Qinling Complex is mostly affiliated with subduction-accretion processes along an active continental margin, and should contain detritus deposited in a forearc basin.  相似文献   

6.
A geochronological investigation of two rocks with an eclogitic assemblage (omphacite-garnet-quartz-rutile) from the High Himalaya using the Sm/Nd, Rb/Sr, U/Pb and Ar/Ar methods is presented here. The first three methods outline a cooling history from the time of peak metamorphism at 49±6 Ma recorded by Sm/Nd in garnet-clinopyroxene to the closure of Rb/Sr in phengite at 43±1 Ma and U/Pb in rutile at 39–40 Ma. The Sm/Nd isotopic system was fully equilibrated during eclogitization and has not been disturbed since; its mineral ages may date the peak metamorphic conditions (650±50°C at 13–18 kbar: Pognante and Spencer, 1991). The Ar/Ar data reveal the presence of substantial amounts of excess 40Ar in hornblende, and yield a statistically acceptable but geologically meaningless phengite plateau age of 81.4±0.2 Ma, inconsistent with Sm/Nd, Rb/Sr and U/Pb. This questions the use of such a chronometer for the dating of high-pressure assemblages. The results imply a Late Palaeocene or Early Eocene subduction of the northern Indian plate margin in NW Himalaya. The fact that eclogites are restricted to NW Himalaya may be the result of a peculiar p-T-t path associated with a high convergence rate during the first indentation, in contrast to the later and slow subduction in Central and Eastern Himalaya.  相似文献   

7.
Petrological and geochronological investigations were carried out on metamorphic rocks of the Veporic unit (Inner Western Carpathians) in northern Hungary. K/Ar and Ar/Ar data on micas and amphibole show only Alpine ages (mostly in the range of 87-95 Ma) in this basement unit. Thermobarometric calculations yield lower amphibolite facies peak conditions (ca. 550냴 °C and 9ǃ kbar) for the Eoalpine metamorphic event. Complex evolution of gneissic rocks is reflected by the presence of discontinuously zoned garnets, the cores of which may represent relics of a pre-Alpine (presumably Variscan) thermal event. Zircon fission track (FT) data in the narrow range of 75-77.5 Ma indicate that this portion of the Veporic unit was emplaced to shallow crustal levels already during the Senonian time. The relative minor difference between zircon FT and K/Ar or Ar/Ar ages suggests very rapid cooling during the Late Cretaceous, most probably related to the extensional unroofing of the Veporic core complex. The obtained cooling ages do not support previous models of Tertiary uplift and exhumation of the Veporic unit along the Hurbanovo-Diósjeni Line.  相似文献   

8.
The sequence of rock and ore formation at the Yermakovsky beryllium deposit is established on the basis of geological relationships and Rb-Sr and U-Pb isotopic dating. The Rb-Sr age of amphibolitefacies regional metamorphism is determined for quartz-biotite-plagioclase schist (266 ± 18 Ma) and dolomitized limestone (271 ± 12 Ma) of the Zun-Morino Formation. The U-Pb zircon age of premineral gabbro is 332 ± 1 Ma. The Rb-Sr age of gabbro is somewhat younger (316 ± 8.3 Ma), probably owing to the effect of Hercynian metamorphism on sedimentary rocks of the Zun-Morino Formation and gabbroic intrusion that cuts through it. The U-Pb zircon age of gneissose granite of the Tsagan Complex at the Yermakovsky deposit is 316 ± 2 Ma, i.e., close to the age of metamorphism superimposed on gabbro rocks. The U-Pb zircon age of preore granitic dikes, estimated at 325 ± 3 and 333 ± 10 Ma, is close to the age of gabbro. The Ar/Ar age of amphibole from a granitic dike (302.5 ± 0.9 Ma) probably displays a later closure of this isotopic system or the effect of superimposed processes. The Rb-Sr age of alkali syenite intrusion is 227 ± 1.9 Ma. The U-Pb zircon age of alkali leucogranite stock pertaining to the Lesser Kunalei Complex is 226 ± 1 Ma, while the Rb-Sr age of beryllium ore is 225.9 ± 1.2 Ma. These data indicate that beryllium ore mineralization is closely related in space and time to igneous rocks of the Lesser Kunalei Complex dated at 224 ± 5 Ma and varying from gabbro to alkali granite in composition. Thus, the preore Hercynian magmatism at the Yermakovsky deposit took place ∼330 Ma ago and was completed by metamorphism dated at 271–266 Ma. The ore-forming magmatism and beryllium ore mineralization are dated at 224 ± 5 Ma. Postore magmatic activity is scarce and probably correlated with tectonic melange of host rocks.  相似文献   

9.
West of the Main Uralian fault, the main suture in the southern Urals, 40Ar/39Ar apparent ages of amphibole, muscovite and potassium feldspar are interpreted as cooling ages. A fast exhumation of the metamorphic complex of Kurtinsky during Upper Carboniferous time is indicated by the small age difference (15 Ma) between cogenetic amphibole and muscovite. Differentiated movement in the footwall of the Main Uralian fault along strike is indicated by the age difference of 70 Ma between the metamorphic complexes of Kurtinsky (north) and Maksyutov (south). No Upper Paleozoic (Uralian) medium- to high-temperature event is recorded in 40Ar/39Ar data from the metamorphic complex of Beloretzk (MCB). An amphibole age of 718±5 Ma and the occurrence of mafic intrusions might signal the break-up of Rodinia and therefore indicate the rifting period followed by the separate movement of the "Beloretzk terrane". Muscovite ages of approximately 550±5 Ma, the unique pre-Ordovician tectonometamorphic evolution of the MCB and the Late Vendian sedimentary history of the western Bashkirian Megaanticlinorium (BMA) imply the existence of a Neoproterozoic orogeny at the eastern margin of Baltica. This orogeny might have been initiated by the accretion of the "Beloretzk terrane". The metamorphic grade of the overlain Silurian shales and the K/Ar microcline ages from the "Beloretzk terrane" give evidence for a new thermal event at approximately 370 Ma. A microcline age of 530–550 Ma obtained for the Vendian conglomerate in the western BMA suggests that a maximum temperature of approximately 200°C was reached in Cambrian or Vendian times. An orthoclase age (590–630 Ma) of the Vendian Zigan flysch deposits might be inherited from the eastern source area, the Cadomian orogen. An orthoclase age (910–950 Ma) from the Riphean Zilmerdak conglomerate coincides with a documented decrease in the subsidence rate of the Upper Riphean basin.  相似文献   

10.
The first results of U–Pb detrital zircons were obtained in three lithostratigraphic units of the Puncoviscana Complex in NW Argentina: Chachapoyas, Alto de la Sierra and Guachos Formations. The Chachapoyas Formation has a maximum sedimentation age of 569 Ma and a minimum age of 533 Ma, based on the U–Pb age of an intrusive porphyry granitic. The Alto de la Sierra Formation, composed by sandstones and volcaniclastic rocks, has a maximum age of 543 Ma. A maximum age of 517 Ma is here reported for the deposition of the Guachos Formation, the youngest unit. The contact between the Chachapoyas and Guachos formations is by a tectonic relation, and it's probably coincident with a stratigraphic unconformity between them (unconformity Tilcara I). The Lizoite Formation is overlying by an unconformity (Tilcara II unconformity) the Puncoviscana Complex, and represents the basal unit of the Mesón Group. The provenance zircon data for that formation indicate a maximum depositional age of 513 Ma.  相似文献   

11.
ABSTRACT

The Qinling orogen is a key area for understanding the processes of subduction and collision between the South China Block (SCB) and North China Block (NCB). The Wuguan Complex, distributed along the southern margin of the Shangdan suture zone, can provide important constraints on the age of collision between NCB and SCB and the tectonic evolution of the Qinling orogen in Late Paleozoic. Detrital zircons from meta-sedimentary rocks of the Wuguan Complex in the Danfeng-Shangnan area have an age spectrum with two main peaks at ~448 Ma and ~819 Ma, and two subordinate peaks at ~938 and ~1440 Ma, respectively, and are interpreted to have been derived from the North Qinling terrane (NQT). The petrographic and geochemical characteristics of the meta-sedimentary rocks indicate that they were deposited in a fore-arc basin along the southern margin of the NQT. The youngest detrital zircons yield a weighted mean age of 378 ± 3 Ma, indicating that the fore-arc deposition was continuing at least to this time, which implies that the Paleo-Qinling Ocean between the NCB and SCB was not finally closed until at least the late Devonian. In combination with regional data, we propose that sedimentary rocks of the Wuguan Complex might once have been a sequence of late Ordovician to late Devonian strata with intercalated mafic rocks, which has been dismembered by the later tectonic activity. It was metamorphosed during northward subduction of the Paleo-Qinling Ocean at ca. 320 Ma, and slowly cooled through ca. 350°C at ca. 247 Ma (muscovite 40Ar/39Ar age). It has recorded the detailed processes of subduction and collision between the NCB and SCB.  相似文献   

12.
The Elna Cu(Au)–porphyry deposit is one of the typical ore objects in the northeastern margin of the Argun superterrane facing the Mongolia–Okhotsk foldbelt. Mineralization includes zones of argillization with fine quartz veins in granodiorite of the Elna massif. The geochronological 40Ar/39Ar studies of hydrothermal near-ore metasomatites and magmatic rocks of the deposit show that the age of host granitoids is 126 ± 2 Ma, which corresponds to the upper age boundary of granitoids from the Burinda Complex, whereas the age of overprinted hydrothermal processes is 122–117 Ma. The age of mineralization correlates well with the age of the thermal event in East Asia. An intense stage of magmatism including both volcanic and intrusive forms occurred in this period.  相似文献   

13.
那丹哈达地体是中国境内唯一保存的古太平洋板块俯冲-增生的直接记录,包括跃进山杂岩和饶河增生杂岩。跃进山杂岩出露于那丹哈达地体的西缘,属于地体早期阶段的增生产物,对揭示古太平洋板块的俯冲-增生历史以及古亚洲洋构造域、泛大洋和古太平洋构造域之间的转换过程具有重要意义。本文通过野外地质调查明确了跃进山杂岩是一套构造混杂岩,主要由硅质岩、石英片岩、大理岩、二云母片岩、石英-云母片岩、变玄武岩、辉长岩、纯橄榄岩、异剥橄榄岩和单斜辉石岩组成。LA-MC-ICPMS锆石年代学测试结果表明变玄武岩原岩和辉长岩的形成时代分别为303±2Ma和278±2Ma,此外前人报道了跃进山杂岩中最年轻的玄武岩形成于232±5Ma,这些年代学研究成果限定了镁铁质-超镁铁质岩形成于303~232Ma。大量地球化学研究数据证实了跃进山杂岩中的玄武岩为洋中脊玄武岩(MORB)和洋岛玄武岩(OIB)。糜棱岩化绿泥石-绢云母板岩的绢云母^(40)Ar/^(39)Ar测试结果为193±1Ma,根据跃进山杂岩中最年轻的原岩时代为~220Ma,本文限定了跃进山杂岩的最终就位时代为220~193Ma。结合中国东北地区中生代增生杂岩及佳木斯地块和松辽地块东缘晚古生代至中生代的岩浆弧,本文揭示了中国东北地区古亚洲洋和泛大洋构造域向古太平洋构造域的转换发生在晚三叠世至早侏罗世。  相似文献   

14.
中条山前寒武纪岩石是洞悉华北克拉通前寒武纪基底构造演化的重要窗口之一,该区的前寒武纪岩系主要由涑水杂岩、绛县群、中条群、担山石群,以及西阳河群和汝阳群组成.本文以中条山地区涑水杂岩中古元古代花岗质片麻岩为研究对象,挑选其中的变形变质白云母进行激光40Ar/39Ar和常规40Ar/39Ar测年分析.激光40Ar/39Ar法获得的白云母等时年龄1830Ma±20Ma为白云母氩封闭温度年龄的最小估计,常规40Ar/39Ar法给出的白云母坪年龄1852Ma±11Ma为白云母氩封闭温度年龄的最佳估计.白云母1852Ma± 11Ma与先前获得的独居石电子探针U-Th-Pb主峰值年龄相近,并且与华北克拉通中部带的变质年龄一致,表明中条山地区涑水杂岩中古元古代花岗质片麻岩记录了古元古代晚期的一次变质作用事件.这一事件与华北克拉通中部怀安-吕梁-恒山-五台-赞皇等地的变质变形作用同时发生,揭示华北克拉通东、西部陆块沿中部带的碰撞拼合应发生在古元古代晚期,而非新太古代.  相似文献   

15.
The Solonker suture zone of the Central Asian Orogenic Belt (CAOB) records the final closure of the Paleo-Asian Ocean. The nature and timing of final collision along the Solonker suture has long been controversial, partly because of an incomplete record of isotopic ages and differing interpretations of the geological environments of key tectonic units. The Xilin Gol Complex, consisting of strongly deformed gneisses, schists and amphibolites, is such a key tectonic unit within the CAOB. Lenticular or quasi-lamellar amphibolites are dispersed throughout the complex, intercalated with biotite–plagioclase gneiss. Both rock types experienced amphibolite-facies metamorphism. The protolith of the amphibolite is a basic rock that intruded into the biotite–plagioclase gneiss at 319 ± 4 Ma based on LA-ICPMS zircon U–Pb dating. The basic intrusion was sourced from a modified magma that experienced crystal fractionation and was admixed with slab-derived fluids. The slab-derived fluids, which formed during Early Paleozoic oceanic subduction along the north-dipping Sonidzuoqi–Xilinhot subduction zone, mixed with the magma source and produced subduction-related geochemical signatures superimposed on volcanic arc chemistry. After Early Paleozoic oceanic subduction and arc-continent collision, a transient stage of extension occurred between 313 and 280 Ma in the Sonidzuoqi–Xilinhot area. Deformation and recrystallization during the switch from compression to extension and reheating by the later magmatic intrusions reset the isotope systems of minerals in the Xilin Gol Complex, recorded by a 312.2 ± 1.5 Ma biotite 40Ar/39Ar age from biotite–plagioclase gneiss, a 309 ± 12 Ma zircon intercept age and a 307.5 ± 3.5 Ma hornblende 40Ar/39Ar age from amphibolites in the complex. There was an arc/forearc-related marine basin at the southern margin of the Xilin Gol Complex during the Permian. The closure of the oceanic basin led to Late Paleozoic–Middle Triassic north-dipping subduction beneath the Xilin Gol Complex and induced the amphibolite-facies metamorphism of the complex. The final suturing of the Solonker zone occurred from 269 to 231 Ma. This latest amphibolite-facies metamorphism with pressures of 0.31–0.39 GPa and temperatures of 620–660 °C was recorded at 263.4 ± 1.4 Ma to the Xilin Gol Complex, as indicated by the hornblende 40Ar/39Ar age from the amphibolites, as well as several zircon ages of 260 ± 3–231 ± 3 Ma. The Xilin Gol Complex documented the progressive accretion of a single, long-lived subduction system at the southern margin of the south Mongolian microcontinent from the Early Paleozoic (~452 Ma) to Middle Triassic (~231 Ma). The CAOB shows protracted collision prior to final suturing.  相似文献   

16.
The paper presents new data on age, geochemistry, and Sr and Nd isotope composition of rocks from the Akatui massif and comagmatic rocks from the lower unit of the Kailas Formation (Akatui volcano-plutonic association), localized within the Aleksandrovskii Zavod depression. The amphibole 40Ar/39Ar age date the monzogabbro of the early phase of the Akatui massif at 154.8 ± 4.4 Ma; the monzonite of the main phase yields a 40Ar/39Ar age of 160.7 ± 3.9 Ma, and the shoshonite basalt of the lower unit of the Kailas Formation yields a 40Ar/39Ar age of 161.5 ± 1.7 Ma. The leading petrogenetic mechanism for the Akatui volcano-plutonic association is crystal fractional differentiation of melts with minor crustal contamination, which can be suggested from the mineralogical and petrographic features and geochemical and isotope characteristics of rocks. The geochemical data for the Akatui volcano-plutonic association show LILE, LREE, U, Th, and Pb enrichment with a characteristic depletion in high-field strength elements (HFSE), such as Nb and Ti. They are also depleted in P. Sr-Nd isotope data (87Sr/86Sr(160 Ma) = 0.70642-0.70688 and £Nd(160 Ma) = − 0.6 to − 2.2) suggest an EMII-type mantle source and could also indicate a negligible degree of crustal contamination in the evolved melts.  相似文献   

17.
The Arthur River Complex is a suite of gabbroic to dioritic orthogneisses in northern Fiordland, New Zealand. The Arthur River Complex separates rocks of the Median Tectonic Zone, a Mesozoic island arc complex, from Palaeozoic rocks of the palaeo‐Pacific Gondwana margin, and is itself intruded by the Western Fiordland Orthogneiss. New SHRIMP U/Pb single zircon data are presented for magmatic, metamorphic and deformation events in the Arthur River Complex and adjacent rocks from northern Fiordland. The Arthur River Complex orthogneisses and dykes are dominated by magmatic zircon dated at 136–129 Ma. A dioritic orthogneiss that occurs along the eastern margin of the Complex is dated at 154.4 ± 3.6 Ma and predates adjacent plutons of the Median Tectonic Zone. Rims on zircon cores from this sample record a thermal event at c. 120 Ma, attributed to the emplacement of the Western Fiordland Orthogneiss. Migmatitic Palaeozoic orthogneiss from the Arthur River Complex (346 ± 6 Ma) is interpreted as deformed wall rock. Very fine rims (5–20 µm) also indicate a metamorphic age of c. 120–110 Ma. A post‐tectonic pegmatite (81.8 ± 1.8 Ma) may be related to phases of crustal extension associated with the opening of the Tasman Sea. The Arthur River Complex is interpreted as a batholith, emplaced at mid‐crustal levels and then buried to deep crustal levels due to convergence of the Median Tectonic Zone arc and the continental margin.  相似文献   

18.
Data on the composition, age, and source of material of Aptian rocks composing a bimodal volcanic complex and related granitoids in the northern margin of the Amur microcontinent indicate that the granodiorites of the Talalinskii Massif and subalkaline granites of the Dzhiktandiunskii Massif crystallized at 117 ± 2 and 119 ± 2 Ma, respectively (40Ar/39Ar method), and their crystallization ages coincide with the age of volcanic rocks of the Gal’kinskii bimodal complex. These data make it possible to combine the rocks within a single volcano-plutonic association. Geochemical and isotopic-geochemical features of trachybasaltic andesites of the Gal’kinskii bimodal complex suggest that the parental melts were derived from such sources as PREMA (or DM) and an enriched source of the EMII type at a subordinate contribution of a crustal source. The parental melts of rhyolites of the Gal’kinskii Complex and granitoids of the Talalinskii and Dzhiktandinskii massifs were derived from crustal material with minor amounts of juvenile material. The bimodal volcanic association and related granitoids dated at 119–115 Ma were most likely formed in geodynamic environments implying the ascent of the asthenospheric mantle.  相似文献   

19.
《International Geology Review》2012,54(10):1161-1183
The Cerro Olivo Complex is one of the few occurrences of the basement rocks in the Dom Feliciano Belt. It contains migmatitic paragneisses and orthogneisses that host granites of ca. 600–540 Ma Aiguá Batholith. The main orthogneisses are rich in orthopyroxene + Ca-plagioclase (Cerro Bori unit), but K-feldspar augen gneisses are also common (Centinela-Punta del Este unit). The paragneisses (Chafalote unit) are semi-pelitic migmatites that contain restites of metapelites, quartzites, amphibolites, and calc-silicate rocks. A clockwise pressure–temperature–time (PT-t) path and two deformational events affected the Cerro Olivo Complex rocks. Granulitic high-pressure (HP)–high-temperature (HT) peak conditions were followed by low pressure (LP)–HT decompression. The first deformation (K1) developed an E–W gneissic foliation and westward-stretching lineations, whereas the second (K2) produced NS to NE–SW low-temperature mylonitic foliation and southward-stretching lineations. New SHRIMP U–Pb data from zircon cores in magmatic textural domains yield an intrusive age of 782 ± 7 million years for the Cerro Bori unit. The zircon rims have an age of 657 ± 7 million years, reflecting a younger partial melting event. Inherited ages in zircon xenocrysts span from 2655 to 768 million years, but are mostly ca. 1.0–1.2 thousand million years old. Bulk-rock geochemistry indicates a magmatic arc setting for the source rocks. The Cerro Bori unit represents calk-alkaline tonalitic and granodioritic rocks mixed with minor gabbros; in contrast, the Centinela unit consists of post-orogenic granites. A continental magmatic arc developed between ca. 800 and 770 Ma attending convergence of the Kalahari and Rio de la Plata palaeocontinents, but prior to their collision.  相似文献   

20.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号