首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
周文孝  葛梦春 《地球科学》2013,38(4):715-724
通过大比例尺填图和剖面研究, 将内蒙古锡林浩特地区的"锡林郭勒杂岩"解体分为3大部分: 一套表壳岩、晚元古代基性-超基性侵入岩和早古生代酸性侵入岩.在此基础上根据变质岩的岩性组合和变形变质特点, 可将其中的表壳岩化分为4个岩性段: 黑云(石榴石)斜长片麻岩, 间夹多层条纹状斜长角闪岩, 在其顶部多见薄层含磁铁石英岩; 中粗粒黑云斜长片麻岩和细粒长英质片麻岩; 混合岩化条带状黑云(角闪)斜长片麻岩, 含石榴石黑云二长片麻岩夹条纹状斜长角闪岩组合; 夕线石黑云斜长片麻岩, 条纹状黑云斜长片麻岩, 间夹含石榴石黑云母石英片岩.通过对比区域内宝音图群、艾勒格庙组、白乃庙群等古老地块的岩石组合, 发现在原岩建造、变质级别、沉积环境等特征上均有区别, 应将这套表壳岩单独厘定为锡林浩特岩群, 它们组成了锡林郭勒微陆块前寒武变质基底岩系, 其地质特征的研究对锡林郭勒微陆块基底的形成和演化及华北板块与西伯利亚板块的构造关系演化有重要意义.   相似文献   

2.
喜马拉雅造山带东端的南迦巴瓦岩群是高喜马拉雅结晶岩系的一部分,主要由麻粒岩相和角闪岩相变质的片麻岩、斜长角闪岩、片岩和钙硅酸盐岩组成.长英质片麻岩主要由斜长石、钾长石、石英、石榴石、黑云母和褐帘石组成.片麻岩中的锆石具有核一边结构,由一个大的继承岩浆核和一个窄的变质生长边组成.锆石岩浆核具同心韵律环带.其REE配分模式以HREE富集和负Eu异常为特征,并具有高的Th/U比值.锆石U-Pb年代分析表明,这种继承岩浆锆石给出的加权平均年龄为490~500Ma.地球化学特征表明,这些片麻岩的原岩是花岗岩和花岗闪长岩,形成在俯冲带的岩浆弧构造环境.钙硅酸盐岩中的锆石具有高级变质岩中变质生长锆石的典型特征,即具有相对较低的REE含量,不明显的负Eu异常和较低的Th/U比值.变质锆石所获得的U-Pb加权平均年龄为505Ma.本文和现有的研究结果表明,喜马拉雅造山带是一个复合造山带,它经历了古生代的原始造山作用,在新生代印度与欧亚板块的碰撞过程中发生了再造山作用.喜马拉的古生代造山带作用是原特提斯洋向冈瓦纳大陆北缘俯冲和亚洲微陆块(包括拉萨和羌塘地块)增生的结果,是在冈瓦纳大陆拼合之后其边缘发生的安底斯型造山作用,因此,它并不属于在冈瓦纳超大陆聚合过程中陆-陆碰撞形成的泛非造山带.  相似文献   

3.
拉萨地体东南缘始新世早期变质作用及其构造意义   总被引:1,自引:1,他引:0  
林彦蒿  张泽明  董昕 《岩石学报》2013,29(6):1962-1976
本文对位于青藏高原拉萨地体东南缘林芝杂岩中的片麻岩进行了岩石学和锆石U-Pb年代学研究.所研究的样品包括正片麻岩和副片麻岩,它们经历了中压角闪岩相变质作用.岩石地球化学分析结果表明,所研究的正片麻岩的原岩具有钙碱性岛弧岩浆岩的特征.锆石U-Pb年代学分析结果表明,副片麻岩中的碎屑锆石核部为岩浆成因,它们给出的206Pb/238U年龄范围为3012~ 522Ma,其锆石的增生边给出了~51Ma的变质年龄.在正片麻岩中,黑云母片麻岩给出了~67Ma的原岩结晶年龄和~ 55 Ma的变质年龄;石榴石角闪黑云斜长片麻岩给出了~58Ma的原岩结晶年龄和~54Ma的变质年龄.因此,所研究的林芝杂岩并不能代表拉萨地体中的前寒武纪变质基底,而是古生代的沉积岩和晚白垩纪至早新生代的岩浆岩在始新世早期变质而成.这一时期,表壳岩和侵入岩一起经历的中压角闪岩相变质作用很可能跟新特提斯洋俯冲导致的地壳增生、加厚有关.  相似文献   

4.
The Central Asian Orogenic Belt (CAOB) formed mainly in the Paleozoic due to the closure of the Paleo-Asian oceanic basins and accompanying prolonged accretion of pelagic sediments, oceanic crust, magmatic arcs, and Precambrian terranes. The timing of subduction–accretion processes and closure of the Paleo-Asian Ocean has long been controversial and is addressed in a geochemical and isotopic investigation of mafic rocks, which can yield important insight into the geodynamics of subduction zone environments. The Xilingol Complex, located on the northern subduction–accretion zone of the CAOB, mainly comprises strongly deformed quartzo-feldspathic gneisses with intercalated lenticular or quasi-lamellar amphibolite bodies. An integrated study of the petrology, geochemistry, and geochronology of a suite of amphibolites from the complex constrains the nature of the mantle source and the tectono-metamorphic events in the belt. The protoliths of these amphibolites are gabbros and gabbroic diorites that intruded at ca. 340–321 Ma with positive εHf(t) values ranging from + 2.89 to + 12.98. Their TDM1 model ages range from 455 to 855 Ma and peak at 617 Ma, suggesting that these mafic rocks are derived from a depleted continental lithospheric mantle. The primitive magma was generated by variable degrees of partial melting of spinel-bearing peridotites. Fractionation of olivine, clinopyroxene and hornblende has played a dominant role during magma differentiation with little or no crustal contamination. The mafic rocks are derived from a Late Neoproterozoic depleted mantle source that was subsequently enriched by melts affected by slab-derived fluids and sediments, or melts with a sedimentary source rock. The Carboniferous mafic rocks in the northern accretionary zone of the CAOB record a regional extensional event after the Early Paleozoic subduction of the Paleo-Asian Ocean. Both addition of mantle-derived magmas and recycling of oceanic crust played key roles in significant Late Carboniferous (ca. 340–309 Ma) vertical crustal growth in the CAOB. Amphibolite–facies metamorphism (P = 0.34–0.52 GPa, T = 675–708 °C) affected these mafic rocks in the Xilingol Complex at ca. 306–296 Ma, which may be related to the crustal thickening by northward subduction of a forearc oceanic crust beneath the southern margin of the South Mongolian microcontinent. The final formation of the Solonker zone may have lasted until ca. 228 Ma.  相似文献   

5.
The Central Asian Orogenic Belt (CAOB) is one of the largest accretionary collages in the world, and records a prolonged sequence of subduction‐accretion and collision processes. The Tarim Craton is located at the southernmost margin of the CAOB. In this study, the discovery of early Palaeozoic high‐pressure (HP) granulites from the Dunhuang block in the northeastern Tarim Craton is reported, and these rocks are characterized through detailed petrological and geochronological studies. The peak mineral assemblage of the HP mafic granulite is garnet + clinopyroxene + plagioclase + quartz + rutile, which is overprinted by amphibolite facies retrograde metamorphic assemblages. The calculated P–T conditions of the peak metamorphism are ~1.4–1.7 GPa and ~800 °C. The retrograde P–T conditions are ~0.7 GPa and ~700 °C. The metamorphic zircon grains from the HP mafic granulite show homogeneous CL‐images, low Th/U ratios and flat HREE patterns and yield a weighted mean 206Pb/238U age of 444 ± 5 Ma. The metamorphic zircon grains from the associated kyanite‐bearing garnet gneiss and garnet‐mica schist show a similar 206Pb/238U age of 429 ± 3 and 435 ± 4 Ma, respectively. The c. 440–430 Ma age is interpreted to mark the timing of HP granulite facies metamorphism in the Dunhuang block. The results from this study suggest that the Dunhuang block experienced continental subduction prior to the early Palaeozoic collisional orogeny between the northeastern Tarim Craton and the southern CAOB, and the Dunhuang area could be considered as the southward extension of the CAOB. It is suggested that the continental collision in the eastern part involving the Dunhuang block of the southern CAOB may have occurred c. 120 Ma earlier than in the western part involving the Tianshan orogen.  相似文献   

6.
ABSTRACT Paragonite-bearing amphibolites occur interbedded with a garbenschist-micaschist sequence in the Austroalpine Schneeberg Complex, southern Tyrol. The mineral assemblage mainly comprises paragonite + Mg-hornblende/tschermakite + quartz + plagioclase + biotite + ankerite + Ti-phase + garnet ± muscovite. Equilibrium P–T conditions for this assemblage are 550–600°C and 8–10 kbar estimated from garnet–amphibole–plagioclase–ilmenite–rutile and Si contents of phengitic muscovites. In the vicinity of amphibole, paragonite is replaced by symplectitic chlorite + plagioclase + margarite +± biotite assemblages. Muscovite in the vicinity of amphibole reacts to form plagioclase + biotite + margarite symplectites. The reaction of white mica + hornblende is the result of decompression during uplift of the Schneeberg Complex. The breakdown of paragonite + hornblende is a water-consuming reaction and therefore it is controlled by the availability of fluid on the retrogressive P–T path. Paragonite + hornblende is a high-temperature equivalent of the common blueschist-assemblage paragonite + glaucophane in Ca-bearing systems and represents restricted P–T conditions just below omphacite stability in a mafic bulk system. While paragonite + glaucophane breakdown to chlorite + albite marks the blueschist/greenschist transition, the paragonite + hornblende breakdown observed in Schneeberg Complex rocks is indicative of a transition from epidote-amphibolite facies to greenschist facies conditions at a flatter P–T gradient of the metamorphic path compared to subduction-zone environments. Ar/Ar dating of paragonite yields an age of 84.5 ± 1 Ma, corroborating an Eoalpine high-pressure metamorphic event within the Austroalpine unit west of the Tauern Window. Eclogites that occur in the Ötztal Crystalline Basement south of the Schneeberg Complex are thought to be associated with this Eoalpine metamorphic event.  相似文献   

7.
Diffusion rates of Sr and O in minerals are often comparable while Nd has a lower diffusion rate during thermal overprint(s); thus, the O isotope systems between metamorphic minerals can serve as an indicator to evaluate whether equilibrium of Rb–Sr and Sm–Nd systems has been preserved in the metamorphic minerals that experienced retrograde metamorphism. This study presents a combination of investigation on Sm–Nd, Rb–Sr, and O isotopic compositions of minerals separated from ultrahigh-pressure eclogite and gneiss that were collected from the main hole of the Chinese Continental Scientific Drilling project located in the Sulu orogen, eastern China. Oxygen isotopic compositions of minerals from gneiss and eclogite yield two temperature groups of 620–740 and 460–590°C, representing diffusion cessation of isotopic exchange during the eclogite-facies recrystallization and later amphibolite-facies retrograde overprint. Rb–Sr mineral regressions of two eclogite samples give consistent Triassic ages of 244 Ma, corresponding to eclogite-facies metamorphism, while the same minerals do not yield meaningful Sm–Nd isochron ages. This phenomenon likely suggests that Rb–Sr isotopic equilibrium was achieved during eclogite-facies metamorphism and preserved during late amphibolite-facies retrogression. In contrast, Sm–Nd isotopic equilibrium between the minerals of eclogite was not achieved under UHP metamorphic conditions. Regressions of epidote and biotite of one gneiss sample give a Triassic Sm–Nd age of 243 ± 34 Ma, corresponding to the time of the eclogite-facies metamorphism, and a Jurassic mineral Rb–Sr age of 187.5 ± 1.8 Ma. These results imply that fluids have played an important role to achievement of the Sm–Nd isotopic equilibrium during eclogite-facies metamorphism and re-equilibration of the Rb–Sr isotopic system during later retrograde overprint.  相似文献   

8.
董昕  张泽明  王金丽  赵国春  刘峰  王伟  于飞 《岩石学报》2009,25(7):1678-1694
本文对位于青藏高原拉萨地体东南部林芝岩群中的变质岩进行了岩石学和年代学研究。研究表明,林芝岩群由角闪岩相的变质沉积岩和正片麻岩组成。变质沉积岩主要为含石榴石白云斜长角闪片岩、含石榴石云母石英片岩、含石榴石黑云钾长片麻岩、大理岩和石英岩等,代表性矿物组合包括石榴石+斜长石+角闪石+石英+黑云母+白云母,或石榴石+斜长石+钾长石+石英+夕线石+黑云母+白云母。花岗质片麻岩(含二云母片麻岩)的矿物组合是石英+斜长石+钾长石+黑云母+白云母。锆石U-Pb年代学分析表明,变质沉积岩中的碎屑锆石主要为岩浆成因,获得了2708~63Ma的206Pb/238U年龄范围,在~1100Ma和~550Ma出现两个年代峰值。碎屑锆石的变质增生边给出了35Ma的变质年龄。正片麻岩获得了496Ma的锆石结晶年龄和1158Ma的继承年龄。基于上述研究结果、区域对比和相邻变质岩石中获得的多期变质年龄,我们认为林芝岩群的原岩很可能形成在早古生代,其沉积物质主要来源于印度陆块,与特提斯喜马拉雅早古生代的岩石一起同为印度大陆北缘的沉积盖层,在环冈瓦纳大陆周缘造山过程中被寒武纪花岗岩侵入。在新特提斯洋向北的俯冲过程中,林芝岩群经历了晚中生代的安第斯型造山作用,在印度与欧亚大陆的俯冲-碰撞过程中,林芝岩群部分地经历了新生代的变质和岩浆作用再造。本研究证明,林芝岩群并不是传统上认为的拉萨地体的前寒武纪变质基底,其角闪岩相至麻粒岩相变质作用发生在中、新生代。  相似文献   

9.
藏南吉隆地区眼球状片麻岩是大喜马拉雅结晶岩系的一部分,其矿物组成为石英、斜长石、钾长石、黑云母和少量的白云母。片麻岩中的锆石具有核边结构,由继承碎屑锆石核和具有同心环带结构的岩浆锆石边组成,SHRIMP U Pb测年显示,边部岩浆锆石加权平均年龄为(4989±44) Ma,表明片麻岩的原岩为早古生代的花岗岩,εHf加权平均值为-83±095,暗示片麻岩原岩为壳源,可能是印度大陆北部地壳部分熔融的产物。文中和现有的地质年代学数据表明,喜马拉雅造山带是一个复合造山带,经历了早古生代的造山作用,早古生代的喜马拉雅造山带是原特提斯洋向冈瓦纳大陆北缘俯冲的结果,是冈瓦纳大陆拼合之后在其边缘形成的安第斯型造山带,而不属于冈瓦纳超大陆聚合过程中陆陆碰撞形成的泛非造山带的一部分。  相似文献   

10.
The Sistan Suture Zone (SSZ) of eastern Iran is part of the Neo‐Tethyan orogenic system and formed by convergence of the Central Iranian and Afghan microcontinents. Ar Ar ages of ca. 125 Ma have been obtained from white micas and amphibole from variably overprinted high‐pressure metabasites within the Ratuk Complex of the SSZ. The metabasites, which occur as fault‐bounded lenses within a subduction mélange, document peak‐metamorphic conditions in eclogite or blueschist facies followed by near‐isothermal decompression resulting in an epidote–amphibolite‐facies overprint. 40Ar/39Ar step heating experiments were performed on a phengite + paragonite mixture from an eclogite, phengites from two amphibolites, and paragonite from a blueschist; ‘best‐fit’ ages from these micas are, respectively, 122.8 ± 2.2, 124 ± 13, 116 ± 19 and 139 ± 19 Ma (2σ error). Barroisite from an amphibolite yielded an age of 124 ± 10 Ma. The ages are interpreted as cooling ages that record the post‐epidote–amphibolite stage in the exhumation of the rocks. Our results imply that both the high‐pressure metamorphism and the epidote–amphibolite‐facies overprint occurred prior to 125 Ma. Subduction of oceanic lithosphere along the eastern margin of the Sistan Ocean had therefore begun by Barremian (Early Cretaceous) times. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
刘平华  邹雷  田忠华  冀磊  施建荣 《地质通报》2019,38(10):1691-1710
乌拉山岩群是狼山地区最重要的前寒武纪变质基底之一,准确测定其原岩成岩与变质时代,对于进一步探讨狼山地区前寒武纪地质演化具有重要的意义。对狼山地区乌拉山岩群角闪黑云斜长片麻岩及其伴生的花岗质浅色脉体进行了岩石学和锆石U-Pb年代学研究。碎屑锆石U-Pb定年和野外地质调查表明,狼山地区乌拉山岩群角闪黑云斜长片麻岩碎屑锆石年龄介于2591~1800Ma之间,其中最小一组碎屑锆石年龄为1873Ma,结合其约270Ma的变质年龄,初步限定乌拉山岩群角闪黑云斜长片麻岩的原岩沉积年龄为1873~270Ma。综合新的研究资料,认为狼山地区乌拉山岩群除存在新太古代—古元古代变质岩外,可能还存在中元古代—晚古生代变沉积岩。锆石阴极发光图像与U-Pb定年结果综合表明,角闪黑云斜长片麻岩中发育大量变质锆石,获得的206Pb/238U年龄加权平均值为269±4Ma,代表狼山地区乌拉山岩群遭受晚古生代末期角闪岩相变质作用的时代,可能与华北板块与西伯利亚板块晚古生代末期碰撞造山作用有关。此外,采用预剥蚀方法,在乌拉山岩群高硅花岗质浅色脉体高U锆石中,获得的~(206)Pb/~(238)U年龄加权平均值为264±3Ma,被解释为乌拉山岩群花岗质浅色脉体的形成时代,代表本区晚古生代造山作用由同碰撞挤压向碰撞后伸展转换的时限。  相似文献   

12.
《International Geology Review》2012,54(14):1754-1768
The Wudaogou Group in eastern Yanbian, Northeast China, plays a key role in constraining the timing and eastward termination of the Solonker–Xra Moron River–Changchun Suture, where the Palaeo-Asian Ocean closed. The Wudaogou Group consists of schist, gneiss, amphibolite, metasedimentary, and metavolcanic rocks, all of which underwent greenschist- to epidote–amphibolite-facies regional metamorphism, with some hornfels resulting from contact metamorphism. To determine the age of deposition, the timing and grade of metamorphism, and the tectonic setting of the Wudaogou Group, we investigated the petrography and geochronology of the metamorphic rocks in this group. Zircons from the metasedimentary rocks of this group can be divided into metamorphic zircons and detrital zircons of magmatic origin. U–Pb ages of metamorphic zircons dated by LA-ICP-MS vary from 249 ± 4 to 266 ± 4 Ma, approximating the age of regional metamorphism in the eastern Yanbian area. Detrital zircons yield U–Pb ages ranging from 253 ± 5 to 818 ± 5 Ma, and indicate that the provenance of the Wudaogou Group experienced four tectonic–thermal events between 818 and 253 Ma: Neoproterozoic (ca. 818–580 Ma), Cambro–Ordovician (ca. 500–489 Ma), Devonian–Carboniferous (ca. 422–300 Ma), and middle–late Permian (ca. 269–253 Ma). The youngest detrital zircon, with a U–Pb age of 253 ± 5 Ma, defines the maximum depositional age of the Wudaogou Group. The presence of the Cambro-Ordovician and Neoproterozoic detrital zircons implies that the source of the Wudaogou Group had an affinity with Northeast China, which leads us to conclude that the Solonker–Xra Moron River–Changchun Suture extends from Wangqing to Hunchun in eastern Yanbian, and that the Palaeo-Asian Ocean may have closed at the end of the Permian or Early Triassic period.  相似文献   

13.
张里  吴耀 《岩石学报》2012,28(5):1674-1688
本文对拉萨地体东南部林芝地区分布的变质岩进行了岩相学和锆石年代学研究。结果表明,林芝杂岩中的变质沉积岩主要由片麻岩和片岩组成,它们经历了中压角闪岩相变质作用。变质岩中的锆石多由继承的碎屑岩浆核和新生的变质边组成。继承锆石核给出了新太古代至晚古生代的年龄范围,其主要年龄峰值在~1560Ma、~1190Ma、~620Ma和~340Ma,而锆石变质边给出了53Ma和27Ma的变质年龄。这一结果表明,林芝杂岩中的变质沉积岩很可能形成在古生代,其物质源区具有Grenville和Pan-Africa期造山作用的构造热事件记录。这一研究和已有的成果进一步证明,拉萨地体起源于Gondwana大陆北缘,在新生代印度与欧亚大陆的碰撞/俯冲过程中,拉萨地体作为俯冲带的上盘经历了多期变质作用改造。本研究为拉萨地体起源与多期构造演化提供了重要信息。  相似文献   

14.
《Precambrian Research》2007,152(3-4):93-118
George V Land (Antarctica) includes the boundary between Late Archean–Paleoproterozoic metamorphic terrains of the East Antarctic craton and the intrusive and metasedimentary rocks of the Early Paleozoic Ross–Delamerian Orogen. This therefore represents a key region for understanding the tectono-metamorphic evolution of the East Antarctic Craton and the Ross Orogen and for defining their structural relationship in East Antarctica, with potential implications for Gondwana reconstructions. In the East Antarctic Craton the outcrops closest to the Ross orogenic belt form the Mertz Shear Zone, a prominent ductile shear zone up to 5 km wide. Its deformation fabric includes a series of progressive, overprinting shear structures developed under different metamorphic conditions: from an early medium-P granulite-facies metamorphism, through amphibolite-facies to late greenschist-facies conditions. 40Ar–39Ar laserprobe data on biotite in mylonitic rocks from the Mertz Shear Zone indicate that the minimum age for ductile deformation under greenschist-facies conditions is 1502 ± 9 Ma and reveal no evidence of reactivation processes linked to the Ross Orogeny. 40Ar–39Ar laserprobe data on amphibole, although plagued by excess argon, suggest the presence of a ∼1.7 Ga old phase of regional-scale retrogression under amphibolite-facies conditions. Results support the correlation between the East Antarctic Craton in the Mertz Glacier area and the Sleaford Complex of the Gawler Craton in southern Australia, and suggest that the Mertz Shear Zone may be considered a correlative of the Kalinjala Shear Zone. An erratic immature metasandstone collected east of Ninnis Glacier (∼180 km east of the Mertz Glacier) and petrographically similar to metasedimentary rocks enclosed as xenoliths in Cambro–Ordovician granites cropping out along the western side of Ninnis Glacier, yielded detrital white-mica 40Ar–39Ar ages from ∼530 to 640 Ma and a minimum age of 518 ± 5 Ma. This pattern compares remarkably well with those previously obtained for the Kanmantoo Group from the Adelaide Rift Complex of southern Australia, thereby suggesting that the segment of the Ross Orogen exposed east of the Mertz Glacier may represent a continuation of the eastern part of the Delamerian Orogen.  相似文献   

15.
This study presents new secondary-ion mass spectrometry (SIMS) rutile and laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) zircon U-Pb geochronological and whole-rock geochemical data for amphibolites of the Heilongjiang Complex, located within the Yilan area of NE China, to constrain the tectonic evolution of the Mudanjiang Ocean between the Songnen–Zhangguangcai Range and Jiamusi massifs. Magmatic zircon from amphibolites collected from the Yilan Marble Quarry yields a weighted mean 206Pb/238U age of 274 ± 2 Ma, which is interpreted as the protolithic age. Amphibolites from the Longlangang and Tuanshanzi areas yield rutile U-Pb ages of 177 ± 11 Ma and 172 ± 5 Ma, respectively, which are interpreted to reflect the cooling of these rocks below the closure temperature of Pb diffusion in rutile. Amphibolites from the Yilan Marble Quarry are enriched in light rare earth elements (LREEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta and P) relative to large ion lithophile elements (LILEs). Amphibolites from the Longlangang and Tuanshanzi areas have relatively flat chondrite-normalized rare earth element (REE) patterns, and remarkable negative Nb and Ta anomalies. Moreover, all of the amphibolites from the Heilongjiang Complex in the Yilan area have tholeiitic and arc-type geochemical affinities. These amphibolites formed by similar petrogenetic processes, but from distinct mantle sources. The magmas that formed these units were generated by the partial melting of mantle sources metasomatized by subducted slab fluids, and the magma that formed the amphibolites within the Yilan Marble Quarry may have also incorporated sedimentary material. Mantle peridotite from the garnet-spinel transition zone is a possible source for the protolith of amphibolites in the Yilan Marble Quarry, and spinel-peridotites may have been the magma sources for the protoliths of amphibolites in the Longlangang and Tuanshanzi areas. Combining our data for amphibolites from the Heilongjiang Complex in the Yilan area with the results of previous research on Late Paleozoic–Early Mesozoic arc magmatism and metamorphism, we infer that the Late Paleozoic–Early Mesozoic tectonic evolution of the Mudanjiang Ocean was characterized by double-sided subduction. These data indicate that the Mudanjiang Ocean closed during the Jurassic (180–160 Ma).  相似文献   

16.
柴北缘乌兰县二郎洞地区的达肯大坂岩群主要由黑云斜长片麻岩、混合岩、黑云母石英片岩、斜长角闪岩和大理岩、花岗片麻岩等共同组成。本文首次对两件混合岩化黑云斜长片麻岩样品中的锆石进行了内部结构分析和SHRIMP测年, 黑云斜长片麻岩中的锆石大多具有核-边结构, 核部和边部分别表现为典型的岩浆和变质成因锆石特征。一件样品中锆石核部206 Pb/238 U加权平均年龄为503.8±5.1 Ma, 边部206 Pb/238 U加权平均年龄为449±9.9 Ma; 另一件样品核部206 Pb/238 U加权平均年龄为493.6±4.5 Ma。这些结果表明, 乌兰县二郎洞地区达肯大坂岩群中的混合岩化黑云斜长片麻岩原岩形成年龄为504~494 Ma, 属于晚寒武世岩浆活动的产物, 变质年龄为449 Ma, 分别与柴北缘岛弧岩浆作用和超高压变质作用的时限相一致。研究表明, 二郎洞地区达肯大坂岩群不仅有新太古代-古元古代基底岩石, 还包含早古生代的岩石组合, 为一套不同性质和不同时代的混杂岩。  相似文献   

17.
《International Geology Review》2012,54(15):1852-1872
Medium-grade metabasites and metapelites from the Cajamarca Complex (Central Cordillera of Colombia) are in fault contact with the Jurassic Ibague batholith and show a penetrative foliation, locally mylonitic, suggesting intense dynamic–thermal metamorphism. The amphibolites are composed of calcic amphibole + epidote + plagioclase + quartz plus rutile + titanite + apatite + carbonate as accessory phases. Chlorite and albite appear as retrograde replacements. The metapelites are mainly composed of phengite + quartz + garnet + chlorite, plus epidote + albite + apatite + titanite + haematite as accessory phases. Bulk geochemistry of the amphibolites indicates basaltic protoliths with a mid-ocean ridge basalt (MORB) signature, although enrichment in the mobile large-ion lithophile elements compared to MORB suggests pre- and/or syn-metamorphic alteration by fluids. Peak pressure–temperature determinations for both types of rocks are similar, ranging 550–580°C and 8 kbar (approximately 26 km depth and an apparent geothermal gradient of 22°C/km). 40Ar-39Ar dating of amphibole from two amphibolite samples and one phengitic mica from a pelitic schist yielded plateau ages of 146.5 ± 1.1 Ma and 157.8 ± 0.6 Ma, and 157.5 ± 0.4 Ma, respectively. These Late Jurassic ages contrast with previously published (Permian)Triassic ages of metamorphism in the Cajamarca Complex. Taken together, our data indicate tectonic-driven burial of oceanic supracrustal sequences down to mid-crustal depths during Late Jurassic times and are best explained as the result of terrane collision-related metamorphism and deformation in a fore-arc/volcanic-arc environment of the active western margin of Gondwana rather than as a result of Jurassic thermal–metamorphic resetting of a (Permian)Triassic metamorphic sequence during intrusion of the Jurassic Ibague batholith. Our results represent the first report of Jurassic terrane collision tectonics involving supracrustal oceanic rocks in the northwestern margin of Gondwana in Colombia.  相似文献   

18.
ABSTRACT

The Qinling orogen is a key area for understanding the processes of subduction and collision between the South China Block (SCB) and North China Block (NCB). The Wuguan Complex, distributed along the southern margin of the Shangdan suture zone, can provide important constraints on the age of collision between NCB and SCB and the tectonic evolution of the Qinling orogen in Late Paleozoic. Detrital zircons from meta-sedimentary rocks of the Wuguan Complex in the Danfeng-Shangnan area have an age spectrum with two main peaks at ~448 Ma and ~819 Ma, and two subordinate peaks at ~938 and ~1440 Ma, respectively, and are interpreted to have been derived from the North Qinling terrane (NQT). The petrographic and geochemical characteristics of the meta-sedimentary rocks indicate that they were deposited in a fore-arc basin along the southern margin of the NQT. The youngest detrital zircons yield a weighted mean age of 378 ± 3 Ma, indicating that the fore-arc deposition was continuing at least to this time, which implies that the Paleo-Qinling Ocean between the NCB and SCB was not finally closed until at least the late Devonian. In combination with regional data, we propose that sedimentary rocks of the Wuguan Complex might once have been a sequence of late Ordovician to late Devonian strata with intercalated mafic rocks, which has been dismembered by the later tectonic activity. It was metamorphosed during northward subduction of the Paleo-Qinling Ocean at ca. 320 Ma, and slowly cooled through ca. 350°C at ca. 247 Ma (muscovite 40Ar/39Ar age). It has recorded the detailed processes of subduction and collision between the NCB and SCB.  相似文献   

19.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

20.
东喜马拉雅构造结南迦巴瓦岩群花岗质片麻岩的初步研究   总被引:5,自引:0,他引:5  
野外地质填图和研究发现,东喜马拉雅构造结高喜马拉雅结晶岩系中有古老的花岗岩侵入,并在鲁霞地区圈定了9个花岗质侵入体。古老的花岗质岩石主要侵位于南迦巴瓦岩群直白岩组中,与南迦巴瓦岩群一起经历了麻粒岩相变质作用而形成花岗质片麻岩套。岩石类型有花岗闪长质片麻岩、黑云母花岗质片麻岩、闪长质片麻岩等。岩石化学研究表明这些花岗片麻岩套具“S”型特征,可能有深部幔源物质的加入。花岗岩形成深度在2~5km之间.侵位时代为552~525Ma,为新元古代晚期,属泛非期陆内演化阶段的产物。高喜马拉雅地区在元古宙末期形成了结晶基底。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号