首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
陈海洲  谢琳 《海洋科学》2020,44(4):44-51
以乐东莺歌海三莺村岸段人工沙滩工程为例,其完工1年后的岸线监测结果,表明需要进一步对人工沙滩后的海滩岸线演变进行研究分析。通过GENESIS岸线演变模型模拟人工沙滩后的岸线变化,并尝试采用3种方法对模型进行验证。经过验证后,对人工沙滩工程后1年、3年、5年岸线变化进行了模拟分析。研究结果表明:GENESIS岸线演变模型对于包围型(拦沙堤和离岸堤结合方式)人工沙滩工程是适用的。工程完工1年后,补沙岸线形成了侵淤变化的凹凸弯曲岸线,侵淤幅度不大,5年后侵淤幅度变缓,开始逐渐趋于平衡。据此,也为人工沙滩后期的养护、补沙防护工作起到重要的参考作用。  相似文献   

2.
This paper presents a new numerical model for shoreline change which can be used to model the evolution of shorelines with large curvature. The model is based on a one-line formulation in terms of coordinates which follow the shape of the shoreline, instead of the more common approach where the two orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment transport field across the coastal profile to obtain the longshore sediment transport variation along the shoreline. The model is used to compute the evolution of a shoreline with a 90° change in shoreline orientation; due to this drastic change in orientation a migrating shoreline spit develops in the model. The dimensions of the spits evolving in the model compare favorably to previous model results and to field observation of the Skaw Spit in the north of Denmark.  相似文献   

3.
赖志坤 《海洋科学》2012,36(8):75-78
应用海岸线变化定量分析原理,综合分析了近50年来泉州湾海岸线变化的基本特征,计算了古浮澳岸段的海岸线变化速率.研究分析结果表明,泉州湾海岸线长度以0.94km/a的速率减小,海域面积(含岛屿)以1.01 km2/a的速率减小;古浮澳岸段呈现南北淤进,中间侵淤交互的岸线变化趋势.通过了解泉州湾海岸线变化特征和变化趋势,获取海岸线变化速率数据,为泉州湾海域的可持续开发与管理提供参考依据.  相似文献   

4.
基于Landsat遥感影像,建立1988年、2000年和2015年3个时期马六甲海峡两侧的岸线数据,并从岸线结构、岸线变化速率、海陆格局和岸线开发利用强度等方面分析1988—2000年、2000—2015年和1988—2015年不同时段区域陆体以及槟城港等12个主要港口区域的岸线时空变化特征。结果如下:岸线结构变化显著,人工岸线长度和比例急剧增加,港口区域逐渐从单一类型主导向多元结构转变;除个别港口外,两侧岸线均呈向海扩张状态,南北两岸的岸线平均变化速率分别为0.91m/a和1.20m/a;因海峡南岸沼泽广布、地势低平及海平面上升等原因,其岸线稳定性差于海峡北岸;岸线开发利用强度持续增强,并表现出明显的海峡北岸强于南岸的空间差异,以及北岸第一阶段增长快于第二阶段,南岸第一阶段增长慢于第二阶段的时间差异。马六甲海峡的交通运输功能是两岸岸线变化的主要驱动因素。本研究对认识马六甲海峡两岸及港口区域岸线的时空变化和发展特征有重要意义,对海峡及港口岸线的综合管理具有一定借鉴作用。  相似文献   

5.
ABSTRACT

Chilika, a lagoon along the east coast of India, is undergoing transformation due to frequent shoreline change near inlet(s). Shoreline change near inlet includes change in position and shape of inlet, inlet channel length, and spit growth/erosion. These variable features of lagoon inlet(s) critically depend on alongshore sediment transport (LST) and discharge (water and sediment) from the lagoon to the sea. The LST and the processes responsible for sand spit growth/erosion, considered as important attributes of inlet stability, are the subject matter of the present investigation and hence the study assumes importance. The study includes integration of observational and modeling framework. Observations include nearshore wave, bathymetry, beach profile, shoreline and sediment grain size of spits while numerical modeling includes simulation of the wave using MIKE 21 Spectral Wave model and LST simulation using LITtoral DRIFT. The results indicate that the predominant wave directions as S and SSE, which induces round the year south to north alongshore transport with significant seasonal variation in magnitude. The estimated LST closely matches with previous studies near Chilika inlet and for other locations along the Odisha coast. Besides temporal variability, the study reveals spatial variability in alongshore transport near Chilika inlet and considers it as one of the important attributes along with northward spit growth for inlet migration/closure/opening.  相似文献   

6.
The proposed algorithm comprises three main steps. The first step is the evaluation of the sediment transport and budget. It was shown that the root segment of the Vistula Spit is dominated by eastward longshore sediment transport (up to 50 thousand m3/year). Over the rest of the spit, the shoreline??s orientation causes westward sediment transport (more than 100 thousand m3/year). The gradients of the longshore and cross shore sediment transport become the major contributors to the overall sediment balance. The only exception is the northeastern tip of the spit due to the appreciable imbalance of the sediment budget (13 m3m?1 yr?1). The second step in the prediction modeling is the estimation of the potential sea-level changes during the 21st century. The third step involves modeling of the shoreline??s behavior using the SPELT model [6, 7, 8]. In the most likely scenario, the rate of the recession is predicted to be about 0.3 m/year in 2010?C2050 and will increase to 0.4 m/year in 2050?C2100. The sand deficit, other than the sea-level rise, will be a key factor in the control of the shoreline??s evolution at the northeastern tip of the spit, and the amount of recession will range from 160 to 200 m in 2010?C2100.  相似文献   

7.
A 10-year(2003–2012) hindcast was conducted to study the wave field in the Zhe-Min coastal area(Key Area OE-W2) located off Zhejiang and Fujian provinces of China. Forced by the wind field from a weather research and forecasting model(WRF), high-resolution wave modelling using the SWAN was carried out in the study area. The simulated wave fields show a good agreement with observations. Using the simulation results, we conducted statistical analysis of wave power density in terms of spatial distr...  相似文献   

8.
王紫竹  胡松  刘旺 《海洋预报》2020,37(1):33-42
根据海上浮标实测数据和再分析数据,发现2016年4月20-23日长江口航道附近南北海雾存在的显著空间差异主要受到水汽以及风场的影响。分析表明:(1)本次海雾过程高空受低压槽控制近地面处低压过境,切变线东移导致低空风向的迅速转变,此后受到暖锋影响,导致短时小雨过程的发生;(2)此次海雾过程受风场的影响较大,盛行南风时水汽充足,湿度较大,容易产生海雾,受西北风主导时,则容易出现海雾消散的情况;(3)长江口外北部站点和南部站点存在显著空间差异性,北部站点能见度明显好于南部站点,并且在此次海雾过程中北部站点先于南部站点出现一次能见度好转的情况,这是由于低压过境导致风向骤变,北部未获得充分的水汽供给所致。此次低压槽天气过程在长江口南北产生区域差异显著的海雾,对这种典型风向骤变过程分析有助于为航运密集的长江口海雾预报提供参考。  相似文献   

9.
Study on headland-bay sandy coast stability in South China coasts   总被引:1,自引:0,他引:1  
Headland-bay beach equilibrium planform has been a crucial problem abroad to long-term sandy beach evolution and stabilization,extensively applied to forecast long-term coastal erosion evolvement and the influences of coastal engineering as well as long-term coastal management and protection.However,little concern focuses on this in China.The parabolic relationship is the most widely used empirical relationship for determining the static equilibrium shape of headland-bay beaches.This paper utilizes the relation to predict and classify 31 headland-bay beaches and concludes that these bays cannot achieve the ultimate static equilibrium planform in South China.The empirical bay equation can morphologically estimate beach stabilization state,but it is just a referential predictable means and is difficult to evaluate headland-bay shoreline movements in years and decades.By using Digital Shoreline Analysis System suggested by USGS,the rates of shoreline recession and accretion of these different headland-bay beaches are quantitatively calculated from 1990 to 2000.The conclusions of this paper include that (a) most of these 31 bays maintain relatively stable and the rates of erosion and accretion are relatively large with the impact of man-made constructions on estuarine within these bays from 1990 to 2000;(b) two bays,Haimen Bay and Hailingshan Bay,originally in the quasi-static equilibrium planform determined by the parabolic bay shape equation,have been unstable by the influence of coastal engineering;and (c) these 31 bays have different recession and accretion characters occurring in some bays and some segments.On the one hand,some bays totally exhibit accretion,but some bays show erosion on the whole.Shanwei Bay,Houmen Bay,Pinghai Bay and Yazhou Bay have the similar planforms,characterized by less accretion on the sheltering segment and bigger accretion on the transitional and tangential segments.On the other hand,different segments of some bays have two dissimilar evolvement characters.Dacheng Bay,Shenquan Bay,Hudong Bay,Wukan Bay,Fengjia Bay,Wuchang Bay,Lingshui Bay and Tufu Bay produce accretion on the tangential segment,erosion on the transitional segment and accretion on the sheltering segment.However,Guang’ao Bay,Haimen Bay,Jinghai Bay,Sanya Bay(a),Dajiao Bay,Hailingshan Bay,Hebei Bay,Fuhu Bay,Shuidong Bay,Wangcun Bay and Bomao Bay generate erosion on the tangential part,accretion on the transitional part and accretion on the sheltering part.It seems to imply some relations between headland-bay beach evolvement and controls on headland-bay beaches,which may possibly to classify headland-bay beach types and should be further studied.  相似文献   

10.
Coastline sand waves have been observed at “El Puntal” spit, located on the north coast of Spain. The spit has been monitored by an Argus video system since 2003 and the formation and destruction of sand waves has been observed. Coastline data from the video images are analyzed by means of principal components analysis, obtaining a mean sand wave length of 125–150 m and a maximum amplitude of ≈ 15 m. It is also observed that sand waves reach their maximum amplitude at about 15 days. No propagation of these sand waves is noticed during the approximately two-month-long events analyzed. Sand wave formation and evolution are examined in relation with the prevailing local wave conditions during that period. Incident waves at the west end of the spit approach from the east–northeast, with a very high angle with respect to the shoreline. Field observations suggest that sand waves may result from an instability in alongshore sediment transport caused by moderate-energy waves with a high-angle incidence.  相似文献   

11.
《Coastal Engineering》2007,54(6-7):493-505
This contribution evaluates the application of coastal video systems to monitoring and management of coastal stability problems on sandy coastlines. Specifically, video-derived parameters (coastal state indicators or CSIs) are developed which facilitate the measurement of the shoreline evolution (erosion/accretion) and response to storms, seasonal cycles and anthropogenic interventions like beach/shoreface nourishment and dredging. The primary variable which forms the basis for all the CSIs discussed in this contribution is the shoreline position derived from time-averaged video images. These waterlines are used to generate secondary products including shoreline contours at a constant pre-defined level, (intertidal) beach volumes, and momentary shoreline positions which reflect the sand volume in a meter wide section of the intertidal coast. Video-derived coastal state indicators were verified via comparisons with traditional topographical/bathymetric surveying techniques and a good agreement was found in all cases. CSIs were computed for three contrasting sandy coastal environments including an unprotected natural beach, a protected beach and a spit. Firstly, results are presented which demonstrate the advantages of coastal video systems over and above infrequent traditional topographic/bathymetric surveying methods. Namely, the ability of video-derived CSIs to quantify the magnitude, accurate location, precise timing and rates of change associated with individual extreme events and seasonal variability in the wave climate. Secondly, video-derived coastal state indicators were used to monitor two different types of human intervention, including beach nourishments and a dredged pit in a navigation channel. The video-derived datasets of coastal state indicators offered significant improvement to current CZM practices, facilitating better timing of management interventions as well as more effective monitoring of the spatial impact and longevity of these actions.  相似文献   

12.
This paper examines storm-induced morphological and hydrodynamic changes after a submerged and a detached breakwater were constructed at La Barceloneta beach (Barcelona, NW Mediterranean) in 2006–2007. The shoreline configurations before and after beach nourishment and the construction of the protective structures were compared using a video dataset comprising 29 storm events spanning the pre- (2001 to 2005, n?=?17) and the post-breakwater situation (2006 to 2011, n?=?12), and hydrodynamic modelling based on the SMC coastal modelling system. As a result of the protection works, La Barceloneta was subdivided into two beaches separated by an artificial salient. The analysis of shoreline response to storms has been improved by using the shoreline hyperbolic tangent fit to represent the beach planform. Comparing the pre- and post-breakwater situations on the basis of these shoreline fits facilitated the identification of beach rotation processes because interference by smaller-scale morphological features was eliminated (e.g. the formation, changes in shape or migration of mega-cusps). In the current post-breakwater situation, there is evidence for a change in the behaviour of the north-eastern beach triggered by the submerged breakwater built in 2007. Furthermore, a counter-clockwise beach rotation has occurred at the north-eastern beach, whereas the south-western beach has experienced a clockwise beach rotation. This morphodynamic behaviour is caused by a new, complex wave-induced circulation system comprising two dominant alongshore currents flowing in opposite directions. In contrast to the pre-breakwater situation, the alongshore component of the radiation stress does not accomplish beach rotation in the post-breakwater situation.  相似文献   

13.
This paper summarizes the results of over 8 years of data describing the performance of a large beach nourishment project on Perdido Key, immediately adjacent to Pensacola Pass in Escambia County, FL, USA. As a result of a major excavation of the entrance channel to Pensacola Bay, over 7 million m3 of beach-quality sand were placed along the easternmost 7.5 km of Perdido Key, adjoining the entrance channel at Pensacola Pass. The project included the placement of 4.1 million m3 of sand directly upon the shoreline in 1989–1990, followed by the placement of an additional 3 million m3 as an underwater berm just offshore of the beach nourishment project in water depths of roughly 6 m. Monitoring of the performance of the beach nourishment project and the offshore berm has been conducted since 1989, beginning with a pre-construction survey of the project area. Monitoring surveys have been conducted on an annual or biennial basis since that time, with the most recent survey occurring in July/August, 1998. Over 8 years of monitoring data indicate that the beach nourishment project has retained approximately 56% of the original volume placed within the 7.5-km project length. In addition, according to the latest monitoring survey, the dry beach width of the project, initially constructed as 135 m on average, is still 53 m wider than pre-project conditions. Approximately 41% of the originally placed dry planform area remains as of July 1998. The most recent monitoring surveys in 1995, 1997, and 1998 encompass the effects of two major storm systems, Hurricanes Erin (August 1995) and Opal (October 1995). Monitoring of the offshore berm area indicates only a slight landward migration of the berm, accompanied by a minor decrease in volume, over the entire monitoring period. The performance of both the beach nourishment project and the offshore berm appear to be significantly related to the two storm events, particularly Hurricane Opal, and the proximity of the project to the tidal entrance at Pensacola Pass. Comparison of the documented performance of the beach nourishment project to simple existing analytical models of beach-fill evolution have yielded encouraging results in terms of preliminary design aids for future beach nourishment projects in the vicinity of deep tidal entrances.  相似文献   

14.
三峡截流以来长江洪季潮区界变动河段冲刷地貌   总被引:4,自引:0,他引:4  
潮区界河段河势演变对三峡工程的响应是长江经济带建设中的重要问题。然而受观测手段所限,对三峡截流以来潮区界变动范围及其地貌演变的客观认识亟待探讨。对大通站洪季水位资料进行频谱分析,初步判断了近期长江洪季潮区界位置;对比1998年和2013年水下地形资料,分析了三峡大坝截流以来该河段河槽的冲淤演变特征;利用多波束测深系统对冲刷明显河段的微地貌进行了高分辨率观测。结果显示:(1)1998-2013年潮区界变动河段河槽整体冲刷5 649.7万m3。其中,上段全面冲刷,太白、太阳两洲并岸,铜陵沙被冲开,主槽刷深达5.6 m;中段主泓摆动,天然洲南冲北淤,黑沙洲中水道淤死,南水道左岸最大冲深达8.9 m;下段近岸冲刷强烈,北岸最大冲深达15.4 m;(2)该河段近期处于剧烈的冲刷环境,左岸冲刷尤为显著;(3)冲刷深槽分布在顺直河段,深达5.4~12.6 m;冲刷坑分布在分汊河段平面形态突变处,最大冲深达28.1~30.5 m;水下侵蚀陡坡分布在近岸侵蚀严重的顺直河段,坡度为0.59~0.62。  相似文献   

15.
The rift zone??s relief, the spreading kinematics, and the experimental modeling of the Knipovich Ridge??s formation were analyzed. Its rift zone is formed in a transtension environment. Faulting is predominant in its northern part, while strike-slip is characteristic for the south. A system of short extension basins connected by deep strike-slip U-shaped troughs is observed in the south. A system of volcanic rises connected by short shallow basins is observed in the north. The rift valley is V-shaped. According to the experimental modeling data, these extension kinematics provide the formation of short extension basins connected by strike-slips and transtension faults. Their length and orientation depend on the spreading obliquity of each segment.  相似文献   

16.
Results from historical (1855–2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of −0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of −1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from −11.4 m/year between 1922 and 1996 to −41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated −201.5 m/year, compared with an average retreat rate of −38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.  相似文献   

17.
于2010年枯季利用浅地层剖面仪等对长江口自江阴至北港、北槽和南槽口门段河槽浅部地层进行探测.探测结果显示:江阴至徐六泾段落潮流占绝对优势,床沙质以细砂为主,发育有波长约15~25m、波高约0.5~0.8m的沙波;自徐六泾至口门段河槽床面受势力相当的涨、落潮流影响,河槽床面仅偶尔发育有较小尺度的沙波,波长5.0~12m...  相似文献   

18.
The equilibrium planform concept (EPC) for bayed beaches has achieved wide currency in coastal morphodynamics. The north coast of Ireland comprises a series of discrete headland-embayment beaches within which waves and currents recycle a finite sediment volume. It is therefore an ideal setting in which to explore the applicability of the concept. Application of the approach to 9 embayment beaches on the north coast of Ireland provides some insights into the application of the concept. The planform of some beaches does correspond to that predicted while others do not. Those whose measured planform does not correspond to the predicted planform can be interpreted through, (a) difficulty in identifying the wave diffraction point, (b) disequilibrium on the beach (sediment scarcity or excess), (c) geological control of beach morphology. The subjectivity in selecting the diffraction point renders alternative explanations difficult and reduces the utility of the approach on natural shorelines, where significant irregularities render identification of such points difficult.  相似文献   

19.
Headland-bay beaches are a typical feature of many of the world's coastlines. Their curved planform has aroused much interest since the early days of Coastal Engineering. Modelling this characteristic planform is a task of great interest, not least in relation to projects of coastal structures whose effects on the shoreline must be studied from the planning stages. In this work, Artificial Intelligence is applied to this task—in particular, artificial neural networks (ANNs). Unlike conventional planform models, they are not based on a given mathematical expression of the shoreline curve. Instead, they learn from experience (from a number of training cases) how the planform of a headland-bay beach is shaped, with due regard to the obliquity of incident waves. Three artificial neural networks, with different input/output structures, are implemented and subsequently trained with a number of bays. Once trained, they are tested for validation on other headland-bay beaches. Finally, the most performing neural network is compared with a state-of-the-art planform model.  相似文献   

20.
Equilibrium headland-bay beach systems have been mathematically described by logarithmic, parabolic and hyperbolic curve functions. The largest system of this type reported to date has a shoreline length of about 62 km. In the present study, an apparent headland-bay system is presented which has a shoreline length of about 500 km. It was discovered on satellite images, and is located between Cabo de Santa Maria in Portugal and the coastal city of Rabat in Morocco. It appears to be controlled by long-period North Atlantic swells diffracting around Cabo São Vicente at the south-western tip of Portugal, in combination with SW–SE wind wave climates impinging on the northern shoreline of Cádiz Bay. The coast shows two marked departures from the equilibrium shoreline along its central section north and south of the Strait of Gibraltar, which are easily explained. Thus, the promontories to the north of the strait still exist because there has not been sufficient time to erode these back to the equilibrium shoreline since postglacial sea-level recovery. The coastal indentation to the south is explained by an insufficient sediment supply from terrestrial sources to facilitate the required beach accretion. Perfectly adjusted planimetric headland-bay shoreline shapes represent situations where wave orthogonals approach the coast at right angles everywhere, i.e. there is no longer any alongshore sediment transport. Equilibrium shorelines form independently of the grain size of the beach sediment, whereas morphodynamic beach states are indirectly affected by the shoreline shapes because the latter are modulated by wave period and breaker height which also control the morphodynamic response of the beach in combination with the local grain size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号