首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

2.
The primary purpose of this paper is to describe the seasonal variation of the various currents which comprise the California Current System—the California Current, the California Undercurrent, the Davidson Current and the Southern California Countercurrent—and to investigate qualitatively the dynamical relationships among these currents. Although the majority of information was derived from existing literature, previously unpublished data are introduced to provide direct evidence for the existence of a jet-like Undercurrent over the continental slope off Washington, to illustrate ‘event’-scale fluctuations in the Undercurrent and to investigate the existence of the Undercurrent during the winter season.The existing literature is thoroughly reviewed and synthesized. In addition, and more important, geostrophic velocities are computed along several sections from the Columbia River to Cape San Lazaro from dynamic heights given by (1966), and (1964), and and (1976). From these data and from long-term monthly wind stress data and vertical component of wind stress curl data (denoted curl τ) given by (1977), interesting new conclusions are made. 1. The flow that has been denoted the California Current generally has both an offshore and a nearshore maximum in its alongshore coponent. 2. The seasonal variation of the nearshore region of strong flow appears to be related to the seasonal variation of the alongshore component of wind stress at the coast, τyN, at all latitudes. Curl τ near the coast may also contribute to the seasonal signal, accounting for the lead of maximum current over maximum wind stress from about 40°N northward. Large-scale flow separation and fall countercurrents that of headlands may account for the sudden occurrence of late summer and fall countercurrents that appear as large anomalies from the wind-driven coastal flow south of 40°N. 3. From Cape Mendocino southward a northward mean is imposed on the nearshore current distribution. The mean is largest where curl τ is locally strongest, in particular, off and south of San Francisco and in the California Bight. It may be responsible for the portion of the Davidson Current that occurs off California, for the San Francisco Eddy and for the Southern California Eddy or Countercurrent. When southward wind stress weakens in these regions, the northward mean dominates the flow. Flow separation in the vicinity of headlands may also be responsible for these northward flows. There is some evidence that during periods of northward flow a mean monthly τyN-driven southward current occurs inshore of the mean northward flow. At all latitudes, wind-driven ‘event’-scale fluctuations are expected to be superimposed on the seasonal nearshore flow. 4. The spatial distribution and seasonal variation oftthe offshore region of southward flow appear to be related to the spatial distribution and seasonal variation of curl τ. The seasonal variation of curl τ in these areas, curl τl, is roughly in phase with the seasonal variation of τy near the coast and roughly 180° out of phase with the seasonal variation of curl τ near the coast. Southward flow lags negative curl τ by from two to four months. The offshore region of southward flow is strongest during the summer and early fall. The mean annual location of the maximum flow is at about 250–350 km from shore off Washington and Oregon, and at 430 km off Cape Mendocino, 270 km off Point Conception and 240 km off northern Baja. The offshore branch of the flow bends shoreward near 30°N, which is consistent with the shoreward extension of the region of negative curl τ, so that by Cape San Lazaro (25°N), a single region of strong flow is observed within 200 km of the coast. 5. A third region of strong southward flow occurs at distances exceeding 500 km from the coast. The spatial distribution of this flow appears to be related to the spatial distribution of curl τ. 6. The mean northward flow known as the Davidson Current consists of two regions in which the forcing may be dynamically different—seaward of the continental slope off Washington and Oregon and between Cape Mendocino and Point Conception, the mean monthly northward currents appear to be related to the occurrence of positive curl τ; along the coast of Oregon and Washington the northward currents are not related to the occurrence of positive curl τ but are consistent with forcing by the mean monthly northward wind stress at the coast. 7. A region of southward flow that is continuous with the California Current to the south is generally maintained off Oregon and parts of Washington during the winter. This southward flow appears to separate the northward-flowing Davidson and Alaskan Currents in some time-dependent region south of Vancouver Island. The banded current structure is consistent with the distribution of curl τ, if southward flow is related to negative curl τ. 8. The seasonal progression of the California Undercurrent may be related both to the seasonal variation of the offshore region of strong flow (hence to curl τl) and to the alongshore component of wind stress at the coast. South of Cape Mendocino a northward mean also seems to be superimposed on the flow. This mean may be related to the occurrence of strong positive curl τ near the coast. Velocities at Undercurrent depths have two maxima, one in late summer and one in winter. The slope Undercurrent is indistinguishable, except by location, from the undercurrent that is observed on the Oregon-Washington continental shelf.  相似文献   

3.
The Gulf of Finland is a 400-km long and 48–135-km wide tributary estuary of the Baltic Sea featuring the longitudinal two-layer estuarine flow modified by transverse circulation. Longitudinal volume transport in the deep layer is investigated by decomposing it into an averaged, slowly changing estuarine component (due to large-scale density gradients, river discharge and mean wind stress) and wind-driven fluctuating component. The derived expression relates the total deep-layer transport to the projection of wind stress fluctuation to a site-specific direction. The relationship is tested and calibrated by the results from numerical experiments carried out with the three-dimensional baroclinic circulation model. For the entrance to the Gulf of Finland, winds from northeast support standard estuarine circulation and winds from southwest work against the density-driven and riverine flow. The deep estuarine transport may be reversed if the southwesterly wind component exceeds the mean value by 4–5.5 m s−1. According to the data from hydrographic observations in the western Gulf of Finland, an event of advective halocline disappearance was documented in August 1998. Comparison of the deep-water transport estimates calculated from the wind data in 1998 with the observed salinity variations showed that the events of rapid decay of estuarine stratification were coherent with the estimated reversals of deep-layer volume transport, i.e. events of salt wedge export from the gulf.  相似文献   

4.
The bottom currents in the Challenger Deep, the deepest in the world, were measured with super-deep current meters moored at 11°22′ N and 142°35′ E, where the depth is 10915 m. Three current meters were set at 9687 m, 10489 m and 10890 m at the station in the center of the Challenger Deep for 442 days from 1 August 1995 to 16 October 1996. Although rotor revolutions in 60 minutes of recording interval were zero for 37.5% of the time, the maximum current at the deepest layer of 10890 m was 8.1 cm s−1, being composed of tidal currents, inertia motion and long period variations. Two current meters were set at 6608 m and 7009 m at a station 24.9 km north of the center for 443 days from 31 July 1995 to 16 October 1996, and two current meters at 6214 m and 6615 m at a station 40.9 km south of the center for 441 days from 2 August 1995 to 16 October 1996. The mean flow at 7009 m depth at the northern station was 0.7 cm s−1 to 240°T, and that at 6615 m depth at the southern station was 0.5 cm s−1 to 267°T. A westward mean flow prevailed at the stations, and no cyclonic circulation with mean flows of the opposite directions was observed in the Mariana Trench at a longitude of 142°35′ E. Power spectra of daily mean currents showed three spectral peaks at periods of 100 days, 28–32 days and 14–15 days. The peak at 100 day period was common to the power spectra.  相似文献   

5.
The long-term mean (31-year mean) surface heat fluxes over the Japan Sea are estimated by the bulk method using the most of the available vessel data with the resolution of 1o×1o. The long-term annual mean net heat flux is about –53 W m–2 (negative sign means upward heat flux) with the annual range from 133 W m–2 in May to –296 W m–2 in December. The small gain of heat in the area near Vladivostok seems to indicate the existence of cold water flowing from the north. In that area in winter, the mean loss of heat attains about 200 W m–2, and the Bowen's ratio is over the unity. The largest insolation occurs in May in the Japan Sea, and the upward latent heat flux becomes the largest in November in this area. The heat flux of Haney type is also calculated, and the result, shows that the constantQ 1 has the remarkable seasonal and spatial variation, while the coefficientQ 2 has relatively small variation throughout all seasons. Under the assumption of constant volume transport of 1.35×106 m3s–1 through the Tsugaru Strait, the long-term averages of the volume transport through the Tsushima and Soya Straits are estimated to be about 2.20 and 0.85×106 m3s–1 from the result of the mean surface heat flux, respectively.  相似文献   

6.
Some observations were carried out to understand the structure of the vertical residual flow in Kasado Bay. The results of current measurements at three points in the lower layer indicated that a horizontal counterclockwise tidal residual circulation converges in the lower layer. The velocity of upward residual flow was estimated to be about 4.5×10–3 cm s–1. The distributions of water temperature, salinity and grain size in the sediment support the existence of this upward motion.  相似文献   

7.
Current meter data collected over the last 20 years are presented and used to describe the residual currents on the Celtic and Armorican slope and shelf regions. On the slopes, a poleward current of about 6cm s−1 exists at the 500m depth contour. At mid depths, these currents are directed onslope, whereas near the bottom the flow in markedly downslope, reaching mean speeds of about 15cm s−1 near 6°40′W. The downslope currents are thought to be largely tidally induced and balanced by Stokes transports. The total slope transport near 48°N is about 4Sv. On the upper slopes (<1000m depth) the transport increases poleward. On the outer Celtic shelf, a weak (2 cm s−1) counter-current flowing southeastwards was observed. On the Armorican shelf, the residual flow is again nothwestwards and this coastal flow appears to continue northwards across the mouth of the English Chanel and past the Isles of Scilly with typical mean upper layer speeds of about 2cm s−1. Southwest of Ireland the flow is again northwesterly. Numerical model simulations show that the eastern slope boundary current of the NE Atlantic can be driven by realistic distributions of seawater density. The simulations also show only a small wind driven barotropic response on the Celtic and Armorican shelf region and that a component of the residual shelf flows, like the slope current, may be driven by pressure distributions arising from regional differences in the distribution of seawater density, or from non local wind stress.  相似文献   

8.
Hourly fluctuations of vertical velocity in relation to components of flow and wind and temperature oscillations at a morring site in the shelf waters off the west coast of India are discussed. The vertical velocities were computed from a time series of vertical temperature profiles assuming that horizontal advection of temperature is negligible. The computed values at a depth of 40 m during the 72-h period of observation were of the order of 10−1 to 10−2cm s−1, with a mean value of −2·77 × 10−2 cm s−1 indicating a net upward movement of water. The computed vertical velocity showed fluctuations of about 2–3 h, in addition to weaker signals of about 12 h. Based on the spectral estimates, we speculate that these fluctuations of 2–3 h in the vertical velocity may be caused by the fluctuations in the along-shore wind. The oscillations of isotherms found in the temperaturedepth time series and the spectral estimates of temperature and cross-shore flow component showed a periodicity of about 12 h, which indicated the presence of semi-diurnal internal waves. The fact that these internal wave troughs were associated with the measured onshore flow suggested that the waves were propagating offshore. The computed stability parameters showed little evidence of instability or mixing. It was found that the isotherm troughs in the temperaturedepth time series at about 12-h period coincided with high vertical shear in the cross-shore direction and low values of Brunt Vaisälä frequency.  相似文献   

9.
Summer upwelling on the continental shelf north of Cape Canaveral, Florida, has been previously observed to result from wind forcing. A two-layer, finite element model reproduces reasonably well the characteristics of the wind-driven upwelling in respect to location and magnitude. Model investigation also shows that upwelling results from offshore current forcing which is imposed through an along-shelf sea level slope. This sea level slope, which has been found to be of the order of −10−7, represents a mean Gulf Stream effect. The results suggest that the strongest upwelling events near Cape Canaveral occur when the wind and Gulf Stream forcings act together.  相似文献   

10.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

11.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

12.
Bottom water formation changes the characteristics of water masses entering the southern part of the Weddell Sea through atmosphere-ice-ocean interaction in which both sea and shelf ice play an important role. Modified water, in particular Weddell Sea Bottom Water, recirculates in the west. By comparing the in- and outflowing water masses we have estimated transformation rates on the basis of a data set obtained during the Winter Weddell Gyre Study from September to October 1989. This consisted of a salinity-temperature-depth (CTD) section carried out by R/V “Polarstern” from the northern tip of the Antarctic Peninsula to Kapp Norvegia and data from three current meter moorings maintained from 1989 to 1990 in the eastern boundary current off Kapp Norvegia. Because of the lack of sufficient direct current measurements in the interior and the western boundary current, it was necessary to derive mass transports on the basis of available data combined with physical and geometrical arguments. At the mooring site barotropic currents were measured. They were extrapolated to the interior under the assumption that wind-driven, baroclinic and barotropic current fields are of similar shape. The location of the gyre centre was determined from drifting buoy tracks and geopoten-tial anomaly. A linear current profile from the eastern boundary current to the centre of the gyre was assumed, and the western outflow was determined according to mass conservation. Different assumptions on the transition from the boundary current to the interior and the location of the centre result in a wide range of transports with most likely values between 20 and 56 Sv. The total mass transport was split into individual water masses. Differences between inflow and outflow result in a transformation rate of 3–4 Sv from Winter and Warm Deep Water to Antarctic and Weddell Sea Bottom Water. The net heat and salt transport across the transect implies heat fluxes from the ocean to the atmosphere of 3–10 W m−2 and ice formation rates of 0.2–0.35 m year−1.  相似文献   

13.
Direct current measurements of the branch current of the Kuroshio intruding into Sagani Bay were carried out during 1989–1990 in order to clarify the frequency characteristics of the eddies in the lee of Izu-Oshima Island, which are well recognized as cold water mass produced by upwelling. Satellite and ADCP (Acoustic Doppler Current Profiler) data indicated that current velocity in the eddy fluctuates with periods of 2–4 days and 6–8 days.When the Kuroshio branch current intruding into Sagami Bay from the western channel is weak and its velocity at the depth of 400 m is approximately 10 cm s–1, the 6–8 day period fluctuation is dominant. On the other hand, when the branch current strongly intrudes from the western channel with a velocity of approximately 20 cm s–1, the 2–4 day period fluctuation dominates. The relationship between the periods and velocities agrees well with theory based on laboratory experiments for a flow of a homogeneous fluid past a circular obstacle. These periods correspond to the time scale of appearance of the eddy caused by the intrusion of the Kuroshio branch current into Sagami Bay and Izu-Oshima Island.  相似文献   

14.
Sedimentologic and stratigraphic investigations on four cores collected close to the front of the Barbados accretionary prism provided information about the Quaternary depositional processes and sediment fluxes in the region. The morphology of the prism is marked by N—Soriented anticlinal ridges separated by troughs. The deposits are hemipelagic on top of the ridges and in the abyssal plain, with a mean global flux of 1.35–1.40 g cm–2 10–3 yr. The carbonate flux decreases from the prism to the abyssal plain (0.49 and 0.3 g cm–2 10–3 yr, respectively). Terrigenous material is provided by distal turbiditic plumes. It decreases slightly from the abyssal plain to the prism (1.06 and 0.9 g cm–2 10–3 yr, respectively). During cold climatic stages, it is up to 1.4 g cm–2 10–3 yr. The global flux is much higher (7.1 g cm–2 10–3 yr) in the interridge troughs, which act as sediment traps for distal turbidity currents.  相似文献   

15.
A note on the driving mechanisms of current in the Taiwan Strait   总被引:2,自引:0,他引:2  
Current measurements made in the Taiwan Strait from March to July 1984, confirmed old ship reports that flow was toward the north in both summer and winter. The flow consists of three parts: a steady current which is about 27 cm sec–1 in both seasons, a long-period (period longer than 20 days) fluctuating component which varies with the reverse of wind direction between seasons (monsoon wind), and a short-period (period in the range of 3 to 20 days) fluctuating component which is closely related to the frontal passages and appears only in winter. Thus, a permanent source must exist at the southern end of the strait that drives the steady flow to the north regardless of season. The northward mean flow is then modulated by the seasonal wind field, and hence, shows different characteristics between seasons.  相似文献   

16.
Current records obtained in the inshore region along the Fukushima coast are analyzed. The existence of periodical current fluctuations whose period is about 100 hours and whose amplitude is as large as 15–25cm s–1 is recognized. Auto-spectral analyses are made also for sea level, atmospheric pressure and wind records. Each spectrum has significant peaks at the similar period to the current spectrum. The wind spectrum has a broad peak compared with the current. The periodical current fluctuations propagate southward with speed of 3–5 km h–1. These propagation speeds seem to correspond to those of the second-and third-mode shelf waves.  相似文献   

17.
Recent measurements indicate the transatlantic extent of the Namib Col Current at depths of 1300–3000 m near Lat. 22°S in the South Atlantic Ocean. This current forms a continuous circulation structure from the Namib Col on the Walvis Ridge to the western trough, though its characteristic change as deep water with varying properties enters and leaves the current owing to a meridional flow component. Transport estimates from hydrographic sections on the Walvis Ridge and at 15°W near the crest of the Mid-Atlantic Ridge indicate a strength of about 3 × 106 m3 s−1. The current is part of a larger-scale eastward flow at Lon. 25°W; transport estimates across the salinity maximum core there show a similar strength. Associated with this high-salinity high-oxygen current is a basin-wide front in these properties of varying intensity (weaker in the east) marking the transition to deep water whose North Atlantic characteristics have been partly erased by mixing with Circumpolar Deep Water in the southwest South Atlantic. The water which finally crosses the Walvis Ridge is supplied both by the eastward flow of this (diluted) North Atlantic Deep Water and by a general southeastward interior flow from the northern Angola Basin. Evidence suggests that this deep water continues south in the eastern Cape Basin, leaving the South Atlantic near the African continent.  相似文献   

18.
Intensive current measurements in the area northeast of Taiwan indicate subsurface, southwestward flow existed between the inshore edge of the Kuroshio and the East China Sea continental slope. At 70 km away from Taiwan, this countercurrent has a mean speed about 30 cm s–1 at mid-depth. Closer to Taiwan, the flow turns along with the topography, and subjects to sidewall and bottom friction. Both the magnitude and the vertical shear of this countercurrent are comparable with that inferred from hydrographic survey. The wind field features short-period (a few days) fluctuations associated with the cold front passages, however, this is not reflected on the current records. It appears that the countercurrent is fairly steady. Together with similar reversing flow found at places much further to the north, the overall pattern seems to be a general quasi-steady feature along most part of the shelf edge of the East China Sea.  相似文献   

19.
The detailed flow structure around a tical front in Hiuchi-Nada, Japan was observed with the use of ADCP (Acoustic Doppler Current Profiler). The surface convergence region is observed at the transition zone between vertically well mixed area and the stratified area. The surface divergence regions exist next to the surface convergence region. The strong downward current is estimated in the middle layer just below the surface convergence region. The maximum surface convergence and the maximum downward velocity in the middle layer are 1.0×10–4 s–1 and 0.12 cm s–1, respectively.  相似文献   

20.
A circular storm moves with a constant speedc along a geostrophic flow similar to a western boundary current in the upper layer of a two-layer ocean with the motionless lower layer. The linear inertia terms are retained. Effects of the current becomes more conspicuous for smallerc and insignificant forc above 10 m s–1. The inertia effects are manifested in cellular patterns of the interface perturbations with cell lengths of(c–vf –1 in a wake of the storm with a radius of an order of 100 km, wherev is the current velocity. On the left hand edge where the flow has a strong shear, the interface displacements have large amplitudes which increase with a distance along the path in a wake of the storm. These disturbances propagate to the left of the edge within an angle of cot–1 (c 2/gH0–1), whereg is the reduced gravity andH 0 is the depth of the interface at the edge of the current. Comparison with the observations during Typhoon Trix in 1971 south of Japan suggests that fluctuations of the daily mean sea level with several days' periods observed along the southern coast of Japan may be due to the stationary oscillations of the Kuroshio caused by the inertia undulations along its left edge or due to the propagating perturbations to the left.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号