首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Roadway instability has always been a major concern in deep underground coal mines where the surrounding rock strata and coal seams are weak and the in situ stresses are high. Under the high overburden and tectonic stresses, roadways could collapse or experience excessive deformation, which not only endangers mining personnel but could also reduce the functionality of the roadway and halt production. This paper describes a case study on the stability of roadways in an underground coal mine in Shanxi Province, China. The mine was using a longwall method to extract coal at a depth of approximately 350 m. Both the coal seam and surrounding rock strata were extremely weak and vulnerable to weathering. Large roadway deformation and severe roadway instabilities had been experienced in the past, hence, an investigation of the roadway failure mechanism and new support designs were needed. This study started with an in situ stress measurement programme to determine the stress orientation and magnitude in the mine. It was found that the major horizontal stress was more than twice the vertical stress in the East–West direction, perpendicular to the gateroads of the longwall panel. The high horizontal stresses and low strength of coal and surrounding rock strata were the main causes of roadway instabilities. Detailed numerical modeling was conducted to evaluate the roadway stability and deformation under different roof support scenarios. Based on the modeling results, a new roadway support design was proposed, which included an optimal cable/bolt arrangement, full length grouting, and high pre-tensioning of bolts and cables. It was expected the new design could reduce the roadway deformation by 50 %. A field experiment using the new support design was carried out by the mine in a 100 m long roadway section. Detailed extensometry and stress monitorings were conducted in the experimental roadway section as well as sections using the old support design. The experimental section produced a much better roadway profile than the previous roadway sections. The monitoring data indicated that the roadway deformation in the experimental section was at least 40–50 % less than the previous sections. This case study demonstrated that through careful investigation and optimal support design, roadway stability in soft rock conditions can be significantly improved.  相似文献   

2.
The rock mass around an excavation is generally traversed by different geological discontinuities such as faults, folds, slips, joints, etc. Fault is one of the major geological discontinuities which creates lot of difficulties during underground winning of coal. Entire stress regime and ground conditions in the formation are altered in and around the faults. Faults also impose detrimental effects by introducing impurities, including clay and various forms of mineral matter into the coal seams; opening of pathways for the influx of water and gas into the underground workings; displacing the coal seams upward/downwards making the coal seams difficult or sometimes impractical to mine. Appropriate evaluation of the effect of the fault on the stability of the underground workings is a requisite for safe design of the underground mining structures. In this paper, a study has been carried out to assess the effect of the fault on the stability of underground coal mines by numerical simulation with distinct element method (DEM). On the calibrated DEM model, parametric study has been performed by varying the selected parameters, the dip and the friction angles of the fault. The analysis of variance (ANOVA) shows that both the factors have statistically significant effect on the strength of the coal pillar. Similarly, the displacement of the immediate roof and the height of the disturbed strata are evaluated by the DEM modelling and statistical analysis when the fault passes through the middle of the gallery. The results of ANOVA for both cases indicate that the both factors have significant effect on the displacement of the immediate roof and the height of the disturbed strata. It is obtained from the study that the low angle fault causes high instability in the immediate roof. The paper has been supplemented with the field observations where instability in underground roadways of a coal mine in India is caused by the fault. It was observed in VK-7 incline mine of Singareni Collieries Company Limited, India that there was sudden failure of immediate roof of a roadway where a low angle fault crosses the middle of the roadway. The findings of the paper help to understand the behaviour of the coal pillar and the surrounding rock mass in the presence of the fault. The study would also help to take appropriate decisions about the unstable regions of the working safeguarding safety in underground coal mines.  相似文献   

3.
Shear failure is a common failure mechanism in underground coal mine roadways. This paper presents an innovative numerical approach to simulate shear failure of a coal mine roadway roof. The distinct element code, UDEC, incorporating a proposed Trigon logic is employed for the study. Using this approach, shear failure in the mine roof characterized by fractured initiation and propagation is successfully captured. The results suggest that shear failure of the roadway roof initiates at the roadway corners and then progressively propagates deeper into the roof, finally forming a large scale roof failure. The numerical results confirmed the time sequence of marked microseismic activity, significant stress changes and accelerated displacement during the process of a roof fall. The effect of rock bolting in the control of roof shear failure in a roadway is evaluated using the UDEC Trigon approach. It is found that the installation of rock bolts constrains rock dilation, reduces failure of rock bridges and maintains rock strength thereby leading to a significant decrease in roof sag.  相似文献   

4.
煤矿突水事故时有发生,易造成重大人员财产损失,而优化突水救援路径,将提高矿井突水灾害应急救援能力,降低突水危害。本文采用无向图和邻接表对矿井巷道网络进行描述和存储,根据巷道水位高度与井下人员身高的比值计算巷道安全系数,进而求解巷道等效长度,据此,使用优化SPFA算法进行单源路线搜索,提出矿井突水救援路线模型,并给出最优救援路线。以王家岭矿的巷道拓扑网络结构为基础进行仿真分析,结果表明,基于优化SPFA算法的矿井突水救援模型可以正确地计算出单源最优路线。该方法综合考虑了工作人员被井巷塌方或水流所阻而不可通行的复杂情况,为实现快速有效的事故抢险提供了可靠的技术支持。   相似文献   

5.
Influenced by mining activities in adjacent coal seams, stresses on rocks surrounding roadway were redistributed, and the roadways in lower coal seam were subjected to the asymmetrical roof falling and roof sagging. Considering stresses effect on the plastic zone around the roadway, numerical models were carried out by FLAC to investigate plastic zone with respect to stress ratio and direction of stresses. The relationship between the properties of surrounding rock and plastic zone boundary was also investigated by another numerical model and analytical study, whereby the tailgate stability of panel 30,501 in Tashan coal mine was implemented. It is shown that the rocks surrounding a roadway in the lower coal seam were subjected to unequal stresses, and the principal stress direction was deflected from the original direction. High stresses and big stress ratio can produce butterfly-shaped or X-shaped plastic zone. The direction of stresses was deflected, causing the plastic zone around the roadway to be transferred from the shoulder to the roof of the roadway. Consequently, asymmetrical stresses produce asymmetrical plastic zone. On this basis, the tailgate should be assigned conditions of the stresses and stress ratio at a low level. In this way, the tailgate was arranged at the position where the horizontal distance from the roadway in the lower seam to the centre line of the coal pillar in the upper seam (x) is 52.5 m, and was stable relatively.  相似文献   

6.
高应力大断面煤巷锚杆索桁架系统试验研究   总被引:2,自引:0,他引:2  
严红  何富连  徐腾飞  蒋红军  高升 《岩土力学》2012,33(Z2):257-262
高应力构造区大断面煤巷围岩控制技术是煤矿巷道工程中亟需研究的问题之一。以峰峰集团新三矿废矸充填复杂困难煤巷为典型研究对象,综合现场调研和数值模拟分析结果得出高应力作用下大断面煤巷变形破坏特征,提出一种基于“索-拱”结构为核心的高应力煤巷围岩控制系统-锚杆索桁架,分析该支护系统基本结构,设计流程及支护预应力场分布特征,在新三矿某一置换煤巷开展工业性试验,研究结果表明,新型支护系统结构稳定,巷道围岩控制效果良好,对类似困难巷道支护具有一定的理论和实用参考价值。  相似文献   

7.
沂源县鲁村煤矿270 m井底车场围岩为泥质粉砂岩,强度低,含粘土矿物,吸水膨胀,传统的支护方式难以保证巷道稳定,采用钢管混凝土支架进行支护试验。分析了270 m井底车场围岩地质特征,提出基于钢管混凝土支架的综合支护方案,最后通过理论验算证实钢管混凝土支架承载能力为U29型钢支架4倍,满足巷道支护要求。  相似文献   

8.
Measurement of Longwall Mining Induced Strata Permeability   总被引:1,自引:0,他引:1  
The paper summarizes the findings of the underground permeability measurements (using inflatable packers) undertaken at a mine site in New South Wales in Australia and highlights the difficulties encountered during packer testing. The research project was supported by the Australian Coal Association Research Project. Within this project, systematic sub-surface and underground hydrogeological monitoring and measurements were carried out e.g. underground packer tests and piezometer, extensometer, and water inflow monitoring during mining. The project was aimed at investigating the effects of longwall mining on strata pore pressure, permeability, and water inflow to facilitate prediction of mining induced aquifer interference and mine water inflow. This paper presents only the results of underground permeability tests conducted at the mine site. The tests show that the drivage of main headings (roadways) can induce a significant change in permeability into the solid coal barrier. Permeability can be seen to increase by as much as 50 times at a distance of 11.2–11.5 m from the roadway rib. The measured permeability values varied widely and strangely on a number of occasions; for example the test conducted from the main headings at 8.2–8.5 m test section in the solid coal barrier showed a decline in permeability value compared to that at 11.2–11.5 m section contrary to the expectations. The tests conducted in the roof strata near (above) the longwall goaf indicated a possibility of more than 1,000 fold increase in permeability. Though the underground packer testing appears to be a good technique for measuring in situ permeability of rocks and coal seams, the study highlighted that (1) boreholes for packer testing need to be drilled with extreme care so as to avoid any undue damage or smearing of the borehole wall and (2) a sufficient number of tests at a number of locations needs to be conducted to cater for the possible variations of the test results.  相似文献   

9.
含软弱夹层深部软岩巷道稳定性研究   总被引:3,自引:0,他引:3  
杨建平  陈卫忠  郑希红 《岩土力学》2008,29(10):2864-2870
随着能源开采由浅部向深部发展(>700 m),深部软岩巷道在高地应力下的变形破坏及其合理加固技术成为影响资源安全开采的重要因素。结合国投新集刘庄矿深部软岩及其软弱结构面的力学特性试验成果,提出软弱夹层的破坏准则及其损伤演化模型,并将其应用于含软弱夹层的深部软岩巷道围岩稳定性分析,研究不同支护方案下的围岩变形特性、破损区以及软弱夹层的离层和破坏情况,提出了合理的加固技术参数。  相似文献   

10.
以穿层钻孔方式进行松软煤层瓦斯预抽采极大地克服了松软煤层瓦斯治理难的问题,然而部分矿区煤层顶(底)板岩石坚硬,影响了钻孔施工效率。结合地质岩心钻探的优势,将液动潜孔锤与高强PDC钻头结合应用于煤矿井下穿层瓦斯抽采孔施工中。淮南潘一煤矿现场试验表明,该工艺方法较传统回转钻进方法,钻进效率提高了83%,钻头进尺寿命提高近5倍,具有良好的经济性能。采用清水为冲洗介质,无粉尘污染,噪声污染小,较为适合空间狭小的煤矿井下巷道施工。  相似文献   

11.
针对澄合矿区王村矿井部分巷道及硐室围岩变形破坏严重的现状,以围岩抗压强度、围岩泊松比、侧压力系数、围岩弹性模量、巷道埋深、巷道跨度、最大应力集中系数及围岩平均移动速率作为围岩稳定性因子,通过对8条典型巷道及硐室围岩稳定性因子的现场实测,并对所得数据进行模糊等价聚类分析的基础上,将围岩稳定性划分为极不稳定、不稳定、基本稳定、稳定及非常稳定等5类。在此基础上,将围岩稳定性影响因子分为最主要因素、主要因素及一般因素3大类,进而确定各监测巷道及硐室的围岩稳定性类别。结果表明,模糊等价聚类分析具有较强的工程适用性,是解决矿井围岩稳定性分析的一种有效方法,基于该方法得到的围岩稳定性影响因子分类和围岩类别可以为合理设计围岩支护方案及其参数提供理论依据。   相似文献   

12.
赵兴东  唐春安  田军 《岩土力学》2007,28(4):659-662
鲁中小官庄铁矿由于埋藏深、地压大、矿体倾角比较缓、矿岩破碎,是国内有名的难采矿山之一。进路开挖以后支护巷道破坏严重,其围岩变形为无收敛变形,也是国内支护较难的矿山之一。针对小官庄铁矿情况,为掌握其地压活动规律,应用东北大学岩石破裂过程分析系统(RFPA),模拟其采用无底柱分段崩落法进路开挖过程,对进路开挖过程巷道围岩应力变化进行数值分析。发现随着进路开挖,导致进路出现片帮、底鼓、顶板下沉等现象,并且在矿岩接触带出现高应力集中,导致两进路之间的间柱破坏严重,并随着进路开挖应力逐步向新开挖两进路之间的间柱转移,开挖顺序造成边界矿体出现高应力集中,导致边界矿体难采。数值分析结果可以看出:进路的开挖顺序是导致小官庄铁矿进路围岩破坏的一个主要原因。  相似文献   

13.
针对红庆梁煤矿回采巷道变形严重问题,采用空心包体地应力测量方法对红庆梁煤矿3-1煤的地应力进行了实测,获得地应力场分布特征。应用地质动力区划法划分红庆梁井田Ⅰ—Ⅴ级断裂构造,应用“岩体应力状态分析系统”,进行应力区划分和巷道稳定性分析。研究表明:红庆梁煤矿地应力场属于以水平压应力为主导的水平构造应力场,地应力场方向对巷道稳定性影响较小;井田范围内共划分4个应力区:低应力区、正常应力区、应力梯度区、高应力区,分别占井田面积的5.9%、55.7%、27.0%、11.4%;应力大小是影响巷道稳定性的主要原因,致使处于应力梯度区和高应力区内的巷道变形严重。地应力场的分布特征分析和应力区的划分对红庆梁煤矿及类似条件矿井的采掘部署和支护设计具有重要作用。移动阅读   相似文献   

14.
岩体中弱结构面的产状要素和力学参数是影响深部巷道围岩变形和破坏的重要因素。通过对金川矿区地下开采过程中发生的与弱结构面效应有关的巷道变形特征、破坏模式与机理分析得出,在断层附近或穿过断层开挖时,往往会引起断层活化,引发巷道变形和破坏。当在节理岩体中开挖时会使围岩中低强度的节理裂隙等弱结构面正应力减小,抗剪强度降低,从而发生相对滑移、变形。此外,与巷道开挖相比,矿体开采的影响不仅在持续时间上,还是在影响以及程度上都是造成巷道变形和破坏的弱结构面效应更加显著的主要原因。  相似文献   

15.
基于沂源鲁村煤矿围岩稳定性差,塑性变形量大的实际情况,采用弹塑性力学分析的方法,分析了鲁村煤矿千米混合立井岩石开挖后围岩应力重新分布情况和塑性变形,进而确定是否采用临时支护措施,以确保施工安全。研究表明鲁村煤矿混合井围岩掘进深度大于780 m时,围岩变得不稳定,需要施加锚喷临时支护,同时增加井筒掘进荒断面,预留围岩变形空间。  相似文献   

16.
Summary Conditions under which dynamic loads occur in mines are briefly described and the special vulnerability of roadways in coal mines to fail under dynamic load is considered. A method for assessment of shock load energy anticipated is proposed, based on the volume of rock and the velocity of rock particles induced by rapid rock failure and/or seismic tremors. Case examples from Upper Silesian coal mines are given and the safety factor of steel supports against the shock energy from rockbursts is discussed. The shock energy damping ability of various parts of steel supports and support systems is calculated as a basis for rational support design. Results of six mine experiments where various types of roadway support were installed and then loaded dynamically by blasting within surrounding rocks are discussed.  相似文献   

17.
古汉山矿软岩巷道地质因素分析   总被引:1,自引:1,他引:0  
针对古汉山矿软岩巷道围岩变形破坏和严重底膨问题, 通过对巷道围岩进行地应力测量、物理力学性质分析测试、矿物成份分析和节理裂隙调查, 确定了底膨巷道的软岩类型, 这为解决软岩巷道的支护问题提供了基础。   相似文献   

18.
Air slacking is an intuitive term used by many underground coal miners to describe the deterioration of mine roof, usually shale, due to a change in atmospheric conditions. Several major research studies support humidity changes as being the major cause for the phenomenon. Research has also suggested a relationship between air slacking and cyclic dilation-contraction response to atmospheric humidity changes. There is evidence that, in susceptible rocks, the strains developed may be sufficient to introduce extensive fracturing, observable as mine roof deterioration. It is suggested that comparisons of specialized swelling strain measurements, made under varying humidities, to rock strength and stiffness data could provide an index correlatable to susceptibility to deterioration.  相似文献   

19.
高家梁煤矿位于内蒙古鄂尔多斯市东胜区东南8km处,矿井设计规模年产600×104吨。建井期间在埋深50~150m的运输大巷中部,遇到一种低强度软岩,巷道掘进与施工过程中冒顶、塌方时有发生,常规锚杆支护失效,对施工安全和进度造成很大影响。基于巷道地质情况与软岩特征,根据巷道围岩松动圈理论及围岩与支护作用关系,重点分析了软岩巷道的变形、顶板失稳机理,确定了运输大巷的工程加固方法。经过ADINA数值模拟验算以及后期的运输大巷变形监测曲线都证明加固方案满足运输大巷对支护刚度和强度的要求,同时还将加固方案进行了经济评价,得出了这种加固方案对于高家梁矿的特殊软岩巷道段加固在技术上可行,经济上可以接受的结论。  相似文献   

20.
从岩体的岩性、时代、产状等方面,论证了八宝山煤矿北部的正长斑岩体为一岩盖,下部找煤前景可观,可在井下实施巷探和定向钻探找煤,以延长矿井寿命   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号