首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
1998—2012年,全球平均地面增温速率较之前明显趋缓,出现全球变暖停滞现象,该现象的成因与机制是当前气候变化研究的一个热点领域。主要从外部强迫和内部变率2个角度回顾全球变暖停滞产生机制的研究进展。从气候系统外部强迫影响来说,全球变暖停滞主要受到太阳活动、火山爆发、气溶胶以及平流层水汽等的影响。从气候系统内部调控作用来看,全球增温速率减缓主要受到太平洋、大西洋、印度洋和南大洋自然变率以及相应的热量再分配过程的影响。全球变暖停滞期间气候系统内部能量并没有减少,其中一部分能量被转移并储存在了海洋中深层,从而对全球增温减缓产生影响。同时,重点回顾了针对部分耦合强迫作用的"起搏器"试验,该类试验是研究全球变暖停滞的特征、成因及机制的有力手段。此外,也总结了全球变暖停滞现象对气候系统能量收支平衡、资料、模拟以及相关政策制定等方面带来的挑战,展望了未来的研究重点。  相似文献   

2.
Research on the Global Warming Hiatus   总被引:1,自引:0,他引:1  
A global warming “hiatus” has been observed since the beginning of the 21st century despite the increase in heat-trapping greenhouse gases, challenging the current global warming studies. Focusing on the phenomena and mechanisms of the global warming “hiatus”, the National Key Research Program of China launched a project in July, 2016. The main research themes of this project cover: ①Revealing the spatial and temporal variability of the global warming hiatus, and quantifying the contributions of external forcing and internal (natural) variability, respectively; ②Revealing the role of the atmosphere in the global heat and energy redistribution under global warming hiatus; ③Revealing the role of the ocean in the global heat and energy redistribution under global warming hiatus; ④Investigating the predictability of the global warming hiatus. The key scientific issues to be resolved include: ①Identifying characteristics of the global warming hiatus and discerning the roles of decadal, multi-decadal oscillations; ②Revealing the role of ocean-atmosphere dynamical processes in the global redistribution of heat and energy; ③Understanding the predictability of the global warming hiatus. The research aims to predict the future development of the global warming hiatus, and to point out the possible impacts on China and other important areas, including “The Belt and Road” core area and the Polar Regions.  相似文献   

3.
In the recent decades, a large amount of anthropogenic heat has been absorbed and stored in the Southern Ocean. Results from observations and climate models' simulations both show that the Southern Ocean displays large warming in the upper and subsurface ocean that maximizes at 45°~40°S. However, the underlying mechanisms and evolution processes of the Southern Ocean temperature changes remain unclear, leaving the Southern Ocean to be a hotspot of climate change studies in the recent years. The present study summarized the current progress in the observations and numerical modeling of long-term temperature changes in the Southern Ocean. The effects of changes in wind, surface heat flux, sea-ice and other factors on the ocean temperature changes were presented, along with the introduction to the role of oceanic mean circulation and eddies. The present study further proposed that a deepening of the understanding in the Southern Ocean temperature change may be achieved by investigating the fast and slow responses of the Southern Ocean to external radiative forcing, which are respectively associated with the fast adjustments of the ocean mixed-layer and the slow evolution of the deep ocean. Specifically, the striking and fast mixed-layer ocean warming north of 50°S is tightly related to the surface heat absorption over upwelling regions and wind-driven meridional heat transport, resulting in enhanced warming around 45°S. While in the slow response of the Southern Ocean temperature, the enhanced ocean warming shifts southward and downward, mainly associating with the heat transfer from oceanic eddies. The Southern Ocean temperature has pronounced climatic effects on many aspects, such as global energy balance, sea-level rise, ocean stratification changes, regional surface warming and atmospheric circulation changes. However, large model biases/deficiencies in simulating the present-day climatology and essential ocean dynamic processes last in generations of climate models, which are the main challenge in advancing our understanding in the mechanisms for the Southern Ocean climate changes. Therefore, to achieve reliable future projections of the Southern Ocean climate, substantial efforts will be needed to improve the model performances and physical understanding in the relative role of various processes in ocean temperature changes at different time scales.  相似文献   

4.
海洋中溶存甲烷研究进展   总被引:4,自引:0,他引:4  
CH4是大气中的重要微量气体,对全球变暖和大气化学有重要作用。海洋是大气甲烷的重要源和汇。开展海洋中溶存甲烷的研究,有助于了解海洋对大气甲烷和全球变化的贡献。综述了海洋中溶存甲烷的研究现状,着重介绍了海洋中溶存甲烷的分布特征、海气交换通量的估算及其生物地球化学循环,并探讨了该领域研究中存在的问题。  相似文献   

5.
北极海冰减退引起的北极放大机理与全球气候效应   总被引:5,自引:1,他引:4  
自20世纪70年代以来,全球气温持续增高,对北极产生了深刻的影响。21世纪以来,北极的气温变化是全球平均水平的2倍,被称为"北极放大"现象。北极海冰覆盖范围呈不断减小的趋势,2012年北极海冰已经不足原来的40%,如此大幅度的减退是过去1 450年以来独有的现象。科学家预测,不久的将来,将会出现夏季无冰的北冰洋。全球变暖背景下北极内部发生的正反馈过程是北极放大现象的关键,不仅使极区的气候发生显著变化,而且对全球气候产生非常显著的影响,导致很多极端天气气候现象的发生。北极科学的重要使命之一是揭示这些正反馈过程背后的机理。北极放大有关的重大科学问题主要与气—冰—海相互作用有关,海冰是北极放大中最活跃的因素,要明确海冰结构的变化,充分考虑融池、侧向融化、积雪和海冰漂移等因素,将海冰热力学特性的改变定量表达出来。海洋是北极变化获取能量的关键因素,是太阳能的转换器和储存器,要认识海洋热通量背后的能量分配问题,即能量储存与释放的联系机理,认识淡水和跃层结构变化对海气耦合的影响。全面认识北极气候系统的变化是研究北极放大的最终目的,要揭示气—冰—海相互作用过程、北极海洋与大气之间反馈的机理、北极变化过程中的气旋和阻塞过程、北极云雾对北极变化的影响。在对北极海冰、海洋和气候深入研究的基础上,重点研究极地涡旋罗斯贝波的核心作用,以及罗斯贝波变异的物理过程,深入研究北极变化对我国气候影响的主要渠道、关键过程和机理。  相似文献   

6.
Since tropical rainfall is important in the global energy and hydrologic cycle, the tropical rainfall changes under global warming have attracted extensive attention around the world in recent decades. The advances in the observational studies and model projection for the tropical rainfall changes under global warming were reviewed here. The frontiers in the mechanism of regional tropical rainfall changes and the approaches of rainfall change research are summarized. The large intermodel spread in the multi-model projections, the sources of uncertainty and the methods to reduce the uncertainty were also introduced. Finally, the challenges about the tropical rainfall changes were discussed.  相似文献   

7.
Aiming at the current climate status, i.e., drastic rise of atmospheric greenhouse gases and the apparent trend of global warming, the International Ocean Discovery Program (IODP), launched in 2013, proposed four scientific challenges, including the response of global climate to CO2 rise, the feedback of ice-sheet and sea-level to global warming, the dynamics of the mid- and low-latitude hydro-cycle, and the mechanism of the marine carbon-chemical buffering system. By August 2017, eight IODP expeditions of climate-related themes were implemented, focusing on the Neogene evolution of the monsoon system over Asia-Pacific-Indian and the West Pacific Warm Pool, with specific interests in the variabilities and mechanisms of the Asian Monsoon system on orbital-to millennial-scales, as well as the connections between Asian Monsoon and the uplift/weathering of the Tibetan Plateau on tectonic time scale. The planned IODP expeditions in the forthcoming two years will explore the Southern high-latitude climate histories of West Antarctic ice in the Cenozoic, and Southern Ocean currents and carbon cycle in the Cretaceous-Paleogene. In sum, during the current phase of IODP (2013-2023), our knowledge about the marine climate system would be greatly advanced via deciphering the past changes in tropical processes of Asian Monsoon and West Pacific Warm Pool, as well as in high-latitude factors of the West Antarctic ice. A better scientific background of natural variability would be provided, accordingly, for predicting the future tendency in climate change. In this context, China’s strategic directions include the global monsoon concept, the tropical forcing hypothesis, and in particular the climate effect of the Sunda Shelf.  相似文献   

8.
The authors identify and describe the following global forces of nature driving the Earth’s climate: (1) solar radiation as a dominant external energy supplier to the Earth, (2) outgassing as a major supplier of gases to the World Ocean and the atmosphere, and, possibly, (3) microbial activities generating and consuming atmospheric gases at the interface of lithosphere and atmosphere. The writers provide quantitative estimates of the scope and extent of their corresponding effects on the Earth’s climate. Quantitative comparison of the scope and extent of the forces of nature and anthropogenic influences on the Earth’s climate is especially important at the time of broad-scale public debates on current global warming. The writers show that the human-induced climatic changes are negligible.  相似文献   

9.
草地土壤碳库碳储量及其变化与调控机制是草地碳循环研究的核心.草地生态系统正经受着越来越严重的人为与自然因素干扰,如土地利用变化、大气氮沉降增加、施肥及大气CO2浓度与温度升高.因此,加强人为干扰和全球变化背景下草地土壤有机碳库的响应研究有重要意义.总结了放牧、草地开垦及外来氮素输入等3种主要的人类活动对土壤有机碳总量和活性碳组分的影响及其对全球变化的响应与适应,在此基础上指出了目前草地生态系统土壤有机碳库研究的薄弱环节及今后的重点研究领域.  相似文献   

10.
邱雅惠  刘健  刘斌  宁亮  严蜜 《第四纪研究》2019,39(4):1055-1067
全新世冷事件期间的气候格局及其成因是过去气候变化研究的热点问题.利用基于通用气候系统模式开展的TraCE-21ka气候模拟试验资料,在定义和提取典型冷事件的基础上,分析了全强迫试验模拟的全新世北半球多次冷事件的规模及冷事件发生时温度与降水的空间特征,并结合全强迫试验中使用的4个外强迫序列(淡水注入、轨道强迫、大气温室气体、大陆冰盖)及其对应的单因子敏感性试验,初步探讨了部分典型冷事件的成因.结果表明: TraCE-21ka模拟的冷事件年份与重建/集成序列的冷事件年份对应较好,模式较好地模拟出了全新世北半球的冷事件;全新世期间,北半球共发生了 10 次典型冷事件( 9. 7 ka B. P.、 8. 3 ka B. P.、 7. 3 ka B. P.、6. 2 ka B. P.、 5. 2 ka B. P.、 4. 2 ka B. P.、 3. 4 ka B. P.、 2. 1 ka B. P.、 1. 0 ka B. P.和 0. 2 ka B. P.);每次冷事件发生时,北半球大范围降温和变干,温度变化呈现明显的纬度地带性差异,中高纬地区降温最显著,低纬10°N附近降水减少最显著;在 8. 3 ka B. P.、 7. 3 ka B. P.、 6. 2 ka B. P.、 5. 2 ka B. P.、 4. 2 ka B. P.、 3. 4 ka B. P.、 2. 1 ka B. P.和1. 0 ka B. P.共8次冷事件中,北半球温度和降水的空间变化较为相似,北大西洋经圈翻转流( Atlantic Meridional Overturning Circulation,简称 AMOC)变弱导致了冷事件,格陵兰岛南部的北大西洋海域降温和变干尤为显著;9. 7 ka B. P.和3. 4 ka B. P.的冷事件可能与轨道强迫有关,淡水注入造成了8. 3 ka B. P.和7. 3 ka B. P.的冷事件, 0. 2 ka B. P.冷事件可能与大气温室气体波动有关.地球系统内部变率对于冷事件的发生可能也有一定影响.  相似文献   

11.
The transition from the Last Glacial Maximum to the Holocene was an internal of climate variability that was characterised by large spatial and temporal variations. Here we show that deglaciation warming in the northern Indian Ocean was initiated ca. 19 ka, which is contemporary with deglaciation warming in the Antarctica and Southern Ocean. A gradual warming occurred during the glacial/Holocene transition in the northern Indian Ocean, unlike the two‐step warming seen in Greenland and the North Atlantic. Synchronous deglacial warming ca. 19 ka in Antarctica and the northern Indian Ocean suggests a strong connection in the propagation of climate signals between Antarctica and the Indian Ocean, probably through the Indonesian Throughflow and/or Subantarctic Mode Water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The East Asian Summer Monsoon (EASM) exerts considerable influences on the climate in China. Studying kinetic energy sources of monsoon circulation from the perspective of energetics is critical important to understand monsoon variability and relevant mechanism. The traditional theory of Available Potential Energy (APE) and relevant studies were reviewed, and some limitations of the APE theory in studying regional effective energy cycle and transformation were discussed. A new theory of Perturbation Potential Energy (PPE) of atmospheric circulation, which can be applicable to the study of energy cycle and transformation of regional circulation systems,was introduced. The advantage of the PPE theory in studying regional effective energy cycle and conversion was discussed, and some advances in the role of the PPE in variability of the EASM were further reviewed. At the end, some important scientific open questions about the application of the PPE to investigations of EASM variability in future were summarized as follows: spatial-temporal characteristics and dominant modes of PPE at seasonal-interannual timescale over the EASM region, and their relationships with the EASM and lower boundary forcings; the physical processes and relevant mechanisms on how lower boundary forcings affecting the kinetic energy of EASM circulation through the key link of PPE; the preceding PPE signals associated with EASM variations, relevant underlying mechanisms, and predictability of the preceding PPE signals as well.  相似文献   

13.
Research Progress on the Impact of Urbanization on Climate Change   总被引:3,自引:0,他引:3  
The world has been undergoing a remarkable process of urbanization, especially in developing countries in recent years. The urbanization process has brought about great urban development and large population agglomeration, changes in production and lifestyle, and man-made disturbances such as greenhouse gas and pollution emissions. As the global urbanization process continues to advance, its impact on climate change continues to strengthen significantly. This paper mainly reviewed and summarized relevant researches from two aspects: the influence of urbanization on climate change and the mechanism of influence of urbanization on climate change. Urbanization causes regional warming and urban heat island effect, extreme events such as high temperature, heat wave and heavy rainfall increase in frequency, and also leads to increased urban flood risk. The increase of pollutant emission in the process of urbanization is the main cause of air quality deterioration. Urbanization also has an indirect impact on air quality by changing urban climate. Urbanization has an important impact on climatic factors such as relative humidity, wind speed, sunshine and cloud cover. The impacts of urbanization on climate change are mainly realized through underlying surface changes, greenhouse gas and pollution emissions, anthropogenic heat emissions and urban high heat capacity. Urbanization not only directly affects the regional/local climate, but also indirectly affects the regional/local climate by promoting global climate change. Therefore, the impact of urbanization on climate change has a global and regional multi-scale superposition effect.  相似文献   

14.
SST(海洋表层温度,sea surface temperature)的季节与年际异常对于认识现代全球变暖、重建历史时期气候变化以及探讨气候变化机制具有重要意义,而台湾东北部海域SST季节与年际异常的研究却相对较少.为更好地理解现代全球变暖和历史气候变化,利用NOAA的全球海表温度最优插值资料、Hadley中心的全球海表温度数据以及MEI逐月指数,分析了现代全球变暖背景下台湾东北部海域SST季节与年际异常及其控制因素.季节尺度上,受东亚冬季风的影响,研究海区的冬季SST变化比夏季更为剧烈,冬季SST控制着该海域年均SST和SST季节性的变化.现代器测和古气候记录表明该现象在年际-百年尺度上可能一直存在.年际尺度上,SST异常与MEI指数存在显著的8个月滞后相关性,ENSO(厄尔尼诺—南方涛动,El Ni?o-Southern Oscillation)事件通过东亚冬季风来影响研究海域的SST变化.在历史气候重建中区分气候变化的多尺度性和替代指标的季节性、认识历史气候对ENSO及东亚冬季风的响应特征和机制,这将有助于进一步理解现代全球气候变暖的原因.   相似文献   

15.
Dimethylsulphide (DMS) is an important marine biogenic gas and can be released into atmosphere through sea air gas exchange. The oxidants of DMS in atmosphere are the main compounds of pristine marine sulphate aerosols and would affect the global climate change finally. Almost all the atmospheric DMS, about 90%, comes from the ocean. The southern ocean, which consists about 20% of the whole ocean area, is one of the largest atmospheric DMS sources. In contrast with the other oceans, the Southern Ocean appears great spatial and temporal variability of surface seawater DMS. In addition, there are the complex hydrography system, variable sea ice condition and various biologic activities in the Southern Ocean as to make survey and understand DMS as well as its controlling factors most difficult. Moreover, it is significant to integrate the DMS sea ice exchange processes and its controlling factors studies. In order to develop survey and research on the sea air DMS exchange and biogeochemistry processes, estimate methods of the sea air DMS fluxes will be reviewed, characteristics of the spatial and temporal distribution of surface seawater DMS will be discussed and the sea air DMS flux in the Southern Ocean will be assessed. Finally, major controlling factors of DMS sea air DMS processes will also be analyzed.  相似文献   

16.
大洋钻探与青藏高原   总被引:11,自引:2,他引:11  
青藏高原的隆升历史在海洋沉积中得到记录。印度洋的两大深海沉积扇──孟加拉扇与印度河扇(总面积4×105km ̄2)──便是第三纪中期以来喜马拉雅山脉上升剥蚀的产物。南海北部陆架的莺歌海盆地中巨厚的海相沉积(仅第四系便达2000m)系来自红河三角洲,也应是青藏高原隆升的结果。另一方面,青藏高原隆升可能是全球新生代变冷和东亚季风兴起的原因,也是世界大洋化学成分和沉积速率显著变化的原因之一。上述种种,都有深海钻探和大洋钻探的发现作为根据。因此,如能将青藏高原的调查研究与大洋钻探结合起来,就可望为揭示全球环境变迂的机理作出突破性的贡献。  相似文献   

17.
Future variability of droughts in three Mediterranean catchments   总被引:3,自引:3,他引:0  
Lopez-Bustins  Joan A.  Pascual  Diana  Pla  Eduard  Retana  Javier 《Natural Hazards》2013,66(3):1405-1429
This study investigates the intensity change in typhoons and storm surges surrounding the Korean Peninsula under global warming conditions as obtained from the MPI_ECHAM5 climate model using the A1B series. The authors use the Cyclostationary Empirical Orthogonal Function to estimate future background fields for typhoon simulations from twenty-first-century prediction results. A series of numerical experiments applies WRF (Weather Research and Forecasting) and POM (Prinston Ocean Model) models to simulate two historical typhoons, Maemi (2003) and Rusa (2002), and associated storm surges under real historical and future warming conditions. Applying numerical experiments to two typhoons, this study found that their central pressure dropped about 19 and 17 hPa, respectively, when considering the future sea surface temperature (a warming of 3.9 °C for 100 years) over the East China Sea (Exp. 1). The associated enhancement of storm surge height ranged from 16 to 67 cm along the southern coast of the Korean Peninsula. However, when the study considered global warming conditions for other atmospheric variables such as sea-level pressure, air temperature, relative humidity, geopotential height, and wind in the typhoon simulations (Exp. 2), the intensities of the two typhoons and their associated surge heights scarcely increased compared to the results of Exp. 1. Analyzing projected atmospheric variables, the authors found that air temperatures at the top of the storm around 200 hPa increased more than those at the surface in tropical and mid-latitudes. The reduced vertical temperature difference provided an unfavorable condition in the typhoon’s development even under conditions of global warming. This suggests that global warming may not always correlate with a large increase in the number of intense cyclones and/or an increase in associated storm surges.  相似文献   

18.
近千年全球气候变化的长积分模拟试验   总被引:5,自引:2,他引:3  
近千年全球气候变化的长积分模拟试验是全球气候模拟研究的新领域,它不仅将现代器测资料与过去代用指标序列进行了有机的衔接,而且对过去百年和年代际尺度的气候变化可进行动力学解释,探讨其主要控制因素及其导致的区域响应差异。由于这类长积分模拟对计算机技术和气候模式本身的要求较高,目前能进行这类研究的国家为数不多。重点介绍了德国马普气象研究所的全球海气耦合气候模式ECHO G,以及利用该模式进行的千年长积分模拟试验结果。首先,应用全球120年的器测资料对模拟结果进行了检验,论证了该模型较强的气候模拟能力;其次,根据全球地表2 m气温的千年模拟结果,揭示了中世纪暖期—小冰期—20世纪暖期三段式气候变化时段,然后讨论了中世纪暖期和小冰期鼎盛期全球及中国的温度分布特点;最后根据对各控制因子的拟合分析与比较,初步揭示了近千年来的温度变化主要受太阳有效辐射的变化控制,而温室气体含量的增加对100年来温度的快速上升起着主导作用。   相似文献   

19.
There is a significant relationship between ambient temperature and mortality. In healthy individuals with no underlying co-morbid conditions, there is an efficient heat regulation system which enables the body to effectively handle thermal stress. However, in vulnerable groups, especially in elderly over the age of 65 years, infants and individuals with co-morbid cardiovascular and/or respiratory conditions, there is a deficiency in thermoregulation. When temperatures exceed a certain limit, being cold winter spells or heat waves, there is an increase in the number of deaths. In particular, it has been shown that at temperatures above 27 °C, the daily mortality rate increases more rapidly per degree rise compared to when it drops below 27 °C.This is especially of relevance with the current emergency of global warming. Besides the direct effect of temperature rises on human health, global warming will have a negative impact on primary producers and livestock, leading to malnutrition, which will in turn lead to a myriad of health related issues. This is further exacerbated by environmental pollution.Public health measures that countries should follow should include not only health-related information strategies aiming to reduce the exposure to heat for vulnerable individuals and the community, but improved urban planning and reduction in energy consumption, among many others. This will reduce the carbon footprint and help avert global warming, thus reducing mortality.  相似文献   

20.
There is a significant relationship between ambient temperature and mortality. In healthy individuals with no underlying co-morbid conditions, there is an efficient heat regulation system which enables the body to effectively handle thermal stress. However, in vulnerable groups, especially in elderly over the age of 65 years, infants and individuals with co-morbid cardiovascular and/or respiratory conditions, there is a deficiency in thermoregulation. When temperatures exceed a certain limit, being cold winter spells or heat waves, there is an increase in the number of deaths. In particular, it has been shown that at temperatures above 27 °C, the daily mortality rate increases more rapidly per degree rise compared to when it drops below 27 °C.This is especially of relevance with the current emergency of global warming. Besides the direct effect of temperature rises on human health, global warming will have a negative impact on primary producers and livestock, leading to malnutrition, which will in turn lead to a myriad of health related issues. This is further exacerbated by environmental pollution.Public health measures that countries should follow should include not only health-related information strategies aiming to reduce the exposure to heat for vulnerable individuals and the community, but improved urban planning and reduction in energy consumption, among many others. This will reduce the carbon footprint and help avert global warming, thus reducing mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号