首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

2.
On August 8, 2017, a strong earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, northern Sichuan. The earthquake occurred on a branch fault at the southern end of the eastern section of the East Kunlun fault zone. In the northwest of the aftershock area is the Maqu-Maqin seismic gap, which is in a locking state under high stress. Destructive earthquakes are frequent along the southeast direction of the aftershocks area. In Songpan-Pingwu area, only 50~80km away from the Jiuzhaigou earthquake, two M7.2 earthquakes and one M6.7 earthquake occurred from August 16 to 23, 1976. Therefore, the Jiuzhaigou earthquake was an earthquake that occurred at the transition part between the historical earthquake fracture gap and the neotectonic active area. Compared with other M7.0 earthquakes, there are few moderate-strong aftershocks following this Jiuzhaigou earthquake, and the maximum magnitude of aftershocks is much smaller than the main shock. There is no surface rupture zone discovered corresponding to the M7.0 earthquake. In order to understand the feature of source structure and the tectonic environment of the source region, we calculate the parameters of the initial earthquake catalogue by Loc3D based on the digital waveform data recorded by Sichuan seismic network and seismic phase data collected by the China Earthquake Networks Center. Smaller events in the sequence are relocated using double-difference algorithm; source mechanism solutions and centroid depths of 29 earthquakes with ML≥3.4 are obtained by CAP method. Moreover, the source spectrum of 186 earthquakes with 2.0≤ML≤5.5 is restored and the spatial distribution of source stress drop along faults is obtained. According to the relocations and focal mechanism results, the Jiuzhaigou M7.0 earthquake is a high-angle left-lateral strike-slip event. The earthquake sequence mainly extends along the NW-SE direction, with the dominant focal depth of 4~18km. There are few shallow earthquakes and few earthquakes with depth greater than 20km. The relocation results show that the distribution of aftershocks is bounded by the M7.0 main shock, which shows obvious segmental characteristics in space, and the aftershock area is divided into NW segment and SE segment. The NW segment is about 16km long and 12km wide, with scattered and less earthquakes, the dominant focal depth is 4~12km, the source stress drop is large, and the type of focal mechanism is complicated. The SE segment is about 20km long and 8km wide, with concentrated earthquakes, the dominant depth is 4~12km, most moderate-strong earthquakes occurred in the depth between 11~14km. Aftershock activity extends eastward from the start point of the M7.0 main earthquake. The middle-late-stage aftershocks are released intensively on this segment, most of them are strike-slip earthquakes. The stress drop of the aftershock sequence gradually decreases with time. Principal stress axis distribution also shows segmentation characteristics. On the NW segment, the dominant azimuth of P axis is about 91.39°, the average elevation angle is about 20.80°, the dominant azimuth of T axis is NE-SW, and the average elevation angle is about 58.44°. On the SE segment, the dominant azimuth of P axis is about 103.66°, the average elevation angle is about 19.03°, the dominant azimuth of T axis is NNE-SSW, and the average elevation angle is about 15.44°. According to the fault profile inferred from the focal mechanism solution, the main controlling structure in the source area is in NW-SE direction, which may be a concealed fault or the north extension of Huya Fault. The northwest end of the fault is limited to the horsetail structure at the east end of the East Kunlun Fault, and the SE extension requires clear seismic geological evidence. The dip angle of the NW segment of the seismogenic fault is about 65°, which may be a reverse fault striking NNW and dipping NE. According to the basic characteristics of inverse fault ruptures, the rupture often extends short along the strike, the rupture length is often disproportionate to the magnitude of the earthquake, and it is not easy to form a rupture zone on the surface. The dip angle of the SE segment of the seismogenic fault is about 82°, which may be a strike-slip fault that strikes NW and dips SW. The fault plane solution shows significant change on the north and south sides of the main earthquake, and turns gradually from compressional thrust to strike-slip movement, with a certain degree of rotation.  相似文献   

3.
九寨沟地震(M_s7.0或M_w6.5)震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端塔藏断裂、岷江断裂和虎牙断裂交汇部位,中国地震局相关科研机构的研究人员曾将该震中区判定为玛沁—玛曲高震级地震危险区.地震应急科学考察期间没有发现地震地表破裂带,但地震烈度等震线长轴方位、极震区基岩崩塌和滑坡集中带、重新定位余震空间展布和震源机制解等显示出发震断层为NNW向虎牙断裂北段,左旋走滑性质,属东昆仑断裂带东端分支断层之一.此外,汶川地震后,在青藏高原东缘和东南缘次级活动断层上发生了包括2017年九寨沟地震(Mw6.5)、2014年鲁甸(M_w6.2)、景谷(M_w6.2)、康定(M_w6.0)等多次中强地震,显示出青藏高原东缘至东南缘各块体主干边界活动断层现今处于中等偏高的应变积累状态,即在巴颜喀拉、川滇等块体主干边界活动断层上具备了发生高震级(M_w≥7.0)地震的构造应力-应变条件,未来发生高震级地震的危险性不容忽视.  相似文献   

4.
The Oct.1,2014 M5.0 Yuexi earthquake occurred on the Daliang Shan fault zone where only several historical moderate earthquakes were recorded.Based on the waveform data from Sichuan regional seismic network,we calculated the focal mechanism solution and centroid depth of the M5.0 Yuexi earthquake by CAP (Cut and Paste) waveform inversion method,and preliminarily analyzed the seismogenic structure.We also calculated the apparent stress values of the M5.0 earthquake and other 14 ML≥4.0 events along the Shimian-Qiaojia fault segment of the eastern boundary of the Sichuan-Yunnan block.The result indicates that the parameters of the focal mechanism solution are with a strike of 256°,dip of 62°,and slip of 167° for the nodal plane Ⅰ,and strike of 352°,dip of 79°,and slip of 29° for the nodal plane Ⅱ.The azimuth of the P axis is 121° with dip angle of 11°,the azimuth of T axis is 217° with dip angle of 28°,and the centroid depth is about 11km,and moment magnitude is MW5.1.According to the focal mechanism solution and the fault geometry near the epicenter,we infer that the seismogenic fault is a branch fault,i.e.,the Puxiong Fault,along the central segment of the Daliang Shan fault zone.Thus,the nodal plane Ⅱ was interpreted as the coseismic rupture plane.The M5.0 Yuexi earthquake is a strike-slip faulting event with an oblique component.The above findings reveal the M5.0 Yuexi earthquake resulted from the left-lateral strike-slip faulting of the NNW Dalang Shan fault zone under the nearly horizontal principal compressive stress regime in an NWW-SEE direction.The apparent stress value of the Yuexi earthquake is 0.99MPa,higher than those of the ML ≥ 4.0 earthquakes along the eastern boundary of the Sichuan-Yunnan block since 2008 Wenchuan M8.0 earthquake,implying a relatively high stress level on the seismogenic area and greater potential for the moderate and strong earthquake occurrence.It may also reflect the current increasing stress level of the entire area along the eastern boundary,and therefore,posing the risk of strong earthquakes there.  相似文献   

5.
The Wulong MS5.0 earthquake on 23 November 2017, located in the Wolong sap between Wenfu, Furong and Mawu faults, is the biggest instrumentally recorded earthquake in the southeastern Chongqing. It occurred unexpectedly in a weak earthquake background with no knowledge of dramatically active faults. The complete earthquake sequences offered a significant source information example for focal mechanism solution, seismotectonics and seismogenic mechanism, which is helpful for the estimation of potential seismic sources and level of the future seismic risk in the region. In this study, we firstly calculated the focal mechanism solutions of the main shock using CAP waveform inversion method and then relocated the main shock and aftershocks by the method of double-difference algorithm. Secondly, we determined the seismogenic fault responsible for the MS5.0 Wulong earthquake based on these calculated results. Finally, we explored the seismogenic mechanism of the Wulong earthquake and future potential seismic risk level of the region. The results show the parameters of the focal mechanism solution, which are:strike24°, dip 16°, and rake -108° for the nodal plane Ⅰ, and strike223°, dip 75°, and rake -85° for the nodal plane Ⅱ. The calculations are supported by the results of different agencies and other methods. Additionally, the relocated results show that the Wulong MS5.0 earthquake sequence is within a rectangular strip with 4.7km in length and 2.4km in width, which is approximately consistent with the scales by empirical relationship of Wells and Coppersmith(1994). Most of the relocated aftershocks are distributed in the southwest of the mainshock. The NW-SE cross sections show that the predominant focal depth is 5~8km. The earthquake sequences suggest the occurrence features of the fault that dips northwest with dip angle of 63° by the least square method, which is largely consistent with nodal planeⅡof the focal mechanism solution. Coincidentally, the field outcrop survey results show that the Wenfu Fault is a normal fault striking southwest and dipping 60°~73° by previous studies. According to the above data, we infer that the Wenfu Fault is the seismogenic structure responsible for Wulong MS5.0 earthquake. We also propose two preliminary genetic mechanisms of "local stress adjustment" and "fluid activation effect". The "local stress adjustment" model is that several strong earthquakes in Sichuan, such as M8.0 Wenchuan earthquake, M7.0 Luzhou earthquake and M7.0 Jiuzhaigou earthquake, have changed the stress regime of the eastern margin of the Sichuan Basin by stress transference. Within the changed stress regime, a minor local stress adjustment has the possibility of making a notable earthquake event. In contract, the "fluid activation effect" model is mainly supported by the three evidences as follows:1)the maximum principle stress axial azimuth is against the regional stress field, which reflects NWW-SEE direction thrusting type; 2)the Wujiang River crosscuts the pre-existing Wenfu normal fault and offers the fluid source; and 3)fractures along the Wenfu Fault formed by karst dissolution offer the important fluid flow channels.  相似文献   

6.
利用双差定位方法对玉树地震序列2010年4月14日至10月31日间发生的ML≥1.0地震进行双差定位,得到1545个地震的重定位结果.综合分析地震双差定位结果和玉树地震序列中强地震震源机制解,发现玉树MS7.3地震发震构造由北西向和北东东向两条相交断层组成,主震发生在北西走向的甘孜—玉树断裂带上,5月29日的MS5.9余震序列发生在北东东走向的一条隐伏断裂上,两条断裂均接近直立.甘孜—玉树断裂是羌塘地块和巴彦喀拉地块的构造边界,由于羌塘地块和巴颜喀拉地块的差异运动使甘孜—玉树断裂强耦合段应力高度积累,在应变能超过岩石强度时破裂失稳发生了MS7.3地震.主震断层的左旋滑动导致北东东向断层的正应力减小,库伦应力增加,45天后触发了MS5.9余震序列的活动.  相似文献   

7.
GUO Zhi  CHEN Li-chun  LI Tong  GAO Xing 《地震地质》2018,40(6):1294-1304
The W-phase is a long period phase arriving between the P and S wave phases of a seismic source, theoretically representing the total near-and far-field long-period wave-field. Recent study suggests that the reliable source properties of earthquake with magnitude greater than ~MW4.5 can be rapidly inverted by using the W-phase waveform data. With the advantage of W-phase, most of major earthquake research institutes in the world have adopted the W-phase based inversion method to routinely assess focal mechanism of earthquake, such as the USGS and GFZ. In this study, the focal mechanism of the August 8, 2017 M7.0 Sichuan Jiuzhaigou and August 9, 2017 M6.6 Xinjiang Jinghe earthquakes were investigated by W-phase moment tensor inversion technique using global seismic event waveform recordings provided by Incorporated Research Institutions for Seismology, Data Management Center. To get reliable focal mechanism, we strictly select raw waveform data and carry out inversion in stages. At first, we discard waveform without correct instrument information. Then we carry out an initial inversion using selected waveform data to get primary results. Using the preliminary results as input, we carry out grid-search based inversion to find the final optimal source parameters. The inverted results indicate that the August 8, M7.0 Sichuan Jiuzhaigou shock resulted from rupturing on a NW-trending normal fault with majority of strike-slip movement. The parameters of two nodal planes are strike 152.7°, dip 61.4°, rake -4.8° and strike 245.0°, dip 85.8°, rake -151.3° respectively, and focal depth is 14.0km. The August 9, Xinjiang Jinghe M6.6 shock resulted from rupturing on a south-dipping thrust fault with left-lateral strike-slip. The parameters of two nodal planes are strike 100.6°, dip 27.5°, rake 114.1° and strike 259.3°, dip 65.1°, rake 78.0°, and the focal depth is 16.0km. The direction of two nodal planes is consistent with regional seismotectonic background.  相似文献   

8.
本文采用双差定位法对2017年8月8日至10月31日期间四川九寨沟MS7.0主震及5200个余震序列进行相对定位,得到4036个重定位地震事件.采用中国区域地震台网观测到的宽频带垂直分向波形数据和W震相反演方法,得到了主震震源机制解.重定位结果显示,余震序列分别沿NNW和SSE两个方向扩展,展布长度约58 km,且这些余震主要集中在22 km深度之上.余震分布的另一个重要特点是具有分区特性,即在主震NNW方向约5 km处存在明显的西北和东南两区余震活动分界线;西北区的余震由深至浅具有较好连续性,而东南区却在约10 km深度处存在不连续性.余震分布的这种分区特征,说明九寨沟地震震源区的地壳结构存在强烈的不均匀性.余震分布与主震破裂特征的一致性,证实了我们定位结果的可靠性.主震的震源机制解展示出节面Ⅰ的走向/倾角/滑动角分别为246°/83.7°/-177°,而节面Ⅱ的走向/倾角/滑动角为155.7°/87.1°/-6.3°,最佳质心深度为15.5 km,矩震级MW为6.5.根据余震分布较为垂直和主震震源机制解两节面的倾角均在80°以上,并结合野外地质调查结果,推测此次九寨沟地震为与节面Ⅱ参数相近的一次高角度的左旋走滑型事件.  相似文献   

9.
针对2008年8月30日在四川攀枝花-会理发生的Ms6.1地震序列,本研究基于四川和云南两省数字地震台网的宽频带波形记录,采用CAP方法反演了该序列主震及ML≥4.0余震的震源机制解.结果显示:主震震源机制解的两个主应力轴仰角小于10°,其中,主压力轴方位为140°;节面之一走向185°、西倾83°、滑动角5°,显示左旋走滑略兼逆冲分量的断层作用性质.结合余震、烈度分布以及震区的活动构造,判定该节面代表了主震的发震断层面,相应的发震断层应是穿越震区的近南北向红格断裂(南段).本研究还获得主震震源机制解的最佳拟合误差深度为10 km,与该事件的定位结果相一致.该序列中6次ML≥4.0余震也具有与主震类似的震源机制解.分析初步表明:空间上,2008年攀枝花-会理Ms6.1地震序列的震源机制解与研究区内更早地震的震源机制解具有良好的协调性,反映了该序列是在川滇地块SE-SSE向水平运动的背景下、沿近S-N向红格断裂发生左旋走滑略兼逆冲运动的结果.  相似文献   

10.
2017年8月8日四川发生九寨沟M7.0地震,是继2008年汶川M8.0地震后发生在巴颜喀拉块体东部的又一强震.现今GPS速度观测数据显示,2008年汶川地震前后的1999-2007年和2011-2016年两个时间段内巴颜喀拉块体东部地表速度场存在明显的差异.本文以实际GPS速度观测资料为约束,构建三维有限元地球动力学模型,分别计算分析了两个时段内震源区及周边现今地壳形变、弹性应变能和应力积累特征,进一步探讨汶川地震的发生对九寨沟地区变形及应力的影响.数值模拟结果显示,汶川地震之后(2011-2016年)巴颜喀拉块体东部的地壳形变、弹性应变能积累及应力积累速率均明显大于震前,增加量值达1.5-3倍;九寨沟地震发震断裂上库仑应力增长率在1999-2007年约为0.7 kPa·a~(-1),2011-2016年间增至1.2 kPa·a~(-1).上述结果表明,现今巴颜喀拉块体东部地壳应力积累过程有利于左旋走滑型九寨沟地震的发生,汶川地震的发生调整了区域应力状态,加速了九寨沟地震的孕育过程.  相似文献   

11.
在详细调研地震地质资料的基础上,构建了巴颜喀拉地块东北缘三维有限元模型。以九寨沟M_S7.0地震同震位错为荷载,模拟计算了九寨沟地震的发生对巴颜喀拉块体东北缘主要活动断裂加卸载效应的影响。模拟结果显示,九寨沟地震的发生对龙日坝断裂、虎牙断裂、青川-平武断裂西段、迭部-白龙江断裂西段和东段、临潭-宕昌断裂东段,以及处于甘青川交界危险区内的东昆仑断裂东段、塔藏断裂西段,处于六盘山南-西秦岭东危险区的西秦岭北缘断裂东段表现为库仑应力加载;对岷江断裂、塔藏断裂东段库仑应力卸载效应显著。  相似文献   

12.
On October 17, 2014, a MS6.6 earthquake occurred in Jinggu, Yunnan. The epicenter was located in the western branch of Wuliang Mountain, the northwest extension line of Puwen Fault. There are 2 faults in the surrounding area, one is a sinistral strike-slip and the other is the dextral. Two faults have mutual intersection with conjugate joints property to form a checkerboard faulting structure. The structure of the area of the focal region is complex. The present-day tectonic movement is strong, and the aftershock distribution indicates the faulting surface trending NNW. There is no obvious surface rupture related to the known fault in the epicenter, and there is a certain distance from the surface of the Puwen fault zone. Regional seismic activity is strong. In 1941, there were two over magnitude 7.0 earthquakes in the south of the epicenter of Jinggu County and Mengzhe Town. In 1988, two mainshock-aftershock type earthquakes occurred in Canglan-Gengma Counties, the principal stress axes of the whole seismic area is in the direction of NNE. Geological method can be adopted to clarify the distribution of surficial fracture caused by active faults, and high-precision seismic positioning and spatial distribution characteristics of seismic sequences can contribute to understand deep seismogenic faults and geometric features. Thus, we can better analyze the three-dimensional spatial distribution characteristics of seismotectonics and the deep and shallow tectonic relationship. The focal mechanism reveals the property and faulting process to a certain extent, which can help us understand not only the active property of faults, but also the important basis for deep tectonic stress and seismogenic mechanism. In order to study the fault characteristic of the Jinggu earthquake, the stress field characteristics of the source area and the geometric parameters of the fault plane, this paper firstly uses the 15 days aftershock data of the Jingsuo MS6.6 earthquake, to precisely locate the main shock and aftershock sequences using double-difference location method. The results show that the aftershock sequences have clustering characteristics along the NW direction, with a depth mainly of 5~15km. Based on the precise location, calculations are made to the focal mechanisms of a total of 46 earthquakes including the main shock and aftershocks with ML ≥ 3.0 of the Jinggu earthquake. The double-couple(DC)component of the focal mechanism of the main shock shows that nodal plane Ⅰ:The strike is 239°, the dip 81°, and the rake -22°; nodal plane Ⅱ, the strike is 333°, the dip 68°, and the rake -170.31°. According to focal mechanism solutions, there are 42 earthquakes with a focal mechanism of strike-slip type, accounting for 91.3%. According to the distribution of the aftershock sequence, it can be inferred that the nodal plane Ⅱ is the seismogenic fault. The obtained focal mechanism is used to invert the stress field in the source region. The distribution of horizontal maximum principal stress orienation is concentrated. The main features of the regional tectonic stress field are under the NNE-SSW compression(P axis)and the NW-SE extension(T axis)and are also affected by NNW direction stress fields in the central region of Yunnan, which indicates that Jinggu earthquake fault, like Gengma earthquake, is a new NW-trending fault which is under domination of large-scale tectonic stress and effected by local tectonic stress environment. In order to define more accurately the occurrence of the fault plane of the Jinggu earthquake, with the precise location results and the stress field in the source region, the global optimal solution of the fault plane parameters and its error are obtained by using both global searching simulated annealing algorithm and local searching Gauss-Newton method. Since the parameters of the fault plane fitting process use the stress parameters obtained by the focal mechanism inversion, the data obtained by the fault plane fitting is more representative of the rupture plane, that is, the strike 332.75°, the dip 89.53°, and the rake -167.12°. The buried depth of the rupture plane is 2.746km, indicating that the source fault has not cut through the surface. Based on the stress field characteristics and the inversion results of the fault plane, it is preliminarily believed that the seismogenic structure of the Jinggu earthquake is a newly generated nearly vertical right-lateral strike-slip fault with normal component. The rupture plane length is about 17.2km, which does not extend to the Puwen fault zone. Jinggu earthquake occurred in Simao-Puer seismic region in the south of Sichuan-Yunnan plate. Its focal mechanism solution is similar to that of the three sub-events of the Gengma earthquake in November 1988. The seismogenic structure of both of them is NW-trending and the principal stress is NE-SW. The rupture plane of the Jinggu main shock(NW direction)is significantly different from the known near NS direction Lancang Fault and the near NE direction Jinggu Fault in the study area. It is preliminarily inferred that the seismogenic structure of this earthquake has a neogenetic feature.  相似文献   

13.
CHENG Jia  XU Xi-wei 《地震地质》2018,40(1):133-154
Since 1997, several major earthquakes occurred around the Bayan Har block in the Tibetan plateau, providing an opportunity to further understanding the mechanism of intraplate earthquakes. What is the effect of interactions among these events on the earthquake occurrence pattern is an issue to be addressed. In this article, we use the visco-elastic Coulomb stress changes model to calculate the stress interactions among the historical events close to or large than MS7.0 since 1893 in the Bayan Har block. We apply the relationships between the slip rate and stress accumulation rate to transform the Coulomb stress changes into the influenced time. Then we remove such influence time from the occurrence years, and analyze the effects of the earthquake interactions on the clustering patterns of the historical earthquakes in the Bayan Har block. The results show that the major earthquakes in the Bayan Har block are characterized by a quasi-period of about 16 years from 1893 to 1973 and a clustering occurrence time period from 1997 to present following a relatively long quiescence period. The Bayan Har block is still in the active period with high probabilities of major quakes. We calculate the conditional probabilities of the rupture segments that did not rupture since 1893 of the boundary faults of the Bayan Har block in the next 30 years. The following faults or fault sections seem to be of major risk:The Maqin segment and the Maqu fault of the East Kunlun fault zone, the Awanang fault, the Luocha segment of the Tazhong fault, the Moxi segment of the Xianshuihe fault, and the Dangjiang fault. Other Fault segments in the Bayan Har block without seismic events since 1893 probably also have hazard of MS7 earthquakes in the future.  相似文献   

14.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

15.
本文利用2017年九寨沟7.0级地震的余震序列数据,结合震源机制解确定的地震断层面,研究了地震断层的破裂尺度。基于余震序列在断层面上的投影,分析直接余震和间接余震以及不同起始震级条件下余震区的长度和震源深度分布,估算了地震断层破裂面的破裂长度和破裂深度,并探讨了地震断层破裂对地震烈度分布的影响。研究结果显示,九寨沟7.0级地震断层的破裂长度约33—35km,破裂深度约23—26km;地震断层破裂对Ⅷ度区分布有明显的控制作用,地震断层破裂长度接近Ⅷ度区的长度。  相似文献   

16.
为了揭示巴颜喀拉地块东缘及邻区的壳幔速度结构差异,获取2017年九寨沟MS7.0地震的深部构造背景,本文收集了2009年5月至2016年8月期间四川及邻区数字测震台网的203个地震台站所记录到的远震P波走时数据,应用有限频体波走时层析成像方法,反演得到了巴颜喀拉地块东缘及邻区50—600 km深度范围内的三维壳幔P波速度结构。反演结果表明:巴颜喀拉地块东缘及邻区的壳幔速度结构具有明显的横向不均匀性和分区特征,松潘—甘孜地槽褶皱系、西秦岭和祁连山褶皱系的整体速度异常较低,研究区东部具有克拉通性质的四川盆地西北缘和鄂尔多斯地块南缘则呈明显的高速异常。上地幔P波速度结构特征差异表明松潘—甘孜地块的抬升可能与地幔上涌有关,巴颜喀拉地块东缘九寨沟震区及周边50—250 km深度范围内的上地幔存在低速异常,在400—600 km地幔过渡带深度范围内表现为明显的高速异常特征。巴颜喀拉地块向东南方向运移受到东部高速、高强度的扬子克拉通地块对青藏高原物质东向挤出的强烈阻挡,而九寨沟震区处于松潘—甘孜地块重要的北东边界断裂交会处附近,应力容易在此集中,这些因素均可能是东昆仑断裂塔藏段与岷江断裂北段交会处附近发生九寨沟MS7.0地震的深部动力学背景。   相似文献   

17.
赵博  高原  黄志斌  赵旭  李大虎 《地球物理学报》2013,56(10):3385-3395
2013年4月20日发生了四川芦山MS7.0地震,主震中位于青藏地块与华南地块结合部的龙门山断裂带南端.本研究用双差定位法对芦山地震主震及余震序列进行重新定位,得到主震位置为(30.29°N,102.97°E,17.82 km)及4100多次余震重新定位结果.利用GSN/IRIS台网和国家台网及四川省区域台网的波形数据对主震及部分余震进行了震源机制解反演.结果表明,主震为一次逆冲地震,根据余震序列分布确定发震断层面走向为200°,震源机制解断层倾角为45°.基于震源断层面解和断层滑动方向,采用力轴张量计算法得到了研究区域的平均主压应力方向约为N112°E.  相似文献   

18.
This study is devoted to a systematic analysis of the stress state of the eastern boundary area of Sichuan-Yunnan block based on focal mechanisms of 319 earthquakes with magnitudes between M3.0 and M6.9, occurring from January 2009 to May 2018. We firstly determined the mechanism solutions of 234 earthquakes by the CAP method, using the broadband waveforms recorded by Chinese regional permanent networks, and collected 85 centroid moment tensor solutions from the GCMT. Then we investigated the regional stress regime through a damp linear inversion. Our results show that:1)the focal mechanisms of moderate earthquakes are regionally specific with three principal types of focal mechanisms:the strike-slip faulting type, the thrust faulting type and the normal faulting type. The strike-slip faulting type is significant in the eastern boundary area of Sichuan-Yunnan block along the Xianshuihe-Xiaojiang Fault, the Daliangshan Fault, and the Zhaotong-Lianfeng Fault. The thrust faulting type and the combined thrust/strike-slip faulting type are significant along the Mabian-Yanjin Fault, Ebian-Yanfeng Fault and the eastern section of Lianfeng Fault; 2)The most robust feature of the regional stress regime is that, the azimuth of principal compressive stress axis rotates clockwise from NWW to NW along the eastern boundary of Sichuan-Yunnan Block, and the clockwise rotation angle is about 50 degrees. Meanwhile, the angels between the principal compressive axis and the trend of eastern boundary of Sichuan-Yunnan Block remain unchanged, which implies a stable coefficient of fault friction in the eastern boundary fault zone of Sichuan-Yunnan Block. The movement of the upper crust in the southeastern Tibetan plateau is a relatively rigid clockwise rotation. On the whole, the Xianshuihe-Xiaojiang Fault is a small arc on the earth, and its Euler pole axis is at(21°N, 88°E). The Daliangshan Fault is surrounded by the Anninghe-Zemuhe Fault, which formed a closed diamond shape. When the Sichuan-Yunnan block rotates clockwise, the Daliangshan Fault locates in the outer of the arc, while the Anninghe-Zemuhe Fault is in the inward of the arc, and from the mechanical point of view, left-lateral sliding movement is more likely to occur on the Daliangshan Fault. Our results can be the evidence for the study on the "cut-off" function of the Daliangshan Fault based on the stress field background; 3)The regional stress regime of the eastern boundary faults zone of the Sichuan-Yunnan Block is the same as the south section of the Dalianshan Fault, and the focal mechanism results also reveal that the Dalianshan Fault is keeping left-lateral strike-slip. There may be the same tectonic stress field that controls the earthquake activities in the southern section of Daliangshan Fault and Zhaotong-Lianfeng Fault. The regional stress regime of Zhaodong-Lianfeng Fault is also the same with the Sichuan-Yunnan Block, which implies that the control effect of the SE movement of the Sichuan-Yunnan block may extend to Weining.  相似文献   

19.
The Daliangshan sub-block is a boundary region among the Bayan Har block, the Sichuan-Yunnan block and the South China block. It hosts four major fault systems:The southwest to south trending Xianshuihe-Zemuhe Fault zone in the west, the Longmenshan fault zone is the northern boundary, the Zhaotong-Lianfeng fault zone in the south, and the NS-trending Mabian-Yanjin fault zone in the east. This study focused on focal mechanisms and the regional stress field of the Daliangshan sub-block to help understand the earthquake preparation process, tectonic deformation and seismic stress interaction in this area. We collected broadband waveform records from the Sichuan Seismic Network and used multiple 1-D velocity models to determine the focal mechanisms of moderate and large earthquakes(ML ≥ 3.5)in the Daliangshan sub-block by using the CAP method. Results for 276 earthquakes from Jan 2010 to Aug 2016 show that the earthquakes are dominated by strike-slip and trust faulting, very few events have normal faulting and the mixed type. We then derived the regional distribution of the stress field through a damp linear inversion(DRSSI)using the focal mechanisms obtained in this study. Inversion results for the spatial pattern of the stress field in the block suggest that the entire region is predominantly under strike-slip and trust faulting regimes, largely consistent with the focal mechanisms. The direction of maximum compression axes is NW-NWW, and part of the area is slightly rotated, which is consistent with the GPS velocity field. Combining geodynamic background, this work suggests that because the Sichuan-Yunnan block is moving to SE and the Tibetan plateau to SE-E along major strike-slip faults, the stress field of the Daliangshan sub-block and its adjacent regions is controlled jointly by the Bayan Har block, the Sichuan-Yunnan block and the South China block.  相似文献   

20.
Bayan Hara Block is one of the most representative active blocks resulting from the lateral extrusion of Tibet Plateau since the Cenozoic. Its southern and northern boundary faults are characterized by typical strike-slip shear deformation. Its eastern boundary is blocked by the Yangze block and its horizontal movement is transformed into the vertical movement of the Longmen Shan tectonic belt, leading to the uplift of the Longmen Shan Mountains and forming a grand geomorphic barrier on the eastern margin of the Tibet Plateau. A series of large earthquakes occurred along the boundary faults of the Bayan Hara Block in the past twenty years, which have attracted attention of many scholars. At present, the related studies of active tectonics on Bayan Hara Block are mainly concentrated on the boundary faults, such as Yushu-Ganzi-Xianshuihe Fault, East Kunlun Fault and Longmen Shan Fault. However, there are also some large faults inside the block, which not only have late Quaternary activity, but also have tectonic conditions to produce strong earthquake. These faults divide the Bayan Hara Block into some secondary blocks, and may play important roles in the kinematics and dynamics mechanism of the Bayan Hara Block, or even the eastern margin of the Tibet Plateau. The Dari Fault is one of the left-lateral strike-slip faults in the Bayan Hara Block. The Dari Fault starts at the eastern pass of the Kunlun Mountains, extends eastward through the south of Yalazela, Yeniugou and Keshoutan, the fault strike turns to NNE direction at Angcanggou, then turns to NE direction again at Moba town, Qinghai Province, and the fault ends near Nanmuda town, Sichuan Province, with a total length of more than 500km. The fault has been considered to be a late Quaternary active fault and the 1947 M73/4 Dari earthquake was produced by its middle segment. But studies on the late Quaternary activity of the Dari Fault are still weak. The previous research mainly focused on the investigation of the surface rupture and damages of the 1947 M73/4 Dari earthquake. However, there were different opinions about the scale of the M73/4 earthquake surface rupture zone. Dai Hua-guang(1983)thought that the surface rupture of the earthquake was about 150km long, but Qinghai Earthquake Agency(1984)believed that the length of surface rupture zone was only 58km. Based on interpretation of high-resolution images and field investigations, in this paper, we studied the late Quaternary activity of the Dari Fault and the surface rupture zone of the 1947 Dari earthquake. Late Quaternary activity in the central segment of the Dari Fault is particularly significant. A series of linear tectonic landforms, such as fault trough valley, fault scarps, fault springs and gully offsets, etc. are developed along the Dari Fault. And the surface rupture zone of the 1947 Dari earthquake is still relatively well preserved. We conducted a follow-up field investigation for the surface rupture zone of the 1947 Dari earthquake and found that the surface rupture related to the Dari earthquake starts at Longgen village in Moba town, and ends near the northwest of the Yilonggounao in Jianshe town, with a length of about 70km. The surface rupture is primarily characterized by scarps, compressional ridges, pull-apart basins, landslides, cleavage, and the coseismic offset is about 2~4m determined by a series of offset gullies. The surface rupture zone extends to the northwest of Yilonggounao and becomes ambiguous. It is mainly characterized by a series of linear fault springs along the surface rupture zone. Therefore, we suggest that the surface rupture zone of the 1947 Dari earthquake ends at the northwest of Yilonggounao. In summary, the central segment of the Dari Fault can be characterized by strong late Quaternary activity, and the surface rupture zone of the 1947 Dari earthquake is about 70km long.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号