首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
青藏高原因其复杂的结构和演化历史,一直都是研究大陆碰撞、构造运动及其动力学的热点区域。本文采用三重震相波形拟合技术,基于中国地震观测台网和大型流动台阵记录到的某地震P波垂向记录,获得了包括拉萨、南羌塘和松潘甘孜地块在内的青藏高原上地幔P波速度结构。结果表明:①拉萨和南羌塘地块下方地幔过渡带存在高速异常,推测是俯冲的印度板片滞留体,过渡带底部的板片残余温度较低,使得660-km相变滞后约3~8km。而松潘甘孜地块下方过渡带同样存在高速异常,可能是欧亚岩石圈发生拆沉进入地幔过渡带所致。这说明印度板块俯冲作用的影响已经到达地幔过渡带,其俯冲前缘位于班公怒江缝合带附近。②从拉萨、南羌塘到松潘甘孜地块,200km之上的地幔岩石圈高速盖层速度由南向北逐渐减小,松潘甘孜地块则出现盖层缺失。推测受小规模地幔对流或者热不稳定性的影响,在南羌塘和松潘甘孜地块,增厚的欧亚岩石圈发生拆沉作用,岩石圈被减薄和弱化,造成羌塘地块上地幔低速和松潘甘孜地块上地幔高速盖层缺失。拆沉的冷的欧亚岩石圈可能部分停留在410-km上方,使得410-km抬升约10km,部分沉入地幔过渡带,表现为松潘甘孜地块地幔过渡带中存在高速异常。低温造成660-km下沉约8km,导致地幔过渡带增厚。   相似文献   

2.
采用九寨沟MS7.0 (MW6.5)地震的余震直达P波、S波走时数据,通过体波走时层析成像方法,获得了震源区及其邻区的P波和S波速度结构,并利用成像结果对余震进行了重定位。结果显示:余震主要集中分布于高、低速异常交界处偏低速异常一侧,呈走向NNW,倾向SW,倾角较高的分布特征;余震序列两侧的P波、S波速度结构揭示了发震断层两侧介质性质的差异,即上盘为刚性较强的高地震波速度区,下盘为刚性较弱的低地震波速度区。由余震分布特征和地震波速度结构推断:九寨沟地震发生在上地壳底部,发震断层具有上盘地震波速度高、下盘地震波速度低的特征;主震引起的后续破裂在上地壳内部的剧烈形变区内传播,破裂能量终止于25 km深度附近。   相似文献   

3.
川西龙门山及邻区地壳上地幔远震P波层析成像   总被引:31,自引:13,他引:18       下载免费PDF全文
本文利用川西地震台阵记录到的远震P波走时数据和非线性层析成像算法,获得龙门山地区400 km深度范围内的三维P波速度结构.为了适应川西地区复杂的地质结构,本文的层析成像方法采用了快速行进三维走时计算算法和Tarantola非线性反演算法.我们的结果揭示了川滇地块、松潘-甘孜地块和四川盆地三个不同地块构造差异及该区深部动力学特征.本文的研究表明:1)研究区地壳上地幔P波速度结构具有较为明显的分区特征,松潘-甘孜地块和川滇地块岩石圈速度较低,四川盆地岩石圈速度较高,四川盆地的岩石圈厚度从南250 km向北逐渐减薄至100 km.松潘-甘孜地块上地幔存在地幔上涌的特征.2)川滇地块和四川盆地仅是垂直接触关系,而在龙门山地区四川盆地前缘存在减薄的现象,并伴随松潘-甘孜地块上地幔低速物质有侵入四川盆地岩石圈下方的特征,这显示了四川盆地与松潘-甘孜地块和川滇地块的动力学关系的差异.3)以映秀为界,龙门山断裂带被从松潘-甘孜侵入的低速异常分为南北两段:龙门山南段和龙门山北段,汶川大地震及其余震序列均分布在龙门山断裂带的北段.在青藏高原向东挤压和地幔上涌的双重作用下造成松潘-甘孜地块隆升,由于汶川处于龙门山北段的最南端,应力容易在此集中.这些因素可能是汶川MS8.0地震的基本动力学背景.本文的结果不支持四川盆地的俯冲及层间流动的动力学模型.  相似文献   

4.
南北地震带岩石圈S波速度结构面波层析成像   总被引:13,自引:8,他引:5       下载免费PDF全文
本文利用天然地震面波记录和层析成像方法,研究了南北地震带及邻近区域的岩石圈S波速度结构和各向异性特征.结果表明南北地震带的东边界不但是地壳厚度剧变带,也是地壳速度的显著分界.其西侧中下地壳的S波速度显著低于东侧,强震大多发生在低速区内部和边界.青藏高原东缘中下地壳速度显著低于正常大陆地壳,在松潘甘孜地块和川滇地块西部大约25~45 km深度存在壳内低速层;这些低速特征与高原主体的低速区相连,有利于下地壳物质的侧向流动.地壳的各向异性图像与下地壳流动模式相符,即下地壳物质绕喜马拉雅东构造结运动,东向的运动遇到扬子坚硬地壳阻挡而变为向南和向北东的运动.面波层析成像结果支持青藏高原地壳运动的下地壳流动模型.南北地震带的岩石圈厚度与其东侧的扬子和鄂尔多斯地块相似但速度较低.川滇西部地块上地幔顶部(莫霍面至88 km左右)异常低速;松潘甘孜地块上地幔盖层中有低速夹层(约90~130 km深度).岩石圈上地幔的速度分布图像与地壳显著不同,在高原主体与川滇之间存在北北东向高速带,可能会阻挡地幔物质的东向运动.上地幔各向异性较弱且与地壳的分布图像显然不同.因此青藏高原岩石圈地幔的构造运动具有与地壳不同的模式,软弱的下地壳提供了壳幔运动解耦的条件.  相似文献   

5.
扇形边界条件下的龙门山壳幔电性结构特征   总被引:10,自引:8,他引:2       下载免费PDF全文
沿甘肃碌曲-四川龙门山-重庆合川布设了长周期大地电磁剖面,对龙门山及邻区进行了壳幔电性结构探测,采用更直观合理的扇形边界条件下的反演算法对长周期大地电磁资料进行二维反演.该剖面电性结果揭示了自北西向南东岩石圈深部的若尔盖壳幔高阻块体、松潘壳幔低阻带、龙门山壳幔高阻块体和川中壳幔高阻块体电性结构特征;龙门山逆冲推覆构造带下方的龙门山壳幔高阻体显示为向北西延伸的楔形构造,推断龙门山及松潘-甘孜地块由于受青藏高原东缘和上扬子地块双向挤压,松潘-甘孜地块地壳物质向龙门山逆冲推覆,中下地壳至上地幔向下向南东俯冲,呈现上扬子地块西缘壳幔高阻楔形体插入青藏高原东缘的态势;初步认为上扬子地块西缘深部以松潘壳幔韧性剪切带作为中新生代以来的边界.  相似文献   

6.
青藏高原中东部地壳和上地幔顶部P波层析成像   总被引:1,自引:1,他引:0       下载免费PDF全文
为获取青藏高原中东部地壳和上地幔顶部的精细结构,本文基于1万4 484条天然地震的P波(Pg和Pn)到时数据,对青藏高原中东部地壳和上地幔顶部进行P波三维速度结构层析成像,获取了该区域内地壳P波、上地幔顶部Pn波的速度结构和地壳厚度信息。层析成像结果显示,青藏高原中东部地壳P波速度范围为5.2—7.2 km/s,上地幔顶部Pn波速度范围为7.7—8.4 km/s,地壳厚度范围为48.0—68.6 km,地壳和上地幔顶部存在强烈的横向不均匀性,与地质块体分布有较好的对应关系。地壳P波速度结构显示,研究区中、下地壳分布有较大范围的低速区,上地壳与中下地壳P波分布存在明显的差异:羌塘地块和巴颜喀拉地块在上地壳主要表现为高速异常,随着深度增加逐渐表现为低速异常;而柴达木地块在上地壳主要表现为低速异常,下地壳则表现为高速异常;柴达木地块和拉萨地块在上地幔顶部表现为较高的Pn波速度,最高约为8.4 km/s,而在巴颜喀拉地块和羌塘地块东部,Pn波总体上表现为低速,最低约为7.7 km/s。研究区内地壳厚度的总体特征表现为南厚北薄,其中羌塘地块东部和拉萨地块的地壳较厚,而柴达木地块和巴颜喀拉地块东部的地壳相对较薄,羌塘地块西部存在局部的地壳变薄现象,反映了印度板块对欧亚板块北向俯冲作用下的岩石圈变形特征。   相似文献   

7.
青藏高原东部的Pn波层析成像研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用INDEPTH/ASCENT台阵和其它布设在青藏高原的流动宽频带地震仪数据,反演了青藏高原东部和周边区域的上地幔顶层Pn波速度以及台站延迟.研究区域的平均Pn波速度是8.1 km/s,略高于中国大陆的平均Pn波速度.低速区主要分布在羌塘地块的西部和松潘-甘孜地块,高温异常的岩石圈上地幔很可能是导致这一低速区的原因.班公-怒江缝合带东端区域的Pn波速度达到8.35 km/s,这一高速区可能与向北俯冲的印度板块(东端)有关.另一Pn波高速区分布在祁连山和昆仑山之间,主要由柴达木盆地和共和盆地及其周边地区,两个并不完全连续的高速异常区组成,它可能对应于特提斯洋闭合时北部增生的克拉通地体;在后来的欧亚板块与印度板块的碰撞中,这一地体有可能阻挡了青藏高原向北的生长.相对密集的台站提供了高分辨率的速度结构横向分布和地壳厚度变化.台站延迟显示青藏高原北部和东部的地壳存在显著的减薄--松潘-甘孜地块东北缘的地壳厚度仅为约50 km,而羌塘地块东部唐古拉山地壳最厚,达到75 km,这可能是由于印度-欧亚板块碰撞引起的羌塘地块内部变形增厚所致.  相似文献   

8.
青藏高原东北缘地壳及上地幔顶部速度结构研究   总被引:1,自引:0,他引:1  
本文利用青藏高原东北缘71个固定台站与418个流动台站记录到的天然地震事件资料,采用双差层析成像方法对近震走时数据进行反演,获得了研究区高分辨率的三维P、S波速度结构和地震重定位结果.研究结果表明,本文给出的P、S波速度模型较已有的全球模型能更好的解释体波走时与面波相速度观测资料.松潘—甘孜和祁连构造带下方20~40 km深度范围表现为显著的P、S波低速异常,其中松潘—甘孜地块的壳内低速层可能与地壳部分熔融有关,而祁连构造带的壳内低速层则可能与地壳增厚有关.精定位后的岷漳6.7级地震和九寨沟7.0级地震震源深度都位于脆性的上地壳.两个地震的震源区地处不同块体的边界,均处在高、低速过渡带.震源区的壳内低速层可能处于部分熔融或易于蠕变的状态,脆性上地壳更容易积累应变能,从而导致地震的发生.  相似文献   

9.
本文使用川西密集地震台阵记录的面波资料,利用程函方程面波成像方法获得了周期为14—60 s的瑞雷波相速度及方位各向异性分布。结果显示:川滇菱形地块的川西北地块内部的低速异常明显,其下地壳各向异性快波方向以NS向为主,松潘—甘孜地块内部的低速异常稍弱,下地壳各向异性快波方向以NW?SESE向为主,表明川西北地块可能存在下地壳通道流,松潘—甘孜地块内部存在的通道流相对较弱;龙门山断裂带和丽江—小金河断裂两侧的速度结构和方位各向异性均有明显差异,可推测青藏高原内部的地壳流在东部和南部分别受高速、高强度的四川盆地和滇中地块阻挡,沿高原边界带发生了侧向流动;周期大于25 s的面波方位各向异性方向为NW?SE;与SKS分裂优势方向相近,说明四川盆地的剪切波各向异性可能主要源于上地幔;而龙门山断裂带附近壳幔各向异性较为复杂,面波方位各向异性与SKS分裂的NW?SE向弱各向异性存在差异,表明该处的剪切波各向异性可能来自地幔更深处,有待进一步研究。   相似文献   

10.
南北地震带北段的远震P波层析成像研究   总被引:5,自引:4,他引:1       下载免费PDF全文
本文利用"中国地震科学台阵"探测项目在南北地震带北段布设的678个流动地震台站在2013年10月至2015年4月期间记录到的远震波形数据,经过波形互相关拾取到473个远震事件共130309条P波走时残差数据,通过远震层析成像研究获得了该区(30°N-44°N,96°E-110°E)下方0.5°×0.5°的P波速度扰动图像.结果显示,研究区下方P波速度结构显示强烈的不均一性和显著的分区、分块特征.岩石圈速度结构具有显著的东西差异:祁连、西秦岭和松潘甘孜地块组成的青藏东北缘地区显示明显的低速异常,而属于克拉通性质的鄂尔多斯地块和四川盆地则显示高速异常,表明东部克拉通块体对青藏高原物质的东向挤出起到了强烈的阻挡作用.阿拉善地块显示出弱高速和局部弱低速的异常并存的特征.阿拉善地块西部显示低速异常,而东部与鄂尔多斯相邻的地区显示高速异常,可能表明该地区的岩石圈的变形主要受到青藏高原东北缘的挤压作用.在鄂尔多斯和四川盆地之间的秦岭下方100~250 km深度上表现为明显的低速异常,表明该处可能存在软流圈物质的运移通道.鄂尔多斯北部的河套裂陷盆地下方在100~500 km深度内低速异常表现明显,说明该区有深部热物质上涌且至少来源于地幔过渡带.青藏东北缘上地幔显示低速异常且地幔过渡带中出现明显的高速异常,这种结构模式暗示了在青藏高原东北缘可能发生了岩石圈拆沉作用,而高速异常体可能是拆沉的岩石圈地幔.  相似文献   

11.
贾科  周仕勇 《地震学报》2018,40(3):291-303
自本世纪以来,青藏高原巴颜喀拉块体周缘密集地发生了7次MW≥6.5强震事件,包括伤亡惨重的2008年汶川MW7.9地震和2017年九寨沟MW6.5地震。本文根据这7次强震事件中先前地震对后续地震的库仑应力改变(dCFS)的计算结果,结合基于ETAS模型得到的背景地震活动性的变化结果,研究了强震间的触发关系,以试图解释发生在环巴颜喀拉块体的几次强震的发震机理并探讨其构造意义。结果表明,各个强震的库仑应力变化与其造成的背景地震活动性变化呈正相关,并且在这7次强震中,汶川地震对芦山地震有显著的触发作用,并造成芦山地区背景地震活动性的显著提高。同时汶川地震对九寨沟地震的发生具有一定的延迟作用,造成九寨沟地区背景地震活动性降低。除此之外,其它地震之间均无明显的触发/延迟作用或显著的背景地震活动性变化。这表明该强震序列的孕震机制主要是巴颜喀拉块体东南向持续挤压的构造运动,推断巴颜喀拉块体目前仍处于构造运动活跃期,因此包括巴颜喀拉块体周缘在内的我国西南地区未来的强震危险性值得持续关注。   相似文献   

12.
闻学泽 《地震学报》2018,40(3):255-267
以巴颜喀拉块体东边界活动构造带为研究区,本文首先分析了该区最近一千多年的地震历史及强震活动随时间的变化,确定了2008年汶川MS8.0地震、2013年芦山MS7.0地震和2017年九寨沟MS7.0地震这3次事件在这一强震活动历史中的位置,进而在圈绘长期强震破裂区图像的基础上鉴别主要活动断裂带上的地震空区。结果主要表明:研究区在最近约一千年中经历了一个强震轮回的3个阶段,包括一个平静期的后半部(1630年之前)、1630—1878年之间的过渡期以及1879年以来的强震期。后两个阶段可能代表了该构造带在经过更早、可能二三千年长的平静期或应变积累期之后出现的长达数百年、从“预释放”期(1630—1878年)到“主释放”期(1879年以来)的强震发生过程;在主释放期应变能释放呈明显加速,四川2008年汶川、2013年芦山以及2017年九寨沟地震是发生在主释放期中的3次最新事件,但是由这3次事件的发生还难以判断主释放期是否已经结束;已圈绘出研究区及其邻近地区若干活动断裂段上存在长期缺少大地震破裂的地震空区,未来仍应注意在这些地震空区再次发生大地震的危险性。   相似文献   

13.
The deep structure of the eastward-subducting Indian plate can provide new information on the dynamics of the India-Eurasia collision. We collected and processed waveform data from temporary seismic arrays (networks) on the eastern Tibetan Plateau, seismic arrays in Northeast India and Myanmar, and permanent stations of the China Digital Seismic Network in Tibet, Gansu, Qinghai, Yunnan, and Sichuan. We combined these data with phase reports from observation stations of the International Seismological Center on the Indian plate and selected 124,808 high-quality P-wave relative travel-time residuals. Next, we used these data to invert the 3-D P-wave velocity structure of the upper mantle to a depth of 800 km beneath the eastern segment of the arcuate Himalayan orogen, at the southeastern margin of the Tibetan Plateau. The results reveal a high-angle, easterly dipping subducting plate extending more than 200 km beneath the Indo-Myanmese arc. The plate breaks off at roughly 96°E; its fragments have passed through the 410-km discontinuity (D410) into the mantle transition zone (MTZ). The MTZ beneath the Tengchong volcanic area contains a high-velocity anomaly, which does not exceed the Red River fault to the east. No other large-scale continuous subducted plates were observed in the MTZ. However, a horizontally spreading high-velocity anomaly was identified on the D410 in some regions. The anomaly may represent the negatively buoyant 90°E Ridge plate or a thickened and delaminated lithospheric block experiencing collision and compression at the southeastern margin of the Tibetan Plateau. The Tengchong volcano may originate from the mantle upwelling through the slab window formed by the break-off of the subducting Indian continental plate and oceanic plate in the upper mantle. Low-velocity upper mantle materials on the west side of the Indo-Myanmese arc may have supplemented materials to the Tengchong volcano.  相似文献   

14.
2017年8月8日四川发生九寨沟M7.0地震,是继2008年汶川M8.0地震后发生在巴颜喀拉块体东部的又一强震.现今GPS速度观测数据显示,2008年汶川地震前后的1999-2007年和2011-2016年两个时间段内巴颜喀拉块体东部地表速度场存在明显的差异.本文以实际GPS速度观测资料为约束,构建三维有限元地球动力学模型,分别计算分析了两个时段内震源区及周边现今地壳形变、弹性应变能和应力积累特征,进一步探讨汶川地震的发生对九寨沟地区变形及应力的影响.数值模拟结果显示,汶川地震之后(2011-2016年)巴颜喀拉块体东部的地壳形变、弹性应变能积累及应力积累速率均明显大于震前,增加量值达1.5-3倍;九寨沟地震发震断裂上库仑应力增长率在1999-2007年约为0.7 kPa·a~(-1),2011-2016年间增至1.2 kPa·a~(-1).上述结果表明,现今巴颜喀拉块体东部地壳应力积累过程有利于左旋走滑型九寨沟地震的发生,汶川地震的发生调整了区域应力状态,加速了九寨沟地震的孕育过程.  相似文献   

15.
在印度洋板块与欧亚板块的碰撞-挤压作用下,不仅形成了喜马拉雅弧形山造山带,而且导致其东部弧顶—东构造结似一尖楔沿NNE方向插入青藏高原的东北缘.造成了巴颜喀拉块体和龙门山断裂系深、浅部构造强烈活动和变形,并导致高原腹地壳、幔物质以大型走滑断裂为通道边界向E-ES方向运移.2008年5月12日汶川—映秀MS8.0地震就发生在这相对活动的巴颜喀拉块体与相对稳定的四川盆地之间的龙门山断裂系辖区内.基于该区深部壳、幔结构和主震(MS8.0)与7万多次余震震中位置与震源深度的展布研究表明,汶川—映秀MS8.0地震的发震断裂不是震中在地表投影位置附近,而是龙门山断裂系3条以不同角度西倾、且向下在15±5 km深处汇聚的断裂带CF.该发震断裂带不是一条简单的线性断裂带,而是一半径为5 km左右的柱状震源体,沿NE向展布.在青藏高原东北缘深部物质向东与向东南运动过程中地壳各层整体逐渐抬升,且在龙门山断裂系地带为减薄的转折部位,而地壳低速层却在这里尖灭.在两陆-陆板块碰撞力系作用下,壳、幔介质以上地壳底部低速层(深20±5 km)为上滑移面,并与上地壳解耦,而在深处则以岩石圈底部漂曳的软流层顶部(深100±10 km)为下滑移,故下地壳和上地幔盖层物质才能同步运动.它们在四川盆地高速“刚性”壳、幔物质阻隔下,龙门山断裂系的3条向下汇聚的断裂带与下地壳和上地幔盖层物质同步沿龙门山断裂系的断层面向上逆冲,当向上与向下同步运动的固态壳、幔介质二者在15±5 km深处强烈碰撞时激发了这次MS8.0地震和一系列强余震的发生和发展.基于上述可见,对强烈地震孕育,发生和发展的深部介质与构造环境,深部物质与能量的交换、运移和深层动力过程的研究乃核心所在.  相似文献   

16.
九寨沟地震(M_s7.0或M_w6.5)震中位于青藏高原巴颜喀拉块体东缘东昆仑断裂带东端塔藏断裂、岷江断裂和虎牙断裂交汇部位,中国地震局相关科研机构的研究人员曾将该震中区判定为玛沁—玛曲高震级地震危险区.地震应急科学考察期间没有发现地震地表破裂带,但地震烈度等震线长轴方位、极震区基岩崩塌和滑坡集中带、重新定位余震空间展布和震源机制解等显示出发震断层为NNW向虎牙断裂北段,左旋走滑性质,属东昆仑断裂带东端分支断层之一.此外,汶川地震后,在青藏高原东缘和东南缘次级活动断层上发生了包括2017年九寨沟地震(Mw6.5)、2014年鲁甸(M_w6.2)、景谷(M_w6.2)、康定(M_w6.0)等多次中强地震,显示出青藏高原东缘至东南缘各块体主干边界活动断层现今处于中等偏高的应变积累状态,即在巴颜喀拉、川滇等块体主干边界活动断层上具备了发生高震级(M_w≥7.0)地震的构造应力-应变条件,未来发生高震级地震的危险性不容忽视.  相似文献   

17.
On August 8, 2017, Beijing time, an earthquake of M7.0 occurred in Jiuzhaigou County, Aba Prefecture, Sichuan Province, with the epicenter located at 33.20°N 103.82°E. The earthquake caused 25 people dead, 525 people injured, 6 people missing and 170000 people affected. Many houses were damaged to various degrees. Up to October 15, 2017, a total of 7679 aftershocks were recorded, including 2099 earthquakes of M ≥ 1.0. The M7.0 Jiuzhaigou earthquake occurred in the northeastern boundary belt of the Bayan Har block on the Qinghai-Tibet Plateau, where many active faults are developed, including the Tazhong Fault(the eastern segment of the East Kunlun Fault), the Minjiang fault zone, the Xueshan fault zone, the Huya fault zone, the Wenxian fault zone, the Guanggaishan-Daishan Fault, the Bailongjiang Fault, the Longriuba Fault and the Longmenshan Fault. As one of the important passages for the eastward extrusion movement of the Qinghai-Tibet Plateau(Tapponnier et al., 2001), the East Kunlun fault zone has a crucial influence on the tectonic activities of the northeastern boundary belt of Bayan Kala. Meanwhile, the Coulomb stress, fault strain and other research results show that the eastern boundary of the Bayan Har block still has a high risk of strong earthquakes in the future. So the study of the M7.0 Jiuzhaigou earthquake' seismogenic faults and stress fields is of great significance for scientific understanding of the seismogenic environment and geodynamics of the eastern boundary of Bayan Har block. In this paper, the epicenter of the main shock and its aftershocks were relocated by the double-difference relocation method and the spatial distribution of the aftershock sequence was obtained. Then we determined the focal mechanism solutions of 24 aftershocks(M ≥ 3.0)by using the CAP algorithm with the waveform records of China Digital Seismic Network. After that, we applied the sliding fitting algorithm to invert the stress field of the earthquake area based on the previous results of the mechanism solutions. Combining with the previous research results of seismogeology in this area, we discussed the seismogenic fault structure and dynamic characteristics of the M7.0 Jiuzhaigou earthquake. Our research results indicated that:1)The epicenters of the M7.0 Jiuzhaigou earthquake sequence distribute along NW-SE in a stripe pattern with a long axis of about 35km and a short axis of about 8km, and with high inclination and dipping to the southwest, the focal depths are mainly concentrated in the range of 2~25km, gradually deepening from northwest to southeast along the fault, but the dip angle does not change remarkably on the whole fault. 2)The focal mechanism solution of the M7.0 Jiuzhaigou earthquake is:strike 151°, dip 69° and rake 12° for nodal plane Ⅰ, and 245°, 78° and -158° for nodal plane Ⅱ, the main shock type is pure strike-slip and the centroid depth of the earthquake is about 5km. Most of the focal mechanism of the aftershock sequence is strike-slip type, which is consistent with the main shock's focal mechanism solution; 3)In the earthquake source area, the principal compressive stress and the principal tensile stress are both near horizontal, and the principal compressive stress is near east-west direction, while the principal tensile stress is near north-south direction. The Jiuzhaigou earthquake is a strike-slip event that occurs under the horizontal compressive stress.  相似文献   

18.
依据穿过巴颜喀拉地块的北部、秦岭地块、祁连地块、海原弧形构造区和鄂尔多斯地块的玛沁-兰州-靖边人工地震剖面的P波、S波的速度结构和泊松比结构,对青藏高原东北缘的地壳组成进行研究,并探讨其动力学过程. 首先,系统地归纳总结出一套将地震测深得到的原位P波速度校正到实验室温压条件下波速的具体可行的方法,利用大地热流值求取地壳不同深度的温度是该方法的关键. 然后,将上述剖面的原位P波速度校正到600 MPa和室温条件下,结合泊松比与相同温压条件下的实验室岩石波速测量结果进行对比,确定研究区的岩性组成. 结果表明,青藏高原东北缘地壳平均P波校正波速为6.43 km/s,地壳整体像上地壳一样呈酸性. 巴颜喀拉地块和秦岭地块南部的下地壳底部缺失校正速度Vp>6.9 km/s的基性岩,下地壳中酸性互层,下地壳整体呈酸性. 其他地块下地壳底部有2~10 km厚的校正速度Vp>6.9 km/s的基性岩,下地壳整体呈中性. 最后,根据青藏高原东北缘地壳结构和组成的研究成果,支持地壳增厚主要发生在下地壳的观点;提出巴颜喀拉地块和秦岭地块南部曾发生过下地壳拆沉作用,并导致高原的加速隆升.  相似文献   

19.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

20.
眭怡  吴庆举  张瑞青 《地震学报》2018,40(5):537-546
本文利用中国数字地震台网记录到的中国青海和缅甸弧发生的两次浅源地震的区域波形资料,在以Crust2.0改进AK135模型所构建的参考模型C2AK的基础上,通过三重震相波形拟合的方法,获得了青藏高原东部下方从莫霍面至上地幔顶部180 km深度范围内的P波和S波最佳拟合模型。最佳模型显示:松潘—甘孜地块(A和B剖面)下方的P波速度比C2AK模型高5%,而川滇地块(C剖面)下方上地幔顶部的P波速度要比参考模型低5%,且随深度逐渐增加,直至120 km处与C2AK模型值相同;松潘—甘孜地块下方的S波速度较C2AK模型要高3%。上述区域性速度结构差异表明,相对于松潘—甘孜地块,川滇地区的岩石圈地幔存在着更明显的挤出效应。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号