首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts.  相似文献   

2.
The west-central Florida inner shelf represents a transition between the quartz-dominated barrier-island system and the carbonate-dominated mid-outer shelf. Surface sediments exhibit a complex distribution pattern that can be attributed to multiple sediment sources and the ineffectiveness of physical processes for large-scale sediment redistribution. The west Florida shelf is the submerged extension of the Florida carbonate platform, consisting of a limestone karst surface veneered with a thin unconsolidated sediment cover. A total of 498 surface sediment samples were collected on the inner shelf and analyzed for texture and composition. Results show that sediment consists of a combination of fine quartz sand and coarse, biogenic carbonate sand and gravel, with variable but subordinate amounts of black, phosphorite-rich sand. The carbonate component consists primarily of molluskan fragments. The distribution is patchy and discontinuous with no discernible pattern, and the transition between sediment types is generally abrupt. Quartz-rich sediment dominates the inner 15 km north of the entrance into Tampa Bay, but south of the Bay is common only along the inner 3 km. Elsewhere, carbonate-rich sediment is the predominate sediment type, except where there is little sediment cover, in which cases black, phosphorite-rich sand dominates. Sediment sources are likely within, or around the periphery of the basin. Fine quartz sand is likely reworked from coastal units deposited during Pleistocene sea-level high stands. Carbonate sand and gravel is produced by marine organisms within the depositional basin. The black, phosphorite-rich sand likely originates from the bioerosion and reworking of the underlying strata that irregularly crop out within the study area. The distribution pattern contains elements of both storm- and tide-dominated siliciclastic shelves, but it is dictated primarily by the sediment source, similar to some carbonate systems. Other systems with similar sediment attributes include cool-water carbonate, sediment-starved, and mixed carbonate/siliciclastic systems. This study suggests a possible genetic link among the three systems.  相似文献   

3.
A regional study of the Holocene sequence onlapping the west-central Florida Platform was undertaken to merge our understanding of the barrier-island system with that of the depositional history of the adjacent inner continental shelf. Key objectives were to better understand the sedimentary processes, sediment accumulation patterns, and the history of coastal evolution during the post-glacial sea-level rise. In the subsurface, deformed limestone bedrock is attributed to mid-Cenozoic karstic processes. This stratigraphic interval is truncated by an erosional surface, commonly exposed, that regionally forms the base of the Holocene section. The Holocene section is thin and discontinuous and, north or south of the Tampa Bay area, is dominated by low-relief sand-ridge morphologies. Depositional geometries tend to be more sheet-like nearshore, and mounded or ridge-like offshore. Sand ridges exhibit 0.5–4 m of relief, with ridge widths on the order of 1 km and ridge spacing of a few kilometers. The central portion of the study area is dominated nearshore by a contiguous sand sheet associated with the Tampa Bay ebb-tidal delta. Sedimentary facies in this system consist mostly of redistributed siliciclastics, local carbonate production, and residual sediments derived from erosion of older strata. Hardground exposures are common throughout the study area. Regional trends in Holocene sediment thickness patterns are strongly correlated to antecedent topographic control. Both the present barrier-island system and thicker sediment accumulations offshore correlate with steeper slope gradients of the basal Holocene transgressive surface. Proposed models for coastal evolution during the Holocene transgression suggest a spatial and temporal combination of back-stepping barrier-island systems combined with open-marine, low-energy coastal environments. The present distribution of sand resources reflects the reworking of these earlier deposits by the late Holocene inner-shelf hydraulic regime.  相似文献   

4.
Post-Miocene sea-level low stands allowed rivers and karst processes to incise the exposed carbonate platform along the Gulf Coast of Florida. Few Miocene to mid-Pleistocene deposits survived erosion along the present coast except within incised valleys. Since their formation, these valleys have been filled and incised multiple times in response to sea-level changes. The thick sedimentary sequences underlying the mouth of Tampa Bay have been recorded as a range of depositional environments and multiple sea-level incursions and excursions during pre-Holocene time and subsequent to the accumulation of the Miocene carbonate sequences. Sediment analysis of cores collected from a north–south transect across the mouth of Tampa Bay has enabled the identification of lithofacies, ranging from well-sorted, quartz sand to dense, fossiliferous, phosphatic grainstone. These facies were deposited in freshwater, estuarine, and shallow, open marine environments. As a result of channel development and migration within the paleovalley, and cut-and-fill associated with individual transgressions and regressions, correlation of the lithofacies does not extend across the entire transect. Fining-upward sequences truncated by tidal ravinement surfaces that extend throughout the paleovalley can, however, be identified. Age determinations based on 14-C analysis, amino-acid racemization, and strontium isotope analysis dating of numerous samples yield ages of Miocene, Pliocene, early Pleistocene, and late Pleistocene, as well as Holocene for sequences that accumulated and were preserved in this valley-fill complex. Numerous inconsistencies in the stratigraphic organization of the age determinations indicate that there are bad dates, considerable reworking of shells that were dated, or both. For this reason as well as the lack of detailed correlation among the three relatively complete cores, it is not possible to place these strata in a sequence stratigraphic framework.  相似文献   

5.
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes.  相似文献   

6.
The sedimentary record of 130 km of microtidal (0.9 m tidal range) high wave energy (1.5 m average wave height) barrier island shoreline of the Cape Lookout cuspate foreland has been evaluated through examination of 3136 m of subsurface samples from closely spaced drill holes. Holocene sedimentation and coastal evolution has been a function of five major depositional processes: (1) eustatic sea-level rise and barrier-shoreline transgression; (2) lateral tidal inlet migration and reworking of barrier island deposits; (3) shoreface sedimentation and local barrier progradation; (4) storm washover deposition with infilling of shallow lagoons; and (5) flood-tidal delta sedimentation in back-barrier environments.

Twenty-five radiocarbon dates of subsurface peat and shell material from the Cape Lookout area are the basis for a late Holocene sea-level curve. From 9000 to 4000 B.P. eustatic sea level rose rapidly, resulting in landward migration of both barrier limbs of the cuspate foreland. A decline in the rate of sea-level rise since 4000 B.P. resulted in relative shoreline stabilization and deposition of contrasting coastal sedimentary sequences. The higher energy, storm-dominated northeast barrier limb (Core and Portsmouth Banks) has migrated landward producing a transgressive sequence of coarse-grained, horizontally bedded washover sands overlying burrowed to laminated back-barrier and lagoonal silty sands. Locally, ephemeral tidal inlets have reworked the transgressive barrier sequence depositing fining-upward spit platform and channel-fill sequences of cross-bedded, pebble gravel to fine sand and shell. Shoreface sedimentation along a portion of the lower energy, northwest barrier limb (Bogue Banks) has resulted in shoreline progradation and deposition of a coarsening-up sequence of burrowed to cross-bedded and laminated, fine-grained shoreface and foreshore sands. In contrast, the adjacent barrier island (Shackleford Banks) consists almost totally of inlet-fill sediments deposited by lateral tidal inlet migration. Holocene sediments in the shallow lagoons behind the barriers are 5–8 m thick fining-up sequences of interbedded burrowed, rooted and laminated flood-tidal delta, salt marsh, and washover sands, silts and clays.

While barrier island sequences are generally 10 m in thickness, inlet-fill sequences may be as much as 25 m thick and comprise an average of 35% of the Holocene sedimentary deposits. Tidal inlet-fill, back-barrier (including flood-tidal delta) and shoreface deposits are the most highly preservable facies in the wave-dominated barrier-shoreline setting. In the Cape Lookout cuspate foreland, these three facies account for over 80% of the sedimentary deposits preserved beneath the barriers. Foreshore, spit platform and overwash facies account for the remaining 20%.  相似文献   


7.
The barrier-island systems of the Mississippi River Delta plain are currently undergoing some of the highest rates of shoreline retreat in North America (~20 m/year). Effective management of this coastal area requires an understanding of the processes involved in shoreline erosion and measures that can be enacted to reduce loss. The dominant stratigraphy of the delta plain is fluvial mud (silts and clays), delivered in suspension via a series of shallow-water delta lobes that prograded across the shelf throughout the Holocene. Abandonment of a delta lobe through avulsion leads to rapid land subsidence through compaction within the muddy framework. As the deltaic headland subsides below sea level, the marine environment transgresses the bays and wetlands, reworking the available sands into transgressive barrier shorelines. This natural process is further complicated by numerous factors: (1) global sea-level rise; (2) reduced sediment load within the Mississippi River; (3) diversion of the sediment load away from the barrier shorelines to the deep shelf; (4) storm-induced erosion; and (5) human alteration of the littoral process through the construction of hardened shorelines, canals, and other activities. This suite of factors has led to the deterioration of the barrier-island systems that protect interior wetlands and human infrastructure from normal wave activity and periodic storm impact. Interior wetland loss results in an increased tidal prism and inlet cross-sectional areas, and expanding ebb-tidal deltas, which removes sand from the littoral processes through diversion and sequestration. Shoreface erosion of the deltaic headlands does not provide sufficient sand to balance the loss, resulting in thinning and dislocation of the islands. Abatement measures include replenishing lost sediment with similar material, excavated from discrete sandy deposits within the muddy delta plain. These sand bodies were deposited by the same cyclical processes that formed the barrier islands, and understanding these processes is necessary to characterize their location, extent, and resource potential. In this paper we demonstrate the dominant fluvial and marine-transgressive depositional processes that occur on the inner shelf, and identify the preservation and resource potential of fluvio-deltaic deposits for coastal management in Louisiana.  相似文献   

8.
Seismic and sequence stratigraphic architecture of the central western continental margin of India (between Coondapur and south of Mangalore) has been investigated with shallow seismic data. Seismic stratigraphic analysis defined nine seismic units, that are configured in a major type-1 depositional sequence possibly related to fourth-order eustatic sea-level changes, comprising regressive, lowstand, transgressive and highstand systems tracts. The late-Quaternary evolution of the continental margin took place under the influence of an asymmetric relative fourth-order sea-level cycle punctuated by higher frequency cycles. These cycles of minor order were characterised by rapid sea-level rises and gradual sea-level falls that generated depositional sequences spanning different time scales. During the regressive periods, dipping strata were developed, while erosional surfaces and incised valleys were formed during the lowstands of sea level. Terraces, v-shaped depressions, lagoon-like structures observed on the outer continental shelf are the result of the transgressive period. In the study area we have recognised a complex erosional surface that records a long time span during the relative sea-level fall (regressive period) and the following sea-level lowstand and has been reworked during the last transgression. We also infer that sedimentation processes changed from siliciclastic sedimentation to carbonate sedimentation and again to siliciclastic sedimentation, marking an important phase in the late-Quaternary evolution of the western continental shelf of India. We attribute this to an abrupt climate change at the end of the oxygen isotope stage 2, between the Last Glacial Maximum and the Bølling-Allerod event (14?000 yr BP). This sensitive climate change (warming) favoured the formation of reefs at various depths on the shelf, besides the development of Fifty Fathom Flat, a carbonate platform on the outer shelf off Bombay developed prior to 8300 yr BP. The highstand systems tracts were deposited after the sea level reached its present position.  相似文献   

9.
台湾海峡晚更新世以来的高分辨率地震地层学研究   总被引:2,自引:1,他引:1  
基于4 530 km高分辨率单道地震数据和钻孔资料,采用高分辨率地震地层学的方法,对台湾海峡晚更新世以来的地层进行了划分,自上而下共识别出R0、R1、R2、R3、R4等5个主要反射界面,分别对应海底、3 ka BP前后高海平面、最大海泛面、海侵面和 Ⅰ 型层序界面,并以此划分出4个地层单元:晚全新世浅海-滨海沉积A,中全新世浅海沉积B,早全新世海侵沉积C,晚更新世陆相河流沉积D。在海平面变化的作用下,海峡地区先后发育低水位沉积D(低位体系域),海侵沉积C (海侵体系域)、高水位沉积B和A(高位体系域)。研究了台湾海峡的典型地震相,提出了关于台中浅滩(云彰隆起)处的楔状沉积体的新观点,认为该楔状体为全新世中期以来形成的三角洲沉积受波浪和潮流作用改造而形成的潮流沙脊,其物质主要来源于台湾。识别出了晚更新世和早全新世古河道沉积,海平面变化和地势高低是其形成时间差异的主要因素。  相似文献   

10.
Holocene deposits exhibit distinct, predictable and chronologically constrained facies patterns that are quite useful as appropriate modern analogs for interpreting the ancient record. In this study, we examined the sedimentary response of the Po Plain coastal system to short-term (millennial-scale) relative fluctuations of sea level through high-resolution sequence-stratigraphic analysis of the Holocene succession.Meters-thick parasequences form the building blocks of stratigraphic architecture. Above the Younger Dryas paleosol, a prominent stratigraphic marker that demarcates the transgressive surface, Early Holocene parasequences (#s 1–3) record alternating periods of rapid flooding and gradual shoaling, and are stacked in a retrogradational pattern that mostly reflects stepped, post-glacial eustatic rise. Conversely, Middle to Late Holocene parasequences (#s 4–8) record a complex, pattern of coastal progradation and delta upbuilding that took place following sea-level stabilization at highstand, starting at about 7 cal ky BP. The prominent transgressive surface at the base of parasequence 1 correlates with the period of rapid, global sea-level rise at the onset of the Holocene (MWP-1B), whereas flooding surfaces associated with parasequences 2 and 3 apparently reflect minor Early Holocene eustatic jumps reported in the literature. Changes in shoreline trajectory, parasequence architecture and lithofacies distribution during the following eustatic highstand had, instead, an overwhelming autogenic component, mostly driven by river avulsions, delta lobe switching, local subsidence and sediment compaction. We document a ∼1000-year delayed response of the coastal depositional system to marine incursion, farther inland from the maximum landward position of the shoreline. A dramatic reduction in sediment flux due to fluvial avulsion resulted in marine inundation in back-barrier position, whereas coastal progradation was simultaneously taking place basinwards.We demonstrate that the landward equivalents of marine flooding surfaces (parasequence boundaries) may be defined by brackish and freshwater fossil assemblages, and traced for tens of kilometers into the non-marine realm. This makes millennial-scale parasequences, whether auto- or allogenic in origin, much more powerful than systems tracts for mapping detailed extents and volumes of sediment bodies.The Holocene parasequences of the Po coastal plain, with strong age control and a detailed understanding of sea-level variation, may provide insight into the driving mechanisms and predictability of successions characterized by similar depositional styles, but with poor age constraint, resulting in more robust interpretations of the ancient record.  相似文献   

11.
B_2孔揭示海河口地区全新世海侵层厚达19.2m,自下往上依次出现潮间滩、近岸浅海、前三角洲、三角洲湾、河口砂坝及河口边滩六个亚相,下部两个亚相呈海进层序,上部四个亚相呈海退层序。除河口边滩亚相底界外,其他所有亚相间的界面均为不连续面,显示海侵层为不连续沉积。研究表明该不连续沉积与海面波动有关.在全新世海侵高峰后,海面一直处于幅度不大(约1m 左右)的振荡运动状态,一次振荡波就在海岸线上留下一道贝壳堤,近5000余年来发生了5次振荡波,在海退平原中就有5道贝克堤与之对应。B_2孔海退层序中曲不连续面与贝壳堤基底侵蚀面相对应,也与振荡波的上升坡段相对应。海退层序所表现出来的海岸向海推进现象不是海面大幅度下降的反映,而主要是河口区沉积物迅速加积的结果。  相似文献   

12.
《Marine Geology》2006,225(1-4):279-309
Both local and regional controls on slope sedimentation west of Porcupine Bank are assessed using an array of 25 gravity cores, integrated with shallow seismic, TOBI side-scan and high-resolution bathymetry data. The cores were retrieved from an area of smooth, distally steepened slope (between 52° and 53°N) in water depths of 950 to 2750 m. The slope here is unmodified by gravity failures and is swept by bottom currents that flow from S to N along the margin. The cores reveal a coherent shallow stratigraphy that can be traced along and between transects at upper-, mid- and lower-slope levels. AMS 14C dating, oxygen-isotopes and carbonate profiles suggest the cored record could extend as far back as 500 ka in the longest cores, with most cores providing details of the slope response to the last interglacial, last glacial and Holocene forcing. The facies indicate deposition was dominated by a combination of bottom currents, ice-rafting and hemipelagic settling, with carbonate-prone deposits during interglacials, and siliciclastic deposits during glacials. Inferred contourites imply that strong currents operated during interglacials, with weaker current reworking during glacial conditions. A pair of erosion surfaces record significant mid- and upper-slope scouring during Marine Isotope Stage (MIS 3) and in the Early Holocene. The lateral facies distribution implies stronger currents at shallower levels on the slope, although there is evidence that the core of the current migrated up and down the slope, and that sand might locally have spilt down-slope. The bathymetry influenced both the wider geometry of the condensed contourite sheet and the local thickness and facies variation across the slope. A significant result of the study is the identification of a pair of thin sand–mud contourite couplets that record enhanced bottom-current reworking corresponding to periods of interstadial warming during MIS 3. The couplets can be correlated to the terrestrial records onshore Ireland and imply that the NE Atlantic margin oceanographic and onshore climate records are strongly coupled at interstadial level.  相似文献   

13.
Late Holocene back-barrier sediments have been studied in a former lagoon reclaimed during the last century. Several shallow boreholes were cored, from which nine organic-rich samples were selected for radiocarbon dating, and others for palynological and palaeontological analysis. This enabled the reconstruction of the evolution of a back-barrier coastal basin during the late Holocene coastline progradation. Since late Roman times, the rate of relative sea-level rise (RSLR) has increased from 1.1 mm/yr to over 2 mm/yr, even after removal of the main human impacts during of the last century. This change is ascribed to sediment compaction related to changes in the hydrological regime, and possibly to an isostatic subsidence wave accompanying the northward shift of the Po Delta during the last 2000 years.  相似文献   

14.
西非下刚果盆地为一典型被动大陆边缘含盐盆地,下刚果盆地北部海域在白垩系海相碳酸盐岩层系获得丰富油气发现。研究区海相碳酸盐岩领域油气勘探面临的核心瓶颈问题,即白垩系碳酸盐岩的沉积模式、演化规律、储层特征以及沉积储层发育控制因素。综合钻井、地震、区域地质等资料,分析认为自下向上相对海平面的上升控制了沉积演化,沉积体系演化模式为浅海碳酸盐岩台地→浅海混积陆棚→半深海-海底扇。下刚果盆地碳酸盐岩储层展布在纵向及平面上均可以划分为内中外3个储层发育带,碳酸盐岩储层最主要发育于下白垩统Albian阶下Sendji组。该时期研究区整体发育浅海碳酸盐岩混积缓坡台地沉积体系,沉积亚相可进一步划分为混积滨岸、后缓坡、浅水缓坡以及深水缓坡4种类型,其中浅水缓坡亚相颗粒滩微相与后缓坡亚相台内浅滩、砂质浅滩微相储层最为发育。碳酸盐岩储层岩性组合主要包括颗粒灰岩、砂岩、砂质灰岩、白云岩4种类型;储层发育主要受沉积相带的控制,并受成岩作用的影响。  相似文献   

15.
A sedimentary record spanning 5792–5511 cal yr BP and 3188–2854 cal yr BP was recovered at 36° 45′ 43″ S–56 ° 37′ 13″ W, south-west South Atlantic. The sedimentological features and micropaleontological (benthic foraminifera and ostracoda) content were analyzed in order to reconstruct paleoenvironmental conditions. Considerable environmental fluctuations are indicated by all these proxies. Five different stages were distinguished: Stage 1 (ca. 5800–5000 cal yr BP) consists of muddy sand with abundant microfossils. In this interval, species typical for inner marine shelf environments maintained a high abundance. Stage 2 consists of plastic light greenish grey clays barren of microfossils, and probably represents fluvial input from the de la Plata River to the shelf contemporaneous of a lowering of sea level. Stage 3 is composed of brownish yellow sandy silts, and represents increasing marine conditions in the area as reflected by higher faunal diversity and typical foraminifera of inner shelf environments. Stage 4 is made of homogeneous mud, barren of microfossil, which represents a new pulse of fluvial input to the shelf in consequence of a new fall in sea level. The final part of the core (Stage 5) is a coarsening upward sequence, grading from greeny brown clayey sandy silts to coarse shelly sands and represents the modern sedimentation in the area. This interpretation strengthens the stepped model of late-Holocene sea-level fall between 5511–5792 cal yr BP and 2854–3188 cal yr BP in Buenos Aires coast, and agrees with the relative sea-level history previously proposed by some authors from western South Atlantic coasts.  相似文献   

16.
One hundred fourteen vibracores from the Atlantic continental shelf offshore of southeastern North Carolina were opened, described, and processed over several contract years (years 6-9) of the Minerals Management Service Association of American State Geologists Continental Margins program. Reports for years 9 and 10 of the program compiled the results of the work and assembled the data for release as an interactive CD-ROM report, respectively. The continental shelf of Onslow and Long Bays consists predominantly of outcropping Cretaceous through late Tertiary geologic units. Nearshore these units are covered and incised by late Tertiary and Quaternary units. From oldest to youngest, formally recognized geologic units mapped as part of this study are the Late Cretaceous Peedee Formation a muddy, fine-to medium-grained quartz sand with trace amounts of glauconite and phosphate; the Paleocene Beaufort Forma tion a muddy, fine-to medium-grained glauconitic quartz sand with locally occurring turritelid-mold biosparrudite; the middle Eocene Castle Hayne Forma tion a sandy bryozoan biomicrudite and biosparrudite; the Oligocene River Bend Formation a sandy molluscan-mold biosparrudite; and the Miocene Pungo River Formation a medium-grained, poorly sorted slightly shelly phosphatic sand. Infor mal units include a very widespread, unnamed fine-to very fine grained, well-sorted, dolomitic muddy quartz sand that is biostratigraphically equivalent to the Oligocene River Bend Formation; several large valley-fill lithosomes composed of biomicrudite, biomicrite, and biosparrudite of Plio Pleistocene age; muddy, shelly sands and silty clays of Pliocene, Pleistocene, or mixed Plio Pleistocene age; and loose, slightly shelly, medium- to coarse-grained sands assigned a Holocene age. Heavy minerals (SG>2.96) comprise an average of 0.54 wt % (on a bulk-sam ple basis) of the sediments in 306 samples derived from the 114 vibracores. Heavy-mineral content ranges from <0.01 to 3.69 wt %. The economic heavy mineral content (EHM ilmenite zircon rutile aluminosilicates leucoxene [altered ilmenite] monazite) of the bulk samples averages 0.26 wt % in a range of <0.01-1.70 wt %. As a percentage of the heavy-mineral concentrate, the average EHM value is 45.78 % in a range of 0.27-68.60 %. The distribution of heavy minerals offshore of southeastern North Carolina is controlled by the lithostratigraphic framework. The unnamed Oligocene sand unit has the highest heavy-mineral content, averaging 0.86 wt % on a bulk-sample basis. The remaining geologic units and their heavy-mineral content (in decreasing order of abundance) are Beaufort (0.64 %), Holocene sand (0.60 %), Plio-Pleistocene muddy sand and silty clay (0.59 %), Peedee (0.42 %), River Bend (0.34 %), Plio-Pleistocene carbonate (0.12 %), and Castle Hayne (0.08 %). The heavy-mineral assemblage is fairly consistent throughout the different units. Significantly smaller percentages of heavy minerals correlate with increased amounts of CaCO3 in the sediments. The sediments analyzed in this study have significantly lower overall heavymineral content, as well as lower EHM content than sediments that are known to host commercially important heavy-mineral deposits in the southeastern United States. The potential for economic deposits of heavy minerals in the area of this study, therefore, appears to be limited.  相似文献   

17.
通过分析伶仃洋东岸sz17QZ-20-3钻孔硅藻分布特征,结合测年、岩性和粒度,重建了该地区晚更新世以来的古环境演化。依据沉积物岩性粒度变化判断,晚更新世时期在23.6~11.0 m层段发育了一套河床相-溺古湾相-岸滩相-冲积相的垂向沉积序列,在花斑黏土层中有海水种Ethmodiscus rex碎片的存在,指示晚更新世海侵海退旋回。早全新世海侵在9000 cal.aBP左右到达研究区,海水种硅藻含量开始迅速增加,发育滨海平原相沉积;在8000 cal.aBP左右达到最高海平面,海水种硅藻含量最高;随后研究区处于海平面停滞状态,并缓慢下降,发育浅海相沉积;中晚全新世4.2~0 m层段为海退时期,发育河口湾相沉积。中全新世4.4~4.2 m层位海水种含量突然增加和4.4~4.6 m层位贝壳碎屑层指示可能有风暴潮事件发生;晚全新世0.3~0 m层段表层沉积物中硅藻丰度异常偏高,受人类活动影响较大。  相似文献   

18.
Barrier island stratigraphy and Holocene history of west-central Florida   总被引:4,自引:0,他引:4  
Although the morphology of the barrier-inlet system along the west-central Florida coast is quite complicated, the stratigraphy of these barriers is rather simple. The basal Holocene unit in most cores is an organic-rich, muddy sand that represents a vegetated, paralic marine, coastal environment similar to that which is north and south of the present barrier system. Above that unit is a muddy, bioturbated sand that displays a marine fauna at most locations but also contains Crassostrea virginica in a few places. These sediments accumulated in a low-energy marine setting that may or may not have been protected by a barrier island. Much of this facies also represents sediment that was delivered as washover deposits in an intertidal or subtidal setting and was subsequently bioturbated. The facies that can be attributed to a barrier island with some certainty are no more than 3000 years old, and on most islands, are much younger. These are the shelly sand and sorted sand facies. The shelly strata represent deposition in nearshore, beach, supratidal washover or intertidal spillover environments, and tidal inlet and tidal delta channels, whereas the sorted sand is typical of eolian deposition in dunes or the backbeach and some tidal delta elements. The presence of Holocene oyster beds offshore of a present barrier suggests that some of these islands formed significantly offshore and moved to their present position through washover. It is likely that most of these barriers initially formed through upward shoaling by waves. Although there is significant morphologic difference between the wave-dominated and mixed-energy, drumstick barrier islands, their stratigraphy is quite similar. The only significant difference is the presence of extensive progradation on at least part of the drumstick islands and a relatively high amount of former washover deposits on the wave-dominated type.  相似文献   

19.
Extensive vibracoring of both flood- and ebb-tidal deltas along the central Gulf Coast of the Florida peninsula reveals a strong overall similarity with subtle distinctions between flood and ebb varieties. Although the coast in question is microtidal, the inlets range from tide-dominated to distinctly wave-dominated. Both types of tidal deltas overlie a muddy sand interpreted to have been deposited in a back-barrier environment. The sharp contact at the base of the tidal delta sequence is typically overlain by a thin shell gravel layer. The ebb-tidal delta sequence is characterized by fine quartz sand with shell gravel in various concentrations; coarse and massive at the margins of the main ebb channel, and finer and imbricated at the marginal flood channels. The flood-tidal deltas are characterized by the same facies but with a small amount of mud. Shelly facies on the channels on flood deltas are not as well developed as on the ebb deltas. The combination of the stratigraphic sequence and the lithofacies make tidal deltas readily identifiable in the ancient record. The differences between flood and ebb varieties are subtle but consistent.  相似文献   

20.
The siliciclastic Gadvan Formation from Abadan Plain, southwestern Iran, is highly bioturbated and allows relationships between changes in ichnocoenoses within a depositional system to be documented and placed in a high-resolution sequence stratigraphic framework. Relying on the sedimentary and ichnological characteristics, the siliciclastic succession is divided into two facies associations: a wave-dominated offshore-shoreface complex and a tide-river influenced delta. The first includes facies that have been deposited in shelf-offshore, upper offshore, lower shoreface and upper/middle shoreface environments, the latter includes facies that have been deposited in prodelta and delta front. Integrated ichnologic and sedimentologic studies of the Gadvan Formation, allow distinction between prodelta and delta front and open marine deposits. With the identification of maximum flooding and ravinement surfaces as bounding surfaces of the stratal units, detailed analysis on systematic changes in the stacking pattern (cycle thickness, cycle type, and facies proportion) are made. Eight ichnocoenoses could be differentiated in the studied sections. The positions of the ichnocoenoses within genetically related stratal units (genetically related ichnocoenoses), indicate three large-scale cycles (DS1 to DS3, from oldest to youngest). The cyclical nature of the Gadvan Formation is attributed to low-amplitude eustasy in greenhouse conditions formed under interaction of eustatic high-frequency cycles and longer term tectonically driven sea-level variations during the long-term transgressive sea-level trend of the early Cretaceous. Stratigraphic architectural style of sequences DS1 to DS3 (which includes scarce evidence of lowstand deposits, partial or total truncation of the HST, and predominance of thick transgressive deposits), is remarkably similar to long-term transgressive sea-level trend of the Early Cretaceous across the Arabian Plate. This study suggests a more relatively seaward position of the siliciclastic successions of the Gadvan Formation of Abadan Plain than the Mesopotamian Basin (upper Zubair Formation equivalent in western Iraq and Kuwait), which would be concordant with the prevailing view of an easterly prograding coastline across the Arabian Plate.This study reveals important sedimentological and ichnological features and permits the development of predictive models for the paleoenvironmental and sequence stratigraphical significance of trace fossil assemblages that can be readily compared or translated to analogous depositional systems worldwide. The ichnological analysis is based on cores and can be especially applied to evaluate the applicability of current ichnological models to the study of Cretaceous reservoirs of western Iraq, Kuwait and western Saudi Arabia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号