首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most monazite reference materials (RMs) for in situ U‐Pb geochronology are rich in Th; however, many hydrothermal ore deposits contain monazite that is low in trace element contents, including Th, U and Pb. Because of potential problems with matrix effects and the lack of appropriate matrix‐matched RMs, such variations can bias dating of hydrothermal deposits. In this paper, we describe a polycrystalline low‐U and low‐Th Diamantina monazite from the Espinhaço Range, SE Brazil. It has a U‐Pb ID‐TIMS weighted mean 207Pb*/235U ratio of 0.62913 ± 0.00079, 206Pb*/238U of 0.079861 ± 0.000088 and 207Pb*/206Pb* of 0.057130 ± 0.000031, yielding a weighted mean 206Pb*/238U date of 495.26 ± 0.54 Ma (95% c.l.). In situ dates acquired with different methods (LA‐(Q, SF, MC)‐ICP‐MS and SIMS) are within uncertainty of the ID‐TIMS data. U‐Pb LA‐(Q, MC)‐ICP‐MS runs, using Diamantina as a primary RM, reproduced the ages of other established RMs within < 1% deviation. The LA‐MC‐ICP‐MS analyses yielded homogeneous Sm‐Nd isotopic compositions (143Nd/144Nd = 0.511427 ± 23, 2s; 147Sm/144Nd = 0.1177 ± 13, 2s) and εNd(495 Ma) of ?18.7 ± 0.5 (2s). SIMS oxygen isotope determinations showed measurement reproducibility better than ± 0.3‰ (2s), confirming Diamantina's relative homogeneity at test portion masses below 1 ng.  相似文献   

2.
Titanite is a common accessory mineral that preferentially incorporates considerable amounts of U and light rare earth elements in its structure, making it a versatile mineral for in situ U‐Pb dating and Sm‐Nd isotopic measurement. Here, we present in situ U‐Pb ages and Sm‐Nd isotope measurement results for four well‐known titanite reference materials (Khan, BLR‐1, OLT1 and MKED1) and eight titanite crystals that could be considered potential reference material candidates (Ontario, YQ‐82, T3, T4, TLS‐36, NW‐IOA, Pakistan and C253), with ages ranging from ~ 20 Ma to ~ 1840 Ma. Results indicate that BLR‐1, OLT1, Ontario, MKED1 and T3 titanite have relatively homogeneous Sm‐Nd isotopes and low common Pb and thus can serve as primary reference materials for U‐Pb and Sm‐Nd microanalysis. YQ‐82 and T4 titanite can be used as secondary reference materials for in situ U‐Pb analysis because of their low common Pb. However, internal structures and mineral inclusions in YQ‐82 will require careful selection of suitable target domains. Pakistan titanite is almost concordant with an age of 21 Ma and can be used as a reference material when dating Cenozoic titanite samples.  相似文献   

3.
A new certified reference material, labelled GSB 04‐3258‐2015, for use as a 143Nd/144Nd isotope ratio reference has been prepared by the Institute of Geology, Chinese Academy of Geological Sciences, Beijing. Standardization Administration of the People's Republic of China provided the certification for this reference material. This report presents the reference 143Nd/144Nd isotope ratio and supporting production and certification procedures. The reference value was determined by an interlaboratory comparison of results from eleven participating laboratories using MC‐TIMS or MC‐ICP‐MS. The calibration of mass fractionation was conducted by using the exponential law, and the 143Nd/144Nd isotope ratios were normalised to the 146Nd/144Nd isotope ratio value of 0.7219. Isobaric interference of 144Sm on 144Nd was corrected using an interference‐free 147Sm/149Sm isotope ratio value for mass fractionation. GSB 04‐3258‐2015 shows sufficient homogeneity and stability for use as an international isotopic reference material. The certified value was calculated from the unweighted means of the results submitted by the participating laboratories. The 143Nd/144Nd isotope ratio value for GSB 04‐3258‐2015 is 0.512438, with a combined expanded uncertainty (= 2) of 5 × 10?6. Reference material GSB 04‐3258‐2015 is available upon request from the Institute of Geology, Chinese Academy of Geological Sciences, and may be used for accurate interlaboratory calibration of Nd isotope analysis.  相似文献   

4.
147Sm-143Nd放射性同位素体系在地球科学研究中得到了广泛的应用,经典的同位素稀释-热表面电离质谱法(ID-TIMS)一直是Sm-Nd同位素高精度测定的基准技术,但具有耗时长、成本高、样品需求量大等缺点,并且难以揭示微观尺度单矿物所蕴含的地球化学信息。近年来兴起的微区原位分析,具有简单、快速、高空间分辨率的特点,可以从微米尺度示踪岩浆和热液的起源及演化过程。本文通过同时测定Sm和Nd同位素质量分馏系数,实现144Sm对144Nd干扰的准确校正,获得了人造玻璃、磷灰石、榍石、独居石等几种不同基体标准样品(NIST610、Durango、MAD-2、BLR-1、117531)精确的143Nd/144Nd比值,与推荐值在误差范围内一致。然而,由于Sm和Nd元素性质的差异,在激光剥蚀和质谱电离过程中会产生明显的元素分馏,导致147Sm/144Nd很难进行精确校正,本文通过在进样系统中引入液态气溶胶,有效克服了基体效...  相似文献   

5.
Nd model ages using depleted mantle (TDM) values for the sedimentary rocks in the Inner Zone of the SW Japan and western area of Tanakura Tectonic Line in the NE Japan allow classification into five categories: 2.6–2.45, 2.3–2.05, 1.9–1.55, 1.45–1.25, and 1.2–0.85 Ga. The provenance of each terrane/belt/district is interpreted on the basis of the TDMs, 147Sm / 144Nd vs. 143Nd / 144Nd relation, Nd isotopic evolution of the source rocks in East China and U–Pb zircon ages. The provenance of 2.6–1.8 Ga rocks, which are reported from Hida–Oki and Renge belts and Kamiaso conglomerates, is inferred to be the Sino–Korean Craton (SKC). The 2.3–1.55 Ga rocks, mostly from Ryoke, Mino and Ashio belts, are originally related with the SKC and/or Yangtze Craton (YC). The provenances of the sedimentary rocks with 1.45–0.85 Ga, from the Suo belt, Higo and some districts in the Mino and Ashio belts, are different from the SKC and YC. Especially, the Higo with 1.2–0.85 Ga is considered as a fragment of collision zone in East China. Akiyoshi belt probably belongs to the youngest age category of 1.2–0.85 Ga.Some metasedimentary rocks from the Ryoke belt have extremely high 147Sm / 144Nd and 143Nd / 144Nd ratios, whose main components are probably derived from mafic igneous rocks within the Ryoke belt itself and from the adjacent Tamba belt.  相似文献   

6.
Sm‐Nd and Rb‐Sr isotopic data for Archaean gneisses from three localities within the eastern Yilgarn Block of Western Australia indicate that the gneisses define a precise Rb‐Sr whole rock isochron age of 2780 ± 60 Ma and an initial 87Sr/86Sr of 0.7007 ± 5. The Sm‐Nd isotopic data do not correspond to a single linear array, but form two coherent groups that are consistent with a c. 2800 Ma age of crust formation, with variable initial Nd. These results indicate that the gneiss protoliths existed as continental crust for a maximum period of only c. 100 Ma, and probably for a much shorter time, prior to the formation of the 2790 ±30 Ma greenstones.  相似文献   

7.
Two distinct crustal provinces have been identified in the southern mid-continent based on U–Pb crystallization ages. Both contain large volumes of undeformed granite and rhyolite, with minor amounts of metamorphic rock and mafic intrusions. The Eastern Granite-Rhyolite province is characterized by felsic rocks with crystallization ages of 1,470 ± 30 Ma and exposures are restricted to the St. Francois Mountains in southeastern Missouri. Similarly, the Southern Granite-Rhyolite (SGR) province is characterized by felsic units with ages of 1,370 ± 30 Ma with primary exposures in the eastern Arbuckle Mountains of southern Oklahoma. Within the SGR province three magmatic pulses can be identified starting at 1,400, 1,370, and 1,340 Ma. Although the crystallization ages are different, the Sm–Nd isotopic signatures are similar for the units exposed in these areas as well as the buried basement in between. Depleted mantle model ages for rocks within the Arbuckle Mountains range from 1,530 to 1,430 Ma with ɛNd(t) values of +3.2 to +4.1 while units of the St. Francois Mountains range from 1,550 to 1,430 Ma and +4.5 to +4.7. Comparison of Sm–Nd isotopic data also indicate similarities between the 147Sm/144Nd and 143Nd/144Nd ratios for the rock units in these areas suggesting a common source.  相似文献   

8.
To assess the homogeneity of and provide the first Sr‐Nd‐Hf‐Pb isotopic reference values for the Chinese Geological Standard Glasses CGSG‐1, CGSG‐2, CGSG‐4 and CGSG‐5, we measured these isotopes in several measurement sessions over the course of nearly 3 years. The results were obtained by high‐precision MC‐ICP‐MS and TIMS. Our investigation indicates that these CGSG glass reference materials are homogenous with regard to Sr‐Nd‐Hf‐Pb isotopic distribution and are therefore suitable geochemical materials for Sr‐Nd‐Hf‐Pb isotope measurements. Clear differences in Sr‐Nd‐Hf‐Pb isotopic composition were observed between the glasses and the original powdered rock reference materials (CGSG‐2 and GSR‐7, and especially CGSG‐5 and GSR‐2) because of flux addition during preparation of the glasses. The new Sr‐Nd‐Hf‐Pb isotope data provided here might be useful to the geochemical community for in situ and bulk analysis.  相似文献   

9.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2s level for outliers, were 87Sr/86Sr = 0.705000 ± 11 (2s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/144Nd = 0.512637 ± 13 (2s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/177Hf = 0.282866 ± 11 (2s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots (n = 26, twelve digestions, two outliers) were 206Pb/204Pb = 18.8029 ± 10 (2s, 55 ppm), 207Pb/204Pb = 15.6239 ± 8 (2s, 52 ppm), 208Pb/204Pb = 38.8287 ± 25 (2s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions.  相似文献   

10.
The Hayachine–Miyamori (HM) ophiolitic complex in the Kitakami Mountains, northeastern Japan consists of ultramafic tectonite and cumulate members. The most fertile lherzolites have mineral and trace element compositions similar to those of abyssal peridotites. They show 350–430 Ma Nd depleted mantle model ages, which are within the range of the K–Ar emplacement ages obtained from intrusive gabbroic rocks, suggesting a partial melting event just before the emplacement. The measured 143Nd/144Nd ratio of clinopyroxene in the tectonite peridotites shows positive correlation with 147Sm/144Nd and decreases with increasing refractoriness, which cannot be explained by a simple melting and melt extraction to a various extent followed by radiogenic ingrowth. It clearly suggests influx of a melt/fluid enriched in highly incompatible trace elements during melting. Time corrected isotopic compositions of the HM complex exhibit a clear island arc signature with uniform initial isotopic ratio (87Sr/86Sr = 0.7035–0.7041, εNd = + 7.8–+ 5.0). Application of an open-system melting model to the observed trace element abundances in clinopyroxene suggests influx of three distinct agents to the HM mantle with the following characteristics: (1) moderate enrichment in highly incompatible elements with negative anomalies of Sr and Zr; (2) extensive enrichment of highly incompatible elements with positive Sr and negative Zr anomalies; and (3) extensive enrichment of highly incompatible elements with positive anomalies of Sr and Zr. These characteristics cover a variety of slab-derived components proposed in the literatures, suggesting the agents responsible for the open-system melting in the HM ophiolite might represent full spectrum of slab-derived components from back-arc to fore-arc regions of the Ordovician island arc system.  相似文献   

11.
Garnet, as a major constitutive mineral of eclogite, is important for Sm–Nd dating of eclogite due to its high Sm/Nd ratio and its stability during retrogression. However, a comprehensive study of the petrography, mineral chemistry, garnet water content, and Sm–Nd isotopic composition of eclogites from the Bixiling massif, Central Dabie Zone (CDZ), reveals significant modification of the Sm–Nd isotopic system in garnet as a result of retrogression. This problem constitutes a challenge for Sm–Nd dating of the Bixiling eclogites, with the Sm–Nd isochron ages of 218 ± 4 to 210 ± 9 Ma reported in the literature being younger than 226 ± 3 Ma, which is the generally accepted peak metamorphic age of the CDZ. Petrographic analysis reveals heterogeneity in colour within single fractured garnet grains. There are light‐pink garnet (Grt‐P) and red garnet (Grt‐R) types that possess distinct chemical compositions. Compared to Grt‐P, Grt‐R has higher Fe and andradrite contents but lower Al and grossular contents. Grt‐P also has lower water contents (15–35 ppm) than Grt‐R (34–65 ppm), which, together with the spatial association between Grt‐R and fractures, suggests that the colour change is related to fluid alteration. Grt‐P is an ultra‐high‐pressure (UHP) mineral, and Grt‐R is the product of the interaction between Grt‐P and a fluid during retrogression. Moreover, Grt‐R features lower Sm and Nd contents but higher Sm/Nd ratios than Grt‐P. The Sm–Nd isochrons defined by UHP minerals (Grt‐P+Omp+Rt or Grt‐P+Cpx+WR) from three eclogite samples yield consistent ages of 226.0 ± 3.8 Ma, 225.0 ± 3.9 Ma and 226.2 ± 6.9 Ma, which are identical to the peak metamorphic age of 226 ± 3 Ma for the CDZ. The retrogressed garnet (i.e., Grt‐R), omphacite and rutile, together define a pseudoisochron with younger ages of 218.9 ± 5.9 to 202.8 ± 4.8 Ma, which are geologically meaningless. The increase in the Sm/Nd ratio with constant or lower 143Nd/144Nd ratios during the transformation of Grt‐P to Grt‐R was probably the cause of these younger ages.  相似文献   

12.
We report SHRIMP U–Th–Pb monazite, conventional U–Pb titanite, Sm–Nd garnet and Rb–Sr muscovite and biotite ages for metamorphic rocks from the Danba Domal Metamorphic Terrane in the eastern Songpan‐Garzê Orogenic Belt (eastern Tibet Plateau). These ages are used to determine the timing of polyphase metamorphic events and the subsequent cooling history. The oldest U–Th–Pb monazite and Sm–Nd garnet ages constrain an early Barrovian metamorphism (M1) in the interval c. 204–190 Ma, coincident with extensive Indosinian granitic magmatism throughout the Songpan‐Garzê Orogenic Belt. A second, higher‐grade sillimanite‐grade metamorphic event (M2), recorded only in the northern part of the Danba terrane, was dated at c. 168–158 Ma by a combination of U–Th–Pb monazite and titanite and Sm–Nd garnet ages. It is suggested that M1 was a thermal event that affected the entire orogenic belt while M2 may represent a local thermal perturbation. Rb–Sr muscovite ages range from c. 138–100 Ma, whereas Rb–Sr biotite ages cluster at c. 34–24 Ma. These ages document regional cooling at rates of c. 2–3 °C Myr?1 following the M1 peak for most of the terrane. However, those parts of the terrane affected by the higher‐temperature M2 event (e.g. the migmatite zone) experienced initially more rapid (c. 8 °C Myr?1) cooling after peak M2 before joining the regional slow cooling path defined by the rest of the terrane at c. 138 Ma. Regional slow cooling between c. 138 and c. 30 Ma is thought to be the result of post‐tectonic isostatic uplift after extensive crustal thickening caused by collision of the South and North China Blocks. The clustering of biotite Rb–Sr ages marks the onset of rapid uplift across the entire terrane commencing at c. 30–20 Ma. This cooling history is shared with many other regions of the Tibet Plateau, suggesting that uplift of the Tibet Plateau (including the Songpan‐Garzê Orogenic Belt) occurred predominantly in the last c. 30 Myr as a response to the continuing northwards collision of India with Eurasia.  相似文献   

13.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

14.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

15.
The possibility of using hydrothermal fluorite as an Sm–Nd geochronometer is based on the results of an REE pattern study of this mineral (Chernyshev et al., 1986). As a result of REE fractionation, in many cases, the Sm/Nd ratio achieves a multifold increase compared with its level in terrestrial rocks, and the radiogenic shift of the 143Nd/144Nd isotope ratio reaches 10–20 εNd units over a short time interval (as soon as tens of Ma). This is a necessary prerequisite for Sm–Nd isochron dating of fluorite. Zonal polychrome fluorite from a vein referred to the final stage of large-scale uranium mineralization at the Sterl’tsovka deposit in the ore field of the same name located in the eastern Transbaikal region has been dated using the 143Nd/144Nd method. To optimize isochron construction, local probes with high and contrasting Sm/Nd ratios have been sampled from the polished surfaces of two samples, taking into account the REE pattern of zonal fluorite. Sm–Nd isochron dating has been carried out separately for each sample. The 147Sm/144Nd и 143Nd/144Nd ratios vary within the intervals 0.5359–2.037 and 0.512799–0.514105, respectively. Two isochrons, each based on six fluorite probes, have been obtained with the following parameters, which coincide within 2σ uncertainty limits: (1) t = 134.8 ± 1.3 Ma, (143Nd/144Nd)0 = 0.512310 ± 13, MWSD = 0.43 and (2) t = 135.8 ± 1.6 Ma, (143Nd/144Nd)0 = 0.512318 ± 10, MWSD = 1.5. The mean age of fluorite based on two isochron datings is 135.3 ± 1 Ma. Comparison of this value with the most precise dating of pitchblende related to the ore stage in the Strel’tsovka ore field (135.5 ± 1 Ma) shows that four mineralization stages, distinguished by geological and mineralogical data, that were completed with the formation of polychrome fluorite veins 135.3 ± 1 Ma ago, represent a single and indivisible hydrothermal process whose duration does not exceed 1 Ma.  相似文献   

16.
The regular variations in magmatic activities along the Northwest Pacific plate have been little studied in spite of their importance. In this contribution, systematic analyses were conducted on tholeiitic basalts from three Ocean Drilling Program sites (Sites 304, 1149, and 801), including the petrographic features, major and trace elements, Nd isotopic compositions, and mineral structure and compositions of whole rocks. Volcanic rocks from Sites 304, 1149, and 801 belong to tholeiites and exhibit depleted light rare earth elements (LREE), large ion lithophile elemental contents (LILE), and relatively depleted Nd isotopic ratios (143Nd/144Nd=0.513139–0.513211), similar to those of normal mid-ocean ridge basalts (N-MORB). Comprehensive data on mineral compositions, whole-rock geochemistry, and geochronology demonstrate that a regular variation trend exists in the north-south direction along the Northwest Pacific plate. The 143Nd/144Nd values (0.513139–0.513211) and trace-element ratios for whole rocks (Sm/Th=15.35–30.00; Zr/Hf=28.53–35.76; Zr/Y=2.58–3.67; Th/La=0.04–0.06; Th/Y=0.33–0.70), as well as the trace-element ratios (Zr/Hf, La/Yb, Ti/Zr) of clinopyroxenes from Sites 1149 and 801 tholeiites show larger variations compared to those from Site 304 tholeiites (143Nd/144Nd=0.513185–0.513195; Sm/Th=18.19–20.58; Zr/Hf=31.07–33.26; Zr/Y=2.62–3.03; Th/La=0.05–0.06; Th/Y=0.48–0.57). Mineral zoning textures were obvious in tholeiites from Sites 1149 and 801 but were rarely observed in Site 304. These regular features were likely attributed to the differences in the heterogeneity of the magma source, the process of magmatic evolution, the plate-spreading rate, and the effective and ineffective mixing.  相似文献   

17.
ABSTRACT

Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite-facies zones of the Higo low-P/high-T metamorphic terrane. Here we report Nd–Sr isotopic and whole rock composition data from an outcrop in the highest-grade part of the granulite-facies zone, in which diatexite occurs as a 3 m-thick layer between 2 m-thick layers of stromatic-structured metatexite within pelitic gneiss. The metatexite has Nd–Sr isotopes and whole rock compositions similar to those of the gneiss, but the diatexite shows the reverse. The diatexite has a higher εNd(t) and 147Sm/144Nd ratio (εNd(t) = ?0.5; 147Sm/144Nd = 0.1636) than the gneiss (εNd(t) = ?2.1; 147Sm/144Nd = 0.1287) and metatexite (εNd(t) = ?3.1; 147Sm/144Nd = 0.1188). The (87Sr/86Sr)initial and 87Rb/86Sr of the diatexite ((87Sr/86Sr)initial = 0.70568; 87Rb/86Sr = 0.416) are lower than those of the gneiss ((87Sr/86Sr)initial = 0.70857; 87Rb/86Sr = 1.13) and metatexite ((87Sr/86Sr)initial = 0.70792; 87Rb/86Sr = 1.11). The metatexite and gneiss show enrichment of Th and depletion of P and Eu and have a similar chondrite-normalized REE pattern, which shows steep LREE–MREE-enriched and gently declining HREE patterns and negative Eu anomalies, whereas the diatexite shows enrichment of Sr and depletion of Th and Y, and exhibits gently declining LREE and steeply declining HREE pattern and weak Eu depletion. The metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived melt with a juvenile component. The Cretaceous high-temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle-derived basalts under a volcanic arc along the eastern margin of the Eurasian continent, and mass transfer and advection of heat via hybrid silicic melts from the lower crust.  相似文献   

18.
利用套柱法快速分离提纯Sr和Nd元素   总被引:1,自引:1,他引:0  
样品放射性成因Sr-Nd同位素比值受控于源区初始同位素组成、放射性元素母体与子体相对丰度,以及衰变时间等因素。它们具有极强的示踪能力,因而在地质学领域有广泛的应用。传统的Sr-Nd同位素分析使用的是阳离子树脂,提纯Nd元素时往往涉及有机试剂以及调节pH值等操作,其分析效率较低。近年来特效树脂的出现使得分离这些元素变得简单,但是受硫酸根等因素影响,特效树脂使用次数有限。为了提高分析效率,缩短分析时间,本文开发了一种套柱法,该方法结合阳离子树脂和特效树脂,实现了Sr-Nd元素的快速分离,并且能延长特效树脂的使用寿命。实验采用阳离子树脂、Sr特效树脂和LN稀土特效树脂对玄武岩BCR-2标样进行了分析。Sr-Nd回收率均90%,BCR-2玄武岩~(87)Sr/~(86)Sr比值为0.705016±0.000016(n=36,1SD),~(143)Nd/~(144)Nd比值为0.512624±0.000012(n=39,1SD),与前人TIMS法获得的结果吻合(~(87)Sr/~(86)Sr:0.705000~0.705023;~(143)Nd/~(144)Nd:0.512630~0.512650)。最终分离提纯的溶液中~(85)Rb/~(86)Sr值小于0.01,~(147)Sm/~(144)Nd值小于0.001,表明该方法可以高效分离Rb-Sr和Sm-Nd,实现Sr、Nd同位素的准确分析。  相似文献   

19.
In this study, a high‐precision method for the determination of Sm and Nd concentrations and Nd isotopic composition in highly depleted ultramafic rocks without a preconcentration step is presented. The samples were first digested using the conventional HF + HNO3 + HClO4 method, followed by the complete digestion of chromite in the samples using HClO4 at 190–200 °C and then complete dissolution of fluoride formed during the HF decomposition step using H3BO3. These steps ensured the complete digestion of the ultramafic rocks. The rare earth elements (REEs) were separated from the sample matrix using conventional cation‐exchange chromatography; subsequently, Sm and Nd were separated using the LN columns. Neodymium isotopes were determined as NdO+, whereas Sm isotopes were measured as Sm+, both with very high sensitivity using single W filaments with TaF5 as an ion emitter. Several highly depleted ultramafic rock reference materials including USGS DTS‐1, DTS‐2, DTS‐2b, PCC‐1 and GSJ JP‐1, which contain extremely low amounts of Sm and Nd (down to sub ng g?1 level), were analysed, and high‐precision Sm and Nd concentration and Nd isotope data were obtained. This is the first report of the Sm‐Nd isotopic compositions of these ultramafic rock reference materials except for PCC‐1.  相似文献   

20.
The Zhou’an PGE-Cu-Ni deposit was recently discovered in the Qinling orogenic belt bound by the Yangtze and the North China Cratons. It is a blind deposit thoroughly covered by the Cenozoic alluvial sediments in the Nanyang Basin. As the first large PGE-Cu-Ni deposit discovered in the Qinling-Dabie-Sulu orogenic belt, its geological and geochemical characteristic, isotope age, genesis and tectonic setting are of wide concern in both scientific studies and ore exploration. In this contribution, we report the results obtained from a pioneering study. The Zhou’an ultramafic complex is ferruginous, with m/f?=?4.79–5.08, and shows the nature of tholeiite series. It is rich in light rare earth elements, Rb, Th, U, La, Sm, Zr and Hf, and poor in heavy rare earth elements, Nd and Ta, suggesting an intraplate setting. It has high 87Sr/86Sr and low 143Nd/144Nd ratios. The ratios of Zr/Nb, La/Nb, Ba/Nb, Rb/Nb, Th/Nb, Th/La and Ba/La, suggest the magma originated from lithosphere mantle. The Fo values of olivine and Pd/Ir-Ni/Cu diagram suggest primary magma was High Mg basalt. The laser ablation inductively coupled plasma atomic emission spectroscopy zircon U-Pb age is 641.5?±?3.7 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号