首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This paper presents results of U–Pb dating (SHRIMP-II) and Lu–Hf (LA–ICP MS) isotope study of zircon from Paleoarchean plagiogneisses and plagiogranitoids of the Onot and Bulun blocks of the Sharyzhalgai uplift. Magmatic zircons from the Onot plagiogneiss and Bulun gneissic trondhjemite are dated at 3388±11 and 3311±16 Ma, respectively. Magmatic zircons from plagiogneisses and plagiogranitoids of the studied tonalite–trondhjemite–granodiorite (TTG) complexes are characterized mainly by positive values of εHf indicating that felsic melts were generated mainly from juvenile (mafic) sources, which are derived from a depleted mantle reservoir. The variable Hf isotope composition in magmatic zircons and the lower average εHf values in comparison with the depleted mantle values suggest the contributions of both mafic and more ancient crustal sources to magma formation. Metamorphic zircons from the gneissic plagiogranite and migmatized plagiogneiss either inherited the Hf isotope composition from magmatic zircon or are enriched in radiogenic Hf. The more radiogenic Hf isotope composition of metamorphic zircons from the migmatized plagiogneisses is due to their interaction with melt during partial melting. Variations in the Lu–Hf isotope composition of zircon from the Bulun rocks in the period 3.33–3.20 Ga are due to the successive melting of mafic crust or the growing contribution of crustal material to their genesis. Correlation between the Lu–Hf isotope characteristics of zircon and the Sm–Nd parameters of the Onot plagiogneisses points to the contribution of ancient crustal material to their formation. The bimodal distribution of the model Hf ages of zircons reflects two stages of crustal growth in the Paleoarchean: 3.45–3.60 and ~ 3.35 Ga. The isotope characteristics of zircon and rocks of the TTG complexes, pointing to recycling of crustal material, argue for the formation of plagiogneisses and plagiogranitoids as a result of melting of heterogeneous (mafic and more ancient crustal) sources in the thickened crust.  相似文献   

2.
The paper is focused on the evolution of the Earth starting with the planetary accretion and differentiation of the primordial material (similar in composition to CI chondrites) into the core and mantle and the formation of the Moon as a result of the impact of the Earth with a smaller cosmic body. The features of the Hadean eon (ca. 4500–4000 Ma) are described in detail. Frequent meteorite-asteroid bombardments which the Earth experienced in the Hadean could have caused the generation of mafic/ultramafic primary magmas. These magmas also differentiated to produce some granitic magmas, from which zircons crystallized. The repeated meteorite bombardments destroyed the protocrust, which submerged into the mantle to remelt, leaving refractory zircons, indicators of the Early Earth’s geologic conditions, behind.The mantle convection that started in the Archean could possibly be responsible for the Earth’s subsequent endogenous evolution. Long-living deep-seated mantle plumes could have promoted the generation of basalt-komatiitic crust, which, thickening, could have submerged into the mantle as a result of sagduction, where it remelted. Partial melting of the thick crust, leaving eclogite as a residue, could have yielded tonalite-trondhjemite-granodiorite (TTG) melts. TTG rocks are believed to compose the Earth’s protocrust. Banded iron bodies, the only mineral deposits of that time, were produced in the oceans that covered the Earth.This environment, recognized as LID tectonics combined with plume tectonics, probably existed on the Earth prior to the transitional period, which was marked by a series of new geologic processes and led to a modern-style tectonics, involving plate tectonics and plume tectonics mechanisms, by 2 Ga. The transitional period was likely to be initiated at about 3.4 Ga, with the segregation of outer and inner cores, which terminated by 3.1 Ga. Other rocks series (calc-alkaline volcanic and intrusive) rather than TTGs were produced at that time. Beginning from 3.4-3.3 Ga, mineral deposits became more diverse; noble and siderophile metal occurrences were predominant among ore deposits. Carbonatites, hosting rare-metal mineralization, could have formed only by 2.0 Ga. From 3.1 to 2.7 Ga, there was a period of “small-plate” tectonics and first subduction and spreading processes, which resulted in the first supercontinent by 2.7 Ga. Its amalgamation indicates the start of superplume-supercontinent cycles.Between 2.7 and 2.0 Ga, the D″ layer formed at the core-mantle interface. It became a kind of thermal regulator for the ascending already tholeiitic mantle plume magmas. All deep-seated layers of the Earth and large low-velocity shear provinces, called mantle hot fields, partially melted enriched EM-I and EM-II mantles, and the depleted recent asthenosphere mantle, which is parental for midocean-ridge basalts, were finally generated by 2 Ga. Therefore, an interaction of all Earth’s layers began from that time.  相似文献   

3.
E. V. Bibikova 《Petrology》2010,18(5):482-488
Analysis of isotope-geochemical data obtained for the early crustal complexes of the Earth provided constraints on the formation time, scales of development, and geochemical features of protocrust. Most informative were isotope-geochemical and geochemical data on the oldest zircons with ages up to 4.4 Ga, short-lived 146Sm/142Nd isotope system, and lead isotope composition of the oldest rocks of Greenland. The presence of positive 142Nd anomaly in the rocks of West Greenland and negative anomaly in the amphibolites of the oldest Nuvvuagittuq greenstone belt of the Superior province (O’Neil et al., 2008) indicates the early differentiation of the Earth material into depleted mantle and enriched (basaltic) crust (Caro et al., 2006; Benett et al., 2007a, b; O’Neil et al., 2008). Pb-Pb isotopic systematics of the oldest crustal rocks from West Greenland and Labrador testifies that high μ enriched crust (238U/204Pb = 10.9) of basaltic composition already existed 3.9 Ga ago (Kamber et al., 2003). Based on isotope-geochemical and geochemical features of the oldest zircons in the Late Archean greenstone belts of the Yilgarn block (Western Australia), the crust of intermediate-felsic composition and water on the Earth’s surface already existed 4.4 Ga ago (Wilde et al., 2001).  相似文献   

4.
The Archean Eon was a time of geodynamic changes. Direct evidence of these transitions come from igneous/metaigneous rocks, which dominate cratonic segments worldwide. New data for granitoids from an Archean basement inlier related to the Southern São Francisco Craton (SSFC), are integrated with geochronological, isotopic and geochemical data on Archean granitoids from the SSFC. The rocks are divided into three main geochemical groups with different ages: (1) TTG (3.02–2.77 Ga); (2) medium- to high-K granitoids (2.85–2.72 Ga); and (3) A-type granites (2.7–2.6 Ga). The juvenile to chondritic (Hf-Nd isotopes) TTG were divided into two sub-groups, TTG 1 (low-HREE) and 2 (high-HREE), derived from partial melting of metamafic rocks similar to those from adjacent greenstone belts. The compositional diversity within the TTG is attributed to different pressures during partial melting, supported by a positive correlation of Dy/Yb and Sr/Zr, and batch melting calculations. The proposed TTG sources are geochemically similar to basaltic rocks from modern island-arcs, indicating the presence of subduction processes concomitant with TTG emplacement. From ~2.85 Ga to 2.70 Ga, the dominant rocks were K-rich granitoids. These are modeled as crustal melts of TTG, during regional metamorphism indicative of crustal thickening. Their compositional diversity is linked to: (i) differences in source composition; (ii) distinct melt fractions during partial melting; and (iii) different residual mineralogies reflecting varying P–T conditions. Post-collisional (~2.7–2.6 Ga) A-type granites reflect rifting in that they were closely followed by extension-related dyke swarms, and they are interpreted as differentiation or partial melting products of magmas derived from subduction-modified mantle. The sequence of granitoid emplacement indicates subduction-related magmatism was followed by crustal thickening, regional metamorphism and crustal melting, and post-collisional extension, similar to that seen in younger Wilson Cycles. It is compelling evidence that plate tectonics was active in this segment of Brazil from ~3 Ga.  相似文献   

5.
The compositions of the tonalite–trondhjemite–granodiorite (TTG) assemblage and volcanic rocks of the Archaean greenstone belts from different domains of the Karelian province of the Baltic Shield are compared. Neoarchean medium felsic volcanic rocks and TTG of the Central Karelian domain drastically differ from analogous Mesoarchean rocks of the neighboring Vodlozero and West Karelian domains in higher Rb, Sr, P, La, and Ce contents and, correspondingly, values of Sr/Y, La/Yb, and La/Sm, and also in a different REE content distribution owing to different rock sources of these domains. This fact is confirmed by differences in the composition and the nature of the REE distribution in the basic and ultrabasic volcanic rocks making up the greenstone belts of these domains. It is established that the average compositions of Mesoarchean TTG rocks and volcanic rocks of the Karelian province differ markedly from those of plagiogranitoids and volcanic rocks of the recent geotectonic environments in high Mg (mg#) and Sr contents. Neoarchean volcanic rocks of Karelia differ from recent island-arc volcanic rocks, but are similar in composition to recent volcanic rocks of the continental arcs. On the basis of the cumulative evidence, the Karelian province of the Baltic Shield was subject to dramatic changes in the crust formation conditions at the beginning of the Neoarchean at the turn of about 2.75–2.78 Ga. These changes led to formation of volcano-sedimentary and plutonic rock complexes, different in composition from Mesoarchean rocks, and specific complexes of intrusive sanukitoids and granites. Changes and variations in the rock composition were related to the mixing of plume sources with continental crust and/or lithospheric mantle material, likely as a result of the combined effect of plumes and plate tectonics. This process resulted in formation of a younger large fragment of the Archean crust such as the Central Karelian domain which factually connected more ancient fragments of the crust and likely contributed to development of the Neoarchean Kenorland Supercontinent.  相似文献   

6.
Zircons have been studied in three samples of Archean plagiogneisses from the Kola superdeep well (SG-3). The crystals consist of cores, magmatic shells, and metamorphic rims. The cores and shells are characterized by similar lowered concentrations of most trace elements, which is typical of zircons from plagiogranitoids, rocks of elevated basicity, and basites. At a wide range of Hf isotope characteristics, the cores and shells have similar average 176Hf/177Hfi, which determines the close composition of their sources. The metamorphic rims have close 176Hf/177Hfi ratio. The minimum age of the crustal contaminant of parental melts is estimated at 3.4 and 3.3 Ga for cores and 3.3–3.2 Ga for shells at almost equal proportions of mantle and crustal components in them. The contribution of Paleoarchean crust established in zircons from plagiogneisses of SG-3 using Lu-Hf isotope systematics is confirmed by the presence of 3.3and 3.4-Ga old zircons in surrounding TTG.  相似文献   

7.
地质历史中板块构造启动时间   总被引:1,自引:0,他引:1  
地质历史中板块构造是何时开始启动的长期存在着激烈的争论,最极端的一是认为板块构造在新元古代的800 Ma前开始,二是在冥古宙4.3 Ga就已启动,多数学者认为在太古宙末开始启动。确定板块构造启动时间主要依据以下几方面:(1)地球动力学特点,如地幔的热状态以及粘塑性地幔对流模拟表明,板块构造可能是在地球热和冷停滞状态之间演化的一个相。在太古宙较热的地球中,板片强度低,板片的频繁断离阻止了形成类似现代样式的长期俯冲体系,太古宙的板块构造是短期的、阵发性的;(2)代表俯冲的标志的蛇绿岩、蓝片岩和超高压(UHP)变质地体;(3)具有弧特征的岩石组合,如拉斑玄武岩-安山岩-英安岩-流纹岩及英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩套;(4)增生楔中混杂岩和大洋板块地层、前陆盆地、大陆裂谷、双变质带、造山带;(5)与俯冲带关系密切的造山型Au矿、斑岩Cu矿和浅成热液矿床、火山岩型块状硫化物矿床(VHMS),它们最早出现的年龄一致在3.5~3.1 Ga,指示了板块构造的开始;(6)世界不同地区大陆的Ni/Co、Cr/Zn比值随沉积年龄变年轻而降低,陆壳从3.0 Ga前的镁铁质转变为2.5 Ga时的长英质,表明全球板块构造的启动应在3.0 Ga的古中太古代;(7)冥古宙锆石、太古宙金刚石中矿物包裹体及Hf、O、C、N同位素组成研究表明,冥古宙地球表面存在类似板块汇聚边缘,太古宙含有大陆沉积物的海洋岩石圈俯冲进入地幔。  相似文献   

8.
华北克拉通的形成以及早期板块构造   总被引:21,自引:0,他引:21  
翟明国 《地质学报》2012,86(9):1335-1349
地球上最早的地壳岩石是高钠的花岗质(TTG)岩石,但是否有更老的洋壳存在过、以及陆壳是怎样形成的,涉及到地球动力学几乎所有的问题。其中板块构造是在什么时候开始的,就是个延续了数十年热度不减的前沿科学问题。流行的说法是板块构造始于新元古代,也有一些学者认为在新太古代就已经开始,或者认为自从地球上有了水的记录,就开始有板块构造。在众多的判别板块构造的标志中,蛇绿岩残片和古老的高压变质岩无疑是两个最具影响力的问题。前者可以确定有远古的古老洋壳存在过并成为缝合带中的残片,后者可以指示曾有地表的岩石单元被俯冲到深部,是俯冲、消减与碰撞的岩石学证据。本文在讨论和比较了太古宙绿岩带与蛇绿岩,以及早前寒武纪高温高压(HTHP)麻粒岩/高温—超高温(HT-UHT)麻粒岩与造山带高压变质带之后,认为尚不能作为板块构造的证据。本文还对华北的新太古代末的稳定大陆形成以及古元古代活动带的裂谷-俯冲-碰撞进行了论述。提出华北克拉通在新太古代末的绿岩带-高级区格局可能标志着热体制下有限的横向活动构造,微陆块被火山-沉积岩系焊接,随后发生变质作用和花岗岩化,完成稳定大陆的克拉通化过程。其构造机制可能是适度规模且多发的地幔柱构造控制下小尺度的横向构造运动的机制。华北克拉通的古元古代活动带有与绿岩带-高级区不同的构造样式,表壳岩带状分布,经受了强烈的变形以及中级变质作用,伴随花岗岩的侵入,虽然没有蛇绿岩和高压变质带,但已表现出板块构造的雏形特征。  相似文献   

9.
Zircon crystals precipitated from granitoid magmas contain a robust record of the age and chemistry of continental magmatism spanning some 4.375 Ga of Earth history, a record that charts initiation of plate tectonics. However, constraining when exactly plate tectonics began to dominate crustal growth processes is challenging as the geochemical signatures of individual rocks may reflect local subduction processes rather than global plate tectonics. Here we apply counting statistics to a global database of coupled U–Pb and Hf isotope analyses on magmatic zircon grains from continental igneous and sedimentary rocks to quantify changes in the compositions of their source rocks. The analysis reveals a globally significant change in the sources of granitoid magmas between 3.2 and 2.7 Ga. These secular changes in zircon chemistry are driven by a coupling of the deep (depleted mantle) and shallow (crustal) Earth reservoirs, consistent with a geodynamic regime dominated by Wilson cycle style plate tectonics.  相似文献   

10.
We present results of geochemical studies and isotope dating of eclogites and associated rocks from the Kuru-Vaara quarry, Belomorian Belt, Northeastern Baltic Shield. The southern and northern eclogites are similar in geochemical features. Their protoliths were primitive, mainly high-Mg basalts of oceanic affinity derived from a primitive mantle source rather than from a depleted mantle source characteristic of modern MORB. The post-eclogitic intrusive rocks show obvious evidence for crustal contamination. The eclogite-hosting tonalitetrondhjemite-granodiorite (TTG) gneisses form a coherent series including high-Al and low-Al varieties. The trace element data show that the TTG series formed through the hydrous partial melting of the southern eclogites in the presence of garnet and amphibole in the field of the rutile stability (>15 kbar). Zircons from the southern eclogites exhibit features of their strong re-equilibration by coupled dissolution–repre-cipitation processes but have locally preserved patches with a primary magmatic zoning. The geochemistry of the patches points to the oceanic provenance of protolithic zircons; their isotope dating (SHRIMP-II) yielded a concordant age of 2821 ± 21 Ma. Zircons from the trondhjemite gneiss with geochemical features of Archean adakite were dated at 2805 ± 11 Ma, which suggests the syneclogitic facies origin of the TTG melts. The concordant age of high-pressure zircons from the northern eclogites is 2722 ± 21 Ma, close to the age of the earlier described Gridino eclogites. The overview of the isotopically dated eclogite bodies show the presence of at least three temporally distinct groups of eclogites in the Belomorian Belt, ~2.86–2.87, ~2.82–2.80, and ~2.72 Ga, which is in a good accordance with the known isotopic ages for major crust-forming events in the belt. This, in turn, implies a close genetic relationship between the eclogites and the TTG origin, which might be consistent with the model of the short intermitted events of subduction of the thickened Archean oceanic crust. The presence of HP/UHP eclogites of different ages and the structural style of the Belomorian Belt permit it to be assigned to megamélange belts.  相似文献   

11.
We present results of study of the trace-element and Lu–Hf isotope compositions of zircons from Paleoproterozoic high-grade metasedimentary rocks (paragneisses) of the southwestern margin of the Siberian craton (Irkut terrane of the Sharyzhalgai uplift). Metamorphic zircons are represented by rims and multifaceted crystals dated at ~ 1.85 Ga. They are depleted in either LREE or HREE as a result of subsolidus recrystallization and/or synchronous formation with REE-concentrating garnet or monazite. In contrast to the metamorphic zircons, the detrital cores are enriched in HREE and have high (Lu/Gd)n ratios, which is typical of igneous zircon. The weak positive correlation between 176Lu/177Hf and 176Hf/177Hf in the zircon cores evidences that their Hf isotope composition evolved through radioactive decay in Hf = the closed system. Therefore, the isotope parameters of these zircons can give an insight into the provenance of metasedimentary rocks. The Paleoproterozoic detrital zircon cores from paragneisses, dated at ~ 2.3–2.4 and 2.0–1.95 Ga, are characterized by a wide range of εHf values (from + 9.8 to –3.3) and model age T C 2.8–2.0 Ga. The provenance of these detrital zircons included both rocks with juvenile isotope Hf parameters and rocks resulted from the recycling of the Archean crust with a varying contribution of juvenile material. Zircons with high positive εHf values were derived from the juvenile Paleoproterozoic crustal sources, whereas the lower εHf and higher T C values for zircons suggest the contribution of the Archean crustal source to the formation of their magmatic precursors. Thus, at the Paleoproterozoic stage of evolution of the southwestern margin of the Siberian craton, both crustal recycling and crustal growth through the contribution of juvenile material took place. On the southwestern margin of the Siberian craton, detrital zircons with ages of ~ 2.3–2.4 and 1.95–2.0 Ga are widespread in Paleoproterozoic paragneisses of the Irkut and Angara–Kan terranes and in terrigenous rocks of the Urik–Iya graben, which argues for their common and, most likely, proximal provenances. In the time of metamorphism (1.88–1.85 Ga), the age of Paleoproterozoic detrital zircons (2.4–2.0 Ga), and their Lu–Hf isotope composition (εHf values ranging from positive to negative values) the paragneisses of the southwestern margin of the Siberian craton are similar to the metasedimentary rocks of the Paleoproterozoic orogenic belts of the North China Craton. In the above two regions, the sources of detrital zircons formed by both the reworking of the Archean crust and the contribution of juvenile material, which is evidence for the crustal growth in the period 2.4–2.0 Ga.  相似文献   

12.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳.太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成....  相似文献   

13.
本文概括性地阐述我国前寒武纪冥古宙、太古宙、元古宙三大地史阶段的重大地质事件,粗略勾绘前寒武纪地球演化的轨迹,期望了解我国与全球变化的异同,进一步突出我国前寒武纪三大地史阶段中新太古代超级地质事件及元古宙时期中国大陆块体对哥伦比亚及罗迪尼亚两个超大陆形成与破裂的地质响应。冥古宙是地球最早期的地史阶段,从太阳系形成的4 567 Ma至地球上最老的4 030 Ma的Acasta片麻杂岩。碎屑锆石保存最好的地点是西澳的Mt. Narryer和Jack Hills。目前在中国大陆至少有7个地点发现具有罕见的约4.0 Ga的碎屑锆石,这些地点并不位于克拉通区,而是赋存于造山系新元古代至古生代以碎屑岩为主的地层中。太古宙(4 030~2 420 Ma)定义为从最古老的岩石出现(4 030 Ma Acasta片麻岩)至冰碛层首次广泛分布的寒冷期之间的一段地史。最古老的岩石为英云闪长片麻岩,构成加拿大西北斯拉夫克拉通4.03~3.94 Ga Acasta片麻岩的一部分。西南格陵兰Isua带保存全球有最老的表壳岩,形成于3 810 Ma。太古宙最重大的地质事件莫过于2 780~2 420 Ma时期的新太古代超级事件。值得指出的是华北克拉通最古老、也是中国最古老的岩石出露在中国辽宁鞍山地区,约3.80 Ga英云闪长岩奧长花岗质片麻岩和3.30 Ga的表壳岩已被识别。华北克拉通太古宙有与世界各地太古宙相似的演化历史和特点,包括花岗岩绿岩带及高级变质片麻岩带、广泛的英云闪长岩奧长花岗岩花岗闪长岩(TTG)片麻岩、古陆壳的出露(略老于3.8 Ga)、广泛分布的BIF等。我国太古宙花岗岩绿岩带虽然在华北克拉通分布较广,但与南非、格陵兰、加拿大、西澳等地经典的花岗岩绿岩带相比,时代偏新,仅以新太古代为主,规模偏小,缺少大面积分布的科马提岩,且变质程度偏高,主要为角闪岩相麻粒岩相变质。演化到元古宙(2 420~541 Ma),则进入成熟的、较冷的、刚性程度较高的地球,以现代样式板块构造、超大陆旋回和更复杂的疑源类(eukaryotic)生命的发育为特征。这种变化大致出现在2 420 Ma左右,与哈默斯利型BIF的消失及地史中首次广泛出现的冰川沉积物年代相近。古元古代早期十分重要的“休伦冰川事件”、指示大氧化事件的古老红层在我国尚未被发现,与Lomagundi Jatuli (LJE) δ13C的同位素漂移有关的关门山组古元古代沉积地层的同位素年代学依据不足;古元古代磷矿和具有巨大石油潜力的2.01 Ga Shunga事件也未能鉴别。但中国最大特色是发育了与哥伦比亚和罗迪尼亚超大陆汇聚与裂解有关的良好地质记录,特别是华北克拉通保存了古元古代与哥伦比亚超大陆汇聚有关的超高温、高压麻粒岩等变质及岩浆事件,1 780 Ma以后的中元古代又保存了与哥伦比亚超大陆裂解有关的裂谷沉积及岩浆活动;而在扬子和塔里木陆块区则保存了与新元古代早期与罗迪尼亚超大陆汇聚有关的蛇绿岩、混杂岩、洋内弧、俯冲增生杂岩及大陆边缘弧,在约800 Ma以后则发育了与罗迪尼亚超大陆裂解有关的沉积及岩浆活动的地质记录,为中国和全球地质学者研究这一时期地球系统变化和成矿作用提供了客观的野外实验室和良好的范例。  相似文献   

14.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

15.
Evolution of Archean magmatism is one of the key problems concerning the early formation stages of the Earth crust and biosphere, because that evolution exactly controlled variable concentrations of chemical elements in the World Ocean, which are important for metabolism. Geochemical evolution of magmatism between 3.5 and 2.7 Ga is considered based on database characterizing volcanic and intrusive rock complexes of granite-greenstone terrains (GGT) studied most comprehensively in the Karelian (2.9–2.7 Ga) and Kaapvaal (3.5–2.9 Ga) cratons and in the Pilbara block (3.5–2.9 Ga). Trends of magmatic geochemical evolution in the mentioned GGTs were similar in general. At the early stage of their development, tholeiitic magmas were considerably enriched in chalcophile and siderophile elements Fe2O3, MgO, Cr, Ni, Co, V, Cu, and Zn. At the next stage, calc-alkaline volcanics of greenstone belts and syntectonic TTG granitoids were enriched in lithophile elements Rb, Cs, Ba, Th, U, Pb, Nb, La, Sr, Be and others. Elevated concentrations of both the “crustal” and “mantle-derived” elements represented a distinctive feature of predominantly intrusive rocks of granitoid composition, which were characteristic of the terminal stage of continental crust formation in the GGTs, because older silicic rocks and lithospheric mantle were jointly involved into processes of magma generation. On the other hand, the GGTs different in age reveal specific trends in geochemical evolution of rock associations close in composition and geological position. First, the geochemical cycle of GGT evolution was of a longer duration in the Paleoarchean than in the Meso-and Neoarchean. Second, the Paleoarche an tholeiitic associations had higher concentrations of LREE and HFSE (Zr, Ti, Th, Nb, Ta, Hf) than their Meso-and Neoarchean counterparts. Third, the Y and Yb concentrations in Paleoarchean calc-alkaline rock associations are systematically higher than in Neoarchean rocks of the same type, while their La/Yb ratios are in contrast lower than in the latter. These distinctions are likely caused by evolution of mantle magmatic reservoirs and by changes in formation mechanisms of silicic volcanics and TTG granitoids. The first of these factors was likely responsible for appearance of sanukitoid magmatic rocks in the Late Mesoarchean. Representative database considered in the work includes ca. 500 precision analyses of Archean magmatic rocks.  相似文献   

16.
Warren B. Hamilton 《Lithos》2011,123(1-4):1-20
Archean, Paleoproterozoic, and Mesoproterozoic rocks, assemblages, and structures differ greatly both from each other and from modern ones, and lack evidence for subduction and seafloor spreading such as is widespread in Phanerozoic terrains. Most specialists nevertheless apply non-actualistic plate-tectonic explanations to the ancient terrains and do not consider alternatives. This report evaluates popular concepts with multidisciplinary information, and proposes options. The key is fractionation by ca. 4.45 Ga of the hot young Earth into core, severely depleted mantle, and thick mafic protocrust, followed by still-continuing re-enrichment of upper mantle from the top. This is opposite to the popular assumption that silicate Earth is still slowly and unidirectionally fractionating. The protocrust contained most material from which all subsequent crust was derived, either directly, or indirectly after downward recycling. Tonalite, trondhjemite, and granodiorite (TTG), dominant components of Archean crust, were derived mostly by partial melting of protocrust. Dense restitic protocrust delaminated and sank into hot, weak dunite mantle, which, displaced upward, enabled further partial melting of protocrust. Sinkers enriched the upper mantle, in part maintaining coherence as distinct dense rocks, and in part yielding melts that metasomatized depleted-mantle dunite to more pyroxenic and garnetiferous rocks. Not until ca. 3.6 Ga was TTG crust cool enough to allow mafic and ultramafic lavas, from both protocrust and re-enriched mantle, to erupt to the surface, and then to sag as synclinal keels between rising diapiric batholiths; simultaneously upper crust deformed ductily, then brittly, above slowly flowing hot lower TTG crust. Paleoproterozoic and Mesoproterozoic orogens appear to be largely ensialic, developed from very thick basin-filling sedimentary and volcanic rocks on thinned Archean or Paleoproterozoic crust and remaining mafic protocrust, above moderately re-enriched mantle. Subduction, and perhaps the continent/ocean lithospheric dichotomy, began ca. 850 Ma – although fully modern plate-tectonic processes began only in Ordovician time – and continued to enrich the cooling mantle in excess of partial melts that contributed to new crust. “Plumes” from deep mantle do not operate in the modern Earth and did not operate in Precambrian time.  相似文献   

17.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987114000206   总被引:20,自引:0,他引:20  
The North China Craton(NCC) has a complicated evolutionary history with multi-stage crustal growth,recording nearly all important geological events in the early geotectonic history of the Earth.Our studies propose that the NCC can be divided into six micro-blocks with >~3.0-3.8 Ga old continental nuclei that are surrounded by Neoarchean greenstone belts(CRB).The micro-blocks are also termed as highgrade regions(HGR) and are mainly composed of orthogneisses with minor gabbros and BIF-bearing supracrustal beds or lenses,all of which underwent strong deformation and metamorphism of granulite- to high-grade amphibolite-facies.The micro-blocks are,in turn,from east to west,the Jiaoliao(JL),Qianhuai(QH),Ordos(ODS),Ji’ning(JN) and Alashan(ALS) blocks,and Xuchang(XCH) in the south.Recent studies led to a consensus that the basement of the NCC was composed of different blocks/terranes that were finally amalgamated to form a coherent craton at the end of Neoarchean.Zircon U-Pb data show that TTG gneisses in the HGRs have two prominent age peaks at ca.2.9-2.7 and2.6-2.5 Ga which may correspond to the earliest events of major crustal growth in the NCC.Hafnium isotopic model ages range from ca.3.8 to 2.5 Ga and mostly are in the range of 3.0-2.6 Ga with a peak at2.82 Ga.Recent studies revealed a much larger volume of TTG gneisses in the NCC than previously considered,with a dominant ca.2.7 Ga magmatic zircon ages.Most of the ca.2.7 Ga TTG gneisses underwent metamorphism in 2.6-2.5 Ga as indicated by ubiquitous metamorphic rims around the cores of magmatic zircon in these rocks.Abundant ca.2.6-2.5 Ga orthogneisses have Hf-in-zircon and Nd wholerock model ages mostly around 2.9-2.7 Ga and some around 2.6-2.5 Ga,indicating the timing of protolith formation or extraction of the protolith magma was from the mantle.Therefore,it is suggested that the 2.6-2.5 Ga TTGs probably represent a coherent event of continental accretion and major reworking(crustal melting).As a distinct characte  相似文献   

19.
A combined Lu-Hf and U-Th-Pb isotopic study was made of 25 zircons and 2 whole rocks from the late Archean crust (2,888-2,668 Ma) in the southern Superior Province, Canada. The relative abundances of U, Th, Lu and Hf in zircons from the low grade Michipicoten and Gamitagama greenstone belts show variable patterns which in part reflect the bulk compositional differences of their parent rocks. Zircons from the high grade lower crustal regions adjacent to these belts (Kapuskasing Structural Zone) are distinguished from the low grade zircons by their strong depletions of Lu and Hf. The low Hf contents imply that the growth of metamorphic zircon involves a significant fractionation of the Zr/Hf ratio.Initial Hf isotope ratios for Hf in zircons from the low grade rocks are correlated with silica enrichment of their host rocks. e Hf varies from +9.2 to –1.3 and data from similar rock types exhibit correlations of e Hf with time. Whole rock basalt analyses yield e Hf values of +8.7 and +11.3 suggesting their derivation from a depleted mantle. The basalt data fall on an evolution trend which implies that differentiation from a chondritic mantle occurred at 3,100-2,900 Ma. Low e Hf values (–1.3 to +1.4) for rhyolites and granites are consistent with a derivation involving remelting of old crust similar to a 2,888 Ma granite with e HF of +0.5. Significantly higher values (+1.4 to +3.9) are found in zircons from 2,748-2,682 Ma dacites and tonalites suggesting that their parent rocks had higher Lu/Hf ratios. This may indicate that their parent rocks were mafic. However, there is some evidence that the possible lower crustal source reservoirs of these rocks may have undergone processes early in their histories which increased their Lu/ Hf ratios. This would give rise to the higher e Hf values observed in their derivatives.  相似文献   

20.
The south São Francisco craton (SSFC) in Brazil is one of the few areas that are key to unveiling the Archean evolution of South America. Despite economic interest since the 18th century, the SSFC was not studied in detail until the beginning of the present decade. The two main greenstone belts in the SSFC, namely, the Rio das Velhas (RVGB) and the Pitangui (PGB), have traditionally been considered to represent a single Archean basin. Here, new geochemistry and geochronology data from both greenstone and TTG-granite rocks are integrated and suggest that these belts evolved as separate domains. These are marked by distinct basal komatiite geochemistry, indicating that the PGB evolved as a back-arc rift on a thick lithosphere section at 2.86 Ga, in contrast to the RVGB basin, which developed near an exotic juvenile TTG terrain. Approximately 100 Ma later, the PGB basin transitioned to a calc-alkaline dominated setting, coeval with the emplacement of two large TTG igneous bodies at the margins of a poly-recycled ancient terrain. This protracted recycling is marked by extremely negative ƐHf values, which are not common for Archean terrains. The dominant strong crustal signature of the SSFC Archean rocks implies the existence of an anomalous overthickened crust or a Meso- to Neoarchean protocontinent. This thickened crust developed by continuous magmatism, delamination and differentiation in a flat-subduction setting. These mechanisms suggest that modern-style plate tectonics or a similar process such as “dripduction” was operating in this area prior to 3.0 Ga, the time at which a thick continental crust regime and horizontal tectonics were thought to have been established. Late TTG magmatism in the PGB suggests the western SSFC experienced an episode of late crustal thickening at ~2.71 Ga in response to collision, while coeval shallower K-rich magmatism in the RVGB corroborates the diachronous evolution of both belts and the surrounding crystalline terrains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号