首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
皖南浅变质岩和沉积岩的钕同位素特点及其大地构造意义   总被引:2,自引:1,他引:2  
邢凤鸣  陈江峰 《现代地质》1991,5(3):290-299
根据Nd同位素模式年龄通常保留源区大陆地块的平均年龄的原理,作者研究了皖南上溪群千枚岩和震旦系到二叠系沉积岩的Nd同位素组成和模式年龄。发现千枚岩和沉积岩具有不同的Nd同位素组成和模式年龄,它们明显地分成二组。千枚岩的~(147)Sm/~(144)Nd=0.1220~0.1290,T_(DM)~(Nd)=1.63~1.69Ga;沉积岩的~(147)Sm/~144Nd=0.1100~0.1182,T_(DM)~(Nd)=1.92~2.14Ga。这表明,它们来自不同的物源区:上溪群可能来自附近的古岛弧双桥山群;沉积岩可能来自大别古陆和华北地台。  相似文献   

2.
TESTING THE VALIDITY OF Ar/Ar SINGLE-CRYSTAL WHITE MICA AGES FOR EROSION, EXHUMATION AND PROVENANCE STUDIES:RECENT SEDIMENTS FROM THE GANGA RIVER, NORTH INDIA1 CopelandP ,HarrisonTM .EpisodicrapidupliftintheHimalaya[J].Geology ,1990 ,18:35 4~ 35 7. 2 FrankW ,MillerCh ,GrassemannB .Ar/AragesofdetritalmicasandpalaeogeographicprovenanceofProterozoicclasticsedimentsintheHimalayas[J].10thHimalayan Karakorum TibetWorkshop[C],As…  相似文献   

3.
Shales of the ca. 3.0 Ga Buhwa Greenstone Belt, Zimbabwe, were derived from a compositionally diverse provenance whose ages, determined by ion probe analyses of detrital zircons in interbedded sandstones, range from 3.8 to 3.1 Ga. Geochemical data for the shales were previously interpreted to indicate that sediments had been derived from an intensely weathered source. REE concentrations in the shales were interpreted to suggest that the provenance was compositionally mixed, with components of felsic (tonalite and alkalic granitoid) and mafic rocks. Sm/Nd and Nd isotopic compositions of these rocks can be used to model initial Nd isotopic ratios at the time of sedimentation (εNdsed), as well as model crustal formation ages (TDM). The former, at the age of sedimentation, range from +0.6 to −10.8, consistent with a range of provenance ages. The latter range from 4.46 Ga to 2.99 Ga. The oldest crustal formation ages, up to 0.7 Ga older than known detrital components, are interpreted here to indicate that the Sm-Nd system of the sediments experienced open system behavior. The implied alteration would have included an increase in Sm/Nd by about 20-25 percent, probably in the form of preferential loss of Nd with respect to Sm. The Pb isotopic compositions of whole rock samples are quite radiogenic, with a range of 206Pb/204Pb from 25.5 to 154. An array of ten samples lies scattered about a line with a 207Pb/204Pb -206Pb/204Pb slope age of about 2.73 Ga. Five individual samples were sequentially leached to further test the timing and characteristics of this U-Th-Pb alteration event. These arrays of a whole rock, three leach steps, and a residue also form linear Pb-Pb arrays (one is more scattered) with ages ranging from 2260 ± 360 Ma to 2824 ± 170 Ma, suggesting that all samples experienced a latest Archean to earliest Proterozoic enrichment in U/Pb. This age range also may be the approximate age of Sm/Nd enrichment for the shales. All samples, both whole rocks and leached samples, lie grouped on a 208Pb/204Pb - 206Pb/204Pb diagram around a line with 232Th/238U = 3.5 (2.9 to 3.9). Because of the lack of large differences in the Th/U of the samples through large ranges of U/Pb, we interpret this consistency in Th/U to mean that the shales of the Buhwa belt experienced Pb loss, rather than U and Th gain. Circumstances that may be responsible for Pb loss in a sedimentary basin include loss of saline fluids during basin dewatering. Such an event would likely have been related to folding associated with the thrusting and magmatic intrusion of the adjacent Limpopo Belt, suggesting that uplift, dewatering, and geochemical and isotopic alteration can be genetically related.  相似文献   

4.
Sm–Nd (garnet), U–Pb (monazite) and Rb–Sr (biotite) ages from a composite migmatite sample (Damara orogen, Namibia) constrain the time of high‐grade regional metamorphism and the duration of regional metamorphic events. Sm–Nd garnet whole‐rock ages for a strongly restitic melanosome and an adjacent intrusive leucosome yield ages of 534±5, 528±11 and 539±8 Ma. These results provide substantial evidence for pre‐500 Ma Pan‐African regional metamorphism and melting for this segment of the orogen. Other parts of the migmatite yield younger Sm–Nd ages of 488±9 Ma for melanosome and 496±10, 492±5 and 511±16 Ma for the corresponding leucosomes. Garnet from one xenolith from the leucosomes yields an age of 497±2 Ma. Major element compostions of garnet are different in terms of absolute abundances of pyrope and spessartine components, but the flat shape of the elemental patterns suggests late‐stage retrograde equilibration. Rare earth element compositions of the garnet from the different layers are similar except for garnet from the intrusive leucosome suggesting that they grew in different environments. Monazite from the leucosomes is reversely discordant and records 207Pb/235U ages between 536 and 529 Ma, indicating that this monazite represents incorporated residual material from the first melting event. Monazite from the mesosome MES 2 and the melanosome MEL 3 gives 207Pb/235U ages of 523 and 526 Ma, and 529 and 531 Ma, respectively, which probably indicates another thermal event. Previously published 207Pb/235U monazite data give ages between 525 and 521 Ma for composite migmatites, and 521 and 518 Ma for monazite from neosomes. Monazite from granitic to granodioritic veins indicates another thermal event at 507–505 Ma. These ages are also recorded in 207Pb/235U monazite data of 508 Ma from the metasediment MET 1 from the migmatite and also in the Sm–Nd garnet ages obtained in this study. Taken together, these ages indicate that high‐grade metamorphism started at c. 535 Ma (or earlier) and was followed by thermal events at c. 520 Ma and c. 505 Ma. The latter event is probably connected with the intrusion of a large igneous body (Donkerhoek granite) for which so far only imprecise Rb–Sr whole‐rock data of 520±15 Ma are available. Rb–Sr biotite ages from the different layers of the migmatite are 488, 469 and 473 Ma. These different ages indicate late‐stage disturbance of the Rb–Sr isotopic system on the sub‐sample scale. Nevertheless, these ages are close to the youngest Sm–Nd garnet ages, indicating rapid cooling rates between 13 and 20°C Ma?1 and fast uplift of this segment of the crust. Similar Sm–Nd garnet and U–Pb monazite ages suggest that the closure temperatures for both isotopic systems are not very different in this case and are probably similar or higher than the previously estimated peak metamorphic temperatures of 730±30°C. The preservation of restitic monazite in leucosomes indicates that dissolution of monazite in felsic water‐undersaturated peraluminous melts can be sluggish. This study shows that geochronological data from migmatites can record polymetamorphic episodes in high‐grade terranes that often contain cryptic evidence for the nature and timing of early metamorphic events.  相似文献   

5.
A geochronological investigation of two rocks with an eclogitic assemblage (omphacite-garnet-quartz-rutile) from the High Himalaya using the Sm/Nd, Rb/Sr, U/Pb and Ar/Ar methods is presented here. The first three methods outline a cooling history from the time of peak metamorphism at 49±6 Ma recorded by Sm/Nd in garnet-clinopyroxene to the closure of Rb/Sr in phengite at 43±1 Ma and U/Pb in rutile at 39–40 Ma. The Sm/Nd isotopic system was fully equilibrated during eclogitization and has not been disturbed since; its mineral ages may date the peak metamorphic conditions (650±50°C at 13–18 kbar: Pognante and Spencer, 1991). The Ar/Ar data reveal the presence of substantial amounts of excess 40Ar in hornblende, and yield a statistically acceptable but geologically meaningless phengite plateau age of 81.4±0.2 Ma, inconsistent with Sm/Nd, Rb/Sr and U/Pb. This questions the use of such a chronometer for the dating of high-pressure assemblages. The results imply a Late Palaeocene or Early Eocene subduction of the northern Indian plate margin in NW Himalaya. The fact that eclogites are restricted to NW Himalaya may be the result of a peculiar p-T-t path associated with a high convergence rate during the first indentation, in contrast to the later and slow subduction in Central and Eastern Himalaya.  相似文献   

6.
Within the Namche Barwa area, SE Tibet, the Indus–Yarlung suture zone separates the Lhasa terrain in the north from the Himalayan unit including the Tethyan (sedimentary and volcanic rocks), Dongjiu (greenschist to lower amphibolite facies), Namche Barwa (granulite facies), Pei (amphibolite facies) and Laiguo (greenschist facies) sequences in the south. Two fault systems were distinguished in the Namche Barwa area. The former includes a top-down-to-the-north normal fault in the north and two top-to-the-south thrust zones in the south named as Upper and Lower Thrusts, respectively. The Namche Barwa and Pei sequences were exhumed southwards from beneath the Dongjiu sequence by these faults. Thus, the fault system is regarded as a southward extrusion structure. Subsequently, the exposed Dongjiu, Namche Barwa, Pei and Laiguo sequences were displaced northwards onto the Lhasa terrain by the top-to-the-north fault system, thus, marking it as northward indentation structure. Monazite TIMS U–Pb dating demonstrates that the normal fault and the Lower Thrust from the southward extrusion system were probably active at ~ 6 Ma and ~ 10 Ma, respectively. Zircon U–Pb SHRIMP and phlogopite K–Ar ages further suggest that the Upper Thrust was active between 6.2 ± 0.2 Ma and 5.5 ± 0.2 Ma. The northward indentation structures within the core portion of the eastern Himalayan syntaxis were perhaps active between 3.0 Ma and 1.5 Ma, as inferred by published zircon U–Pb SHRIMP and hornblende Ar–Ar ages. The monazite from upper portions of the Pei sequence dated by U–Pb TIMS indicates that the precursor sediments of this sequence were derived from Proterozoic source regions. Nd isotopic data further suggest that all the metamorphic rocks within eastern Himalaya (εNd = ? 13 to ? 19) correlate closely with those from the Greater Himalayan Sequences, whereas the western Himalayan syntaxis is mainly comprised of Lesser Himalayan Sequences. The two indented corners of the Himalaya are, thus, different.  相似文献   

7.
Nd model ages using depleted mantle (TDM) values for the sedimentary rocks in the Inner Zone of the SW Japan and western area of Tanakura Tectonic Line in the NE Japan allow classification into five categories: 2.6–2.45, 2.3–2.05, 1.9–1.55, 1.45–1.25, and 1.2–0.85 Ga. The provenance of each terrane/belt/district is interpreted on the basis of the TDMs, 147Sm / 144Nd vs. 143Nd / 144Nd relation, Nd isotopic evolution of the source rocks in East China and U–Pb zircon ages. The provenance of 2.6–1.8 Ga rocks, which are reported from Hida–Oki and Renge belts and Kamiaso conglomerates, is inferred to be the Sino–Korean Craton (SKC). The 2.3–1.55 Ga rocks, mostly from Ryoke, Mino and Ashio belts, are originally related with the SKC and/or Yangtze Craton (YC). The provenances of the sedimentary rocks with 1.45–0.85 Ga, from the Suo belt, Higo and some districts in the Mino and Ashio belts, are different from the SKC and YC. Especially, the Higo with 1.2–0.85 Ga is considered as a fragment of collision zone in East China. Akiyoshi belt probably belongs to the youngest age category of 1.2–0.85 Ga.Some metasedimentary rocks from the Ryoke belt have extremely high 147Sm / 144Nd and 143Nd / 144Nd ratios, whose main components are probably derived from mafic igneous rocks within the Ryoke belt itself and from the adjacent Tamba belt.  相似文献   

8.
TWO EPISODES OF MONAZITE CRYSTALLIZATION DURING METAMORPHISM AND CRUSTAL MELTING IN THE EVEREST REGION OF THE NEPALESE HIMALAYA  相似文献   

9.
Clastic sedimentary rocks, deposited on eastern North America in response to the Taconian Orogeny, commonly have Sm/Nd isotope relationships indicating substantial isotope disturbance near or subsequent to the time of sedimentation that may be associated with severe depletion in light rare earth elements (LREE). Affected units [Normanskill Formation (Austin Glen and Pawlet Members), Frankfort Formation and Perry Mountain Formation] are widely separated both geographically (western New York to western Maine) and stratigraphically (Middle Ordovician to Silurian). A model is proposed for the most likely explanation of the observed REE and Sm/Nd isotope relationships involving a two‐stage process. In the first stage, REE are redistributed on a mineralogical scale (dissolution/precipitation on a sample scale) often with the involvement of REE‐enriched trace phases such as apatite and monazite. This stage typically takes place during diagenesis but may also take place later during metamorphism and/or recent weathering, and results in isotope re‐equilibration on a sample scale. The second stage occurs when one or more of these phases is redissolved and REE are transported on large advective scales. Where LREE‐enriched phases are involved, this gives rise to LREE depletion in whole rocks. The timing of this second stage cannot be constrained from Sm/Nd isotope data and may take place at any time subsequent to the isotope re‐equilibration. Such complex histories of REE redistribution may result in serious errors in estimating Nd model ages but not in estimating the Nd isotope composition at the age of sedimentation. Thus, Sm/Nd ratios even of unmetamorphosed sedimentary rocks have to be carefully evaluated before the calculation of depleted mantle model ages for the provenance.  相似文献   

10.
Within the Belomorian eclogite province, near Gridino Village, rocks of different compositions (tonalite-trondhjemite-granodioritic gneisses, granites, mafic and ultramafic rocks) were metamorphosed. The metamorphism included subsidence with increasing pressure and temperature, an eclogite stage, decompression in the granulitic facies, and a retrograde stage in the amphibolitic facies. We attempted to characterize the succession and to date igneous and metamorphic events in the evolution of the Gridino eclogite association. For this purpose, we conducted the following studies: U–Pb isotope dating of zircon (conventional and SHRIMP II methods) from gneisses, a mafic dike, and a high-pressure granitic leucosome; U–Pb dating of rutile from mafic dikes; 40Ar/39Ar dating of amphibole and mica; and Sm–Nd studies of rocks and minerals. The Sm–Nd model ages of felsic (2.9–3.1 Ga) and mafic (3.0–3.4 Ga) rocks from the Gridino eclogite association and individual magmatic zircon grains with an age of ca. 3.0 Ga indicate the Mesoarchean age of the metamorphic-rock protoliths. The most reliable result is the upper age bound of eclogitic metamorphism (2.71 Ga), which reflects the time of the posteclogitic decompression melting of eclogitized rocks under high-pressure retrograde granulitic metamorphism. The mafic dikes formed from 2.82 Ga to 2.72 Ga, most probably, at 2.82 Ga, in accordance with the crystallization age of magmatic zircon from metagabbro. Superimposed amphibolitic metamorphism and the “final” exhumation of metamorphic complexes at 2.0–1.9 Ga are associated with the later Svecofennian tectonometamorphic stage. Successive cooling of the metamorphic associations to 300 °C at 1.9–1.7 Ga is shown by U–Pb rutile dating and 40Ar/39Ar mica dating.  相似文献   

11.
扬子地块东南缘沉积岩的Nd同位素研究   总被引:16,自引:1,他引:15  
周泰禧  徐祥 《沉积学报》1995,13(3):39-45
扬子地块东南缘上溪群分布区及其周边沉积岩的Nd同位素研究结果,支持存在一条苏浙皖古生代裂陷槽(或江南深断裂)的观点。上溪群以北直至长江边所分布的震旦系-古生代的盖层沉积岩,其Nd模式年龄有两组,表明物源区不同。裂陷槽以北,沉积岩的物源区为Nd模式年龄约2.0~2.1Ga的扬子物源区;以南的沉积岩表现出明显的幔源物质混染,显示出元古代岩浆活动的影响,而上溪群分布区以南直到江绍断裂附近主要表现上溪物源区的影响,华夏地块古老基底岩石则无显著贡献。  相似文献   

12.
U–Pb isotopic data from the northern Monashee complex, one of the deepest structural exposures in the southern Canadian Cordillera, indicate that the age of metamorphism varies according to structural position in a 6 km thick section. This metamorphism resulted in an unusual sequence in which rocks with the lowest-grade mineral assemblage (kyanite–sillimanite–staurolite–muscovite) are underlain and overlain by higher-grade rocks. Xenotime and monazite U–Pb dates vary progressively from 64 Ma in the structurally highest rocks to 49 Ma in the deepest rocks. Discordant U–Pb ages from Proterozoic and Cretaceous monazite and titanite are used to interpret the thermal significance of the early Tertiary dates. The discordant analyses define linear arrays with lower intercepts that broadly overlap with early Tertiary, and the amount of discordance varies with structural level; it is least in the deeper rocks and greatest in higher rocks. Electron microprobe work showed that the monazite discordance in the deeper rocks resulted from Tertiary mineral overgrowth and recrystallization rather than Pb diffusion. We use previous studies of Pb diffusion and the fact that Proterozoic monazite and titanite suffered only negligible to moderate amounts of diffusive Pb loss to contend that elevated temperatures (c. 600–650 °C are inferred from pelitic mineral assemblages) existed in the deeper rocks for a short duration, perhaps a few million years. The downwards younging 64–49 Ma U–Pb dates are interpreted as closely reflecting xenotime and monazite growth ages rather than cooling ages or substantially reset ages based on the lack of Pb diffusion in monazite and the previously obtained 40Ar/39Ar data which suggest that rapid cooling occurred immediately after the U–Pb dates. In addition, growth ages are interpreted as thermal peak ages based on U–Pb dates from coeval kyanite-bearing leucosomes, the consistent nature of the U–Pb dates throughout the study area, and petrographic relationships which suggest that monazite grew before or during development of the syn-metamorphic foliation. These interpretations lead us to conclude that metamorphism was diachronous according to structural level, with higher rocks attaining peak temperatures and cooling rapidly while deeper rocks were heating towards a thermal peak that was attained a few million years later. This thermal scenario requires that higher rocks cannot have been the heat source for the deeper metamorphism, as was previously proposed.  相似文献   

13.
Liu Yongjiang    Ye Huiwen    Ge Xiaohong    Liu Junlai    Pan Hongxun    Chen Wen  WT  ”BX 《地学前缘》2000,(Z1)
LASER PROBE ~(40)Ar/ ~(39)Ar DATING OF MICAS ON THE DEFORMED ROCKS FROM ALTYN FAULT AND ITS TECTONIC IMPLICATIONS,WESTERN CHINAtheNationalNaturalScienceFundCommittee (NO .4 9772 157)  相似文献   

14.
S.M. Lev  J.K. Filer  P. Tomascak 《Earth》2008,86(1-4):1-14
Black shales from the southern Appalachian Basin and the southwest Welsh Basin have anomalous U–Pb and Nd model ages suggesting syn- and post-depositional resetting of the Sm–Nd and U–Pb isotopic systems. This alteration to the primary detrital signature of these two shale sequences is indicative of black shale diagenetic/depositional processes that obscure paleo-environmental and provenance information recorded prior to and during deposition. The trace element and isotopic signatures of these two shale sequences reveal a syn-/post-depositional history that is de-coupled from the coeval orogenic history of the region making it difficult to reconstruct the tectonic and oceanographic conditions present at the time of deposition.Both the Ordovivian Welsh Basin and the Devonian Appalachian Basin sequences host REE- and U-bearing diagenetic phosphate minerals that play a critical role in the whole rock REE and U budgets. In the Welsh Basin shales, early diagenetic apatite and a later monazite phase dominate the REE budget and cause the redistribution of REE early in the basin's history (ca. 460 Ma). This redistribution is recorded by the Sm–Nd system (450 ± 90 Ma) and the Nd model ages that are anomalously old by as much as 20% (TDM > 2.0 Ga). This early history is complicated by a Permo-Triassic fluid event affecting the whole rock U-budget and resetting the U–Pb isotopic system at 193 ± 45 Ma. The Appalachian Basin sequence appears to have a much less complicated history yet still records a significant disturbance in both the Sm–Nd isotopic system (392 ± 76 Ma) and the Pb isotopic system (340 ± 50 Ma) at about the time of deposition (ca. 365 Ma).These two sequences suggest a pattern of diagenetic disturbance common to black shales. These processes are unique to black shales and must be considered when interpreting provenance and paleo-environmental information from the black shale sequences. Although these rocks are susceptible to alteration, the alteration may provide extensive information on the post-depositional history of the basin while still retaining some primary depositional information. If black shale processes are considered during the interpretation of isotopic and trace element signatures from organic-rich shales, it may be possible to recover an extensive basin history.  相似文献   

15.
Some granites, granitoid dykes and volcanic rocks of the Southern Black Forest were dated by U–Pb techniques using zircon and monazite. An effusive rhyolite, which is interbedded in upper Visean sedimentary sequences of the Badenweiler-Lenzkirch zone, was dated at 340 ±2?Ma. This weakly metamorphic zone of supracrustal rocks borders high-grade gneiss terrains in the north and the south, which are intruded by a series of granitoid intrusions: the strongly sheared Schlächtenhaus granite is dated by monazite at 334±2?Ma and the hypothesis of a Devonian emplacement is therefore discarded. The emplacement of all other granites, crosscutting dykes and of an ignimbrite were all within analytical uncertainty: St. Blasien granite 333±2?Ma; Bärhalde granite 332±3?Ma; Albtal granite 334±3?Ma; and a porphyry dyke at Präg 332+2/-4?Ma. Deformation and thrusting of the basement units near the Badenweiler-Lenzkirch zone occurred after the emplacement of the Schlächtenhaus granite, but before the intrusion of the other granitoids, and may therefore be constrained to the time period unresolved between 334±2 and 333±2?Ma. The ignimbritic rhyolite of Scharfenstein was deposited in a caldera 333±3?Ma ago. This age coincides within error limits with published U–Pb monazite and Rb–Sr small slab ages of mimatitic gneisses, Ar–Ar hornblende ages of metabasites and Sm–Nd mineral isochron ages of eclogitic rocks in the underlying basement. This suggests that exhumation and cooling of this basement unit must have been active at rates of approximately 20?km and a few 100°C per million years. The silicic melts are interpreted to be of hybrid crust/mantle origin and their formation was most likely linked to these exhumation tectonics. A phase of mantle upwelling and heat advection into the crust is proposed to be the reason for this short-episodic magmatic pulse.  相似文献   

16.
《Earth》2006,74(1-2):1-72
The sediment archive, of material eroded from an active tectonic region and stored in adjacent basins, can provide a valuable record of hinterland tectonism especially when information in the source region itself is obscured by later metamorphism or removed by tectonism or erosion. Using the sediment record to document tectonism is a well established approach, but more recently there has been a burgeoning of the number of isotopic techniques which can be applied to detrital material, in particular single-grain analyses. Thus the scope for application of detrital studies to a number of different tectonic problems has widened considerably. In this review, the example of sediments eroded from the Himalayan orogen and preserved in the suture zone basin, foreland basin, remnant ocean basins and deep sea fans is used to illustrate the approach. Techniques as diverse as petrography, heavy mineral, XRF and Sr–Nd studies; single grain dating by Ar–Ar, U–Pb and fission track methodologies; and single grain Sm–Nd and Pb isotopic analyses, are described. The paper documents how the sediment record can be used to determine the thermal and tectonic evolution of the orogen, constrain mechanisms of continental deformation, exhumation rates and palaeodrainage.  相似文献   

17.
Sm—Nd模式年龄和等时线年龄的适用性与局限性   总被引:37,自引:2,他引:37       下载免费PDF全文
李献华 《地质科学》1996,31(1):97-104
陈江峰(1994)与杨晓松(1994)关于“二元混合体系的端元Sm-Nd同位素模式年龄计算方法”的讨论,提出了有关Sm-Nd同位素体系的基本原理和应用的一些问题。他们的讨论很有意义。近十年来,我国Sm-Nd同位素地球化学和地质年代学的研究和应用得到了迅速发展,并在岩石成因、壳幔演化、前寒武纪地质等研究中取得了大量的成果。同时,由于基础理论知识学习、实验技术推广、研究经费等方面诸多因素的限制,我国的Sm- Nd同位素研究和应用也出现了一些问题,这些问题在近年来发表的一些论文中不同程度地有所反映。本文在陈江峰和杨晓松讨论的基础上,着重对Sm-Nd模式年龄和等时线年龄的适用性和局限性及其有关问题进行讨论。  相似文献   

18.
《Gondwana Research》2009,15(4):624-643
The Higo Complex of west-central Kyushu, western Japan is a 25 km long body of metasedimentary and metabasic lithologies that increase in metamorphic grade from schist in the north to migmatitic granulite in the south, where granitoids are emplaced along the southern margin. The timing of granulite metamorphism has been extensively investigated and debated. Previously published Sm–Nd mineral isochrons for garnet-bearing metapelite yielded ca.220–280 Ma ages, suggesting high-grade equilibration older than the lower grade schist to the north, which yielded ca.180 Ma K–Ar muscovite ages. Ion and electron microprobe analyses on zircon have yielded detrital grains with rim ages of ca.250 Ma and ca.110 Ma. Electron microprobe ages from monazite and xenotime are consistently 110–130 Ma. Two models have been proposed: 1) high-grade metamorphism and tectonism at ca.115 Ma, with older ages attributed to inheritance; and 2) high-grade metamorphism at ca.250 Ma, with resetting of isotopic systems by contact metamorphism at ca.105 Ma during the intrusion of granodiorite. These models are evaluated through petrographic investigation and electron microprobe Th–U–total Pb dating of monazite in metapelitic migmatites and associated lithologies. In-situ investigation of monazite reveals growth and dissolution features associated with prograde and retrograde stages of progressive metamorphism and deformation. Monazite Th–U–Pb isochrons from metapelite, diatexite and late-deformational felsic dykes consistently yield ca.110–120 Ma ages. Earlier and later stages of monazite growth cannot be temporally resolved. The preservation of petrogenetic relationships, coupled with the low diffusion rate of Pb at < 900 °C in monazite, is strong evidence for timing high-temperature metamorphism and deformation at ca.115 Ma. Older ages from a variety of chronometers are attributed to isotopic disequilibrium between mineral phases and the preservation of inherited and detrital age components. Tentative support is given to tectonic models that correlate the Higo terrane with exotic terranes between the Inner and Outer tectonic Zones of southwest Japan, possibly derived from the active continental margin of the South China Block. These terranes were dismembered and translated northeastwards by transcurrent shearing and faulting from the beginning to the end of the Cretaceous Period.  相似文献   

19.
DIFFUSION MODELLING IN GARNET FROM TSO MORARI ECLOGITE AND IMPLICATIONS FOR EXHUMATION MODELS1 ChakrabortyS ,GangulyJ.ContribMineralPetrol,1992 ,111:74~ 86 . 2 ChemendaAI ,BurgJ P ,MattauerM .EarthPlanetSciLett ,2 0 0 0 ,174:397~ 40 9. 3 ChemendaAI ,MattauerM ,MalavieilleJ ,etal.EarthPlanetSciLett ,1995 ,132 :2 2 5~ 2 32 . 4 GirardM ,BussyF .TerraNostra ,1999,99/ 2 ,5 7~ 5 8. 5 GuillotS ,SigoyerdeJ ,LardeauxJM ,etal.Contr…  相似文献   

20.
本文对两个北秦岭丹凤群斜长角闪岩样品进行了Sm-Nd、Rb-Sr和40Ar/39Ar测年,发现其中受构造改造轻微的黑河丹凤群斜长角闪岩样品的角闪石40Ar/39Ar年龄与其Rb-Sr、Sm-Nd矿物等时线年龄接近,而遭受强烈构造剪切作用的蒲峪丹凤群斜长角闪(片)岩的角闪石40Ar/39Ar年龄则明显高于其Rb-Sr、Sm-Nd矿物等时线年龄,指示构造剪切作用对变质角闪石中过剩氩的引入有显著影响。在利用40Ar/39Ar进行造山带年代学研究时这一问题应引起注意  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号