首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
《Gondwana Research》2014,25(2):585-613
The Belomorian eclogite province was repeatedly affected by multiple deformation episodes and metamorphism under moderate to high pressure. Within the Gridino area, high pressure processes developed in a continental crust of tonalite–trondhjemite–granodiorite (TTG) affinity that contains mafic pods and dykes, in which products of these processes are most clearly evident. New petrological, geochemical and geochronological data on mafic and felsic rocks, including PT-estimates, mineral chemistry, bulk rock chemistries, REE composition of the rocks and zircons and U–Pb and Lu–Hf geochronology presented in the paper make it possible to reproduce the magmatic and high-grade metamorphic evolution in the study area. In the framework of the extremely long-lasting geologic history recorded in the Belomorian province (3–1.7 Ga), new geochronological data enabled us to define the succession of events that includes mafic dyke emplacement between 2.87 and 2.82 Ga and eclogite facies metamorphism of the mafic dykes between ~ 2.82 and ~ 2.72 Ga (most probably in the time span of 2.79–2.73 Ga). The clockwise PT path of the Gridino association crosses the granulite- and amphibolite-facies PT fields during the time period of 2.72 Ga to 2.64 Ga. A special aspect of this work concerns the superposed subisobaric heating (thermal impact) with an increase in the temperature to granulite facies conditions at 2.4 Ga. Later amphibolite facies metamorphism occurred at 2.0–1.9 Ga. Our detailed geochronological and petrological studies reveal a complicated Mesoarchaean–Palaeoproterozoic history that involved deep subduction of the continental crust and a succession of plume-related events.  相似文献   

2.
太华变质杂岩出露于华北克拉通中部造山带最南缘,整体呈近东西向展布。华山地区的太华变质杂岩区岩性复杂多样,保存了至少三个阶段的变质矿物组合。本文对其中的黑云斜长片麻岩和黑云二长片麻岩中的锆石,进行了详细的LA-ICP-MS U-Pb定年;对斜长角闪片麻岩中的变质角闪石,进行了常规40Ar/39Ar定年。定年结果表明:(1)黑云斜长片麻岩中的碎屑锆石记录了两期(~2.3Ga和~2.5Ga)明显的岩浆事件,变质锆石记录了一期(1.87~1.85Ga)变质事件;(2)黑云二长片麻岩中的岩浆锆石U-Pb年龄为2.33Ga和2.31Ga,变质锆石记录的变质年龄为1.96Ga;(3)两个斜长角闪片麻岩样品中,变质角闪石的40Ar/39Ar坪年龄和等时线年龄说明,该地区经历了一期~1.8Ga的变质热事件。这些数据说明,太华变质杂岩也记录了华北克拉通东部陆块与西部陆块之间的碰撞造山过程,不过比中部造山带其它变质杂岩区记录的时间更早,变质作用持续的时间也更长。这暗示了该地区在1.96~1.80Ga期间,经历了一次比较漫长而复杂的构造-变质演化过程。  相似文献   

3.
Archean processes of eclogitization in the Gridino metamorphic association (the Belomorian eclogite province) developed in mafic dykes, boudins, and acidic rocks of the Archean continental crusts. To determine the U-Pb age of the intrusion of the latest dykes, the geochronological samples were taken from the dyke of ferriferious metagabbro that cross-cuts the dyke of eclogitzed and granulitized olivine gabbronorite. The igneous zircons were dated by the SHRIMP II technique. The zircons showed a concordia age of 2846 ± 7 Ma, which is considered as the time of intrusion of a mafic melt. The younger low-thorium zircon rims of 2.78–2.81 Ga age around the igneous cores are typical formations that appeared under metamorphic conditions in equilibrium with a migmatite melt, and may characterize the time of formation of the granite leucosome under metamorphism, probably of eclogite facies.  相似文献   

4.
《Gondwana Research》2014,25(2):561-584
The aim of this paper is to review the main features of the Meso-Neoarchaean Belomorian eclogite province (BEP) in the northeastern Fennoscandian Shield, including regional and local geology, geochemistry, petrology and geochronology and to compare the Belomorian eclogites with Precambrian eclogites elsewhere. Two eclogite associations have been recognized within Belomorian TTG gneisses: (1) the subduction-type Salma association and (2) Gridino eclogitized mafic dykes. Protoliths of the Salma eclogites represent a sequence comprising gabbro, Fe–Ti gabbro and troctolites, formed at ~ 2.9 Ga in a slow-spreading ridge setting (like the Southwest Indian Ridge). The main subduction and eclogite-facies events occurred between ~ 2.87 and ~ 2.82 Ga. Injection of mafic magma into an active continental margin setting, recorded by the Gridino dyke swarm, is attributed to subduction of a mid-ocean ridge, commencing at 2.87 Ga. Crustal delamination of the active margin and subsequent involvement of the lower crust in subduction between 2.87 and 2.82 Ga ago caused high-pressure metamorphism of the Gridino dykes, culminating in eclogite-facies conditions between 2.82 and 2.78 Ga and accompanying amalgamation of the Karelia, Kola and Khetolamba blocks and formation of the Mesoarchaean Belomorian accretionary–collisional orogen. The clockwise PT paths of the Salma and Gridino associations cross the granulite-facies PT field. Detailed metamorphic studies indicate a complicated post-eclogite history with thermal events and fluid infiltration, related to plume activity at 2.72–2.70, ~ 2.4 and ~ 1.9 Ga. The eclogite assemblages were exhumed to mid-to-lower crustal depths at ~ 1.7 Ga, while erosion or younger tectonic events were responsible for final exhumation to the surface. Comparison of PTt paths and data for peak metamorphic parameters demonstrates the general similarity of the Archaean and Palaeoproterozoic eclogites worldwide and their association with anomalously “hot” environments. The occurrence of high-T conditions during eclogite-facies metamorphism can be attributed to either subduction of a mid-ocean ridge (Archaean, BEP) or to interaction with mantle plumes (Proterozoic).  相似文献   

5.
A camptonite dike swarm (Agardag alkali-basalt complex) in the western part of the Sangilen Upland abounds in mantle xenoliths. Mineralogical, petrographic, and petrochemical studies show that the dikes are composed of lamprophyres of two groups, basic and ultrabasic. Ar/Ar dating of amphibole and phlogopite megacrysts gives an intrusion age for the dikes of 443.0 ± 1.3 Ma. 206Pb/238U dating of zircon from a glomeroporphyritic intergrowth in camptonite from one of the dikes yielded a core age of 489.0 ± 5.4 Ma. This corresponds to the time of formation of the Chzhargalanta granite–leucogranite complex (489.4 ± 2.6 Ma). The 206Pb/238U age of the zircon rim is 444.0 ± 7.5 Ma. The ages obtained by Ar/Ar dating of amphibole and biotite megacrysts and by U/Pb dating of the magmatic rim of zircon crystal from the camptonite coincide within the dating error, which indicates that the camptonite dikes formed in the Late Ordovician. These dikes are the oldest-known example of mantle-derived xenoliths in mafic volcanic rocks from an off-craton setting. These are samples of the Upper Ordovician lithospheric mantle.  相似文献   

6.
An integrated geological study of the tectono-metamorphic evolution of the metamorphic complex of Beloretzk (MCB) which is part of the eastern Bashkirian mega-anticlinorium (BMA), SW Urals, Russia shows that the main lithological units are Neoproterozoic (Riphean and Vendian age) siliciclastic to carbonate successions. Granitic, syenitic and mafic intrusions together with subaerial equivalents comprise the Neo- and Mesoproterozoic magmatic rocks. The metamorphic grade ranges from diagenetic and very low grade in the western BMA to high-grade in the MCB. The N–S trending Zuratkul fault marks the change in metamorphic grade and structural evolution between the central and eastern BMA. Structural data, Pb/Pb-single zircon ages, 40Ar/39Ar cooling ages and the provenance signature of Riphean and Vendian siliciclastic rocks in the western BMA give evidence of Mesoproterozoic (Grenvillian) rifting, deformation and eclogite-facies metamorphism in the MCB and a Neoproterozoic (Cadomian) orogenic event in the SW Urals. Three pre-Ordovician deformation phases can be identified in the MCB. The first SSE-vergent, isoclinal folding phase (D1) is younger than the intrusion of mafic dykes (Pb/Pb-single zircon: 1350 Ma) and older than the eclogite-facies metamorphism. High P/low T eclogite-facies metamorphism is bracketed by D1 and the intrusion of the Achmerovo granite (Pb/Pb-single zircon: ≤970 Ma). An extensional, sinistral, top-down-to-NW directed shearing (D2) is correlated with the first exhumation of the MCB. E-vergent folding and thrusting (D3) occurred at retrograde greenschist-facies metamorphic conditions. The tremolite 40Ar/39Ar cooling age (718±5 Ma) of amphibolitic eclogite and muscovite 40Ar/39Ar cooling ages (about 550 Ma) of mica schists indicate that a maximum temperature of 500±50 °C was not reached during the Neoproterozoic orogeny. The style and timing of the Neoproterozoic orogeny show similarities to the Cadomian-aged Timan Range NW of the Polar Urals. Geochronological and thermochronological data together with the abrupt change in structural style and metamorphism east of the Zuratkul fault, suggest that the MCB is exotic with respect to the SE-margin of the East European Platform. Thus, the MCB is named the ‘Beloretzk Terrane’. Recognition of the ‘Beloretzk Terrane’ and the Neoproterozoic orogeny at the eastern margin of Baltica has important implications for Neoproterozoic plate reconstruction and suggests that the eastern margin of Baltica might have lain close to the Avalonian–Cadomian belt.  相似文献   

7.
Relationships between reference mafic dikes and deformations in the Gridino zone, Belomorian province, Fennoscandian Shield, make it possible to subdivide the deformations into three groups: pre-dike, synmagmatic, and post-dike. The Neoarchaean eclogite-bearing mélange was formed by disintegration of large eclogite slices in the course of ductile flow, which was associated with synkinematic granitoid magmatism and metamorphism varying from the granulite to amphibolite facies. Exotic blocks, including those of eclogites, are distributed in the TTG gneisses as layers and lenses, whose thicknesses range from a few to a few hundred metres and which are conformable with the foliation. Ductile flow brought the rock complexes to the depth level where brittle–ductile deformations were possible. As a result, certain parts of the mélange were deformed in a more rigid setting. A number of mafic dike swarms were emplaced into relatively cold rocks in an extensional environment in the earliest Palaeoproterozoic. The dikes cut across all earlier structures and are thus an important benchmark for distinguishing Neoarchaean and Palaeoproterozoic processes. Post-dike (~1.9 Ga) tectonic activity was associated with local deformations and discrete metamorphic retrogression to amphibolite facies. None of them significantly affected the pre-existing regional structure.  相似文献   

8.
This paper addresses the relationships between relic amphibole-eclogite facies (AE) eclogites and their host units, Archaean amphibolites, enveloped by Archaean tonalite–trondhjemite–granodiorite (TTG) gneisses, in the Kuru-Vaara study area in the northern Belomorian Province. According to observational constraints, the crystallization of the relic peak omphacite + Mg-garnet ± kyanite assemblage and the subsequent replacement of omphacite by clinopyroxene–plagioclase symplectite occurred before the earliest deformational, metamorphic, and migmatization events that are recorded in the amphibolites. The amphibolites and their TTG hosts have a shared deformational and metamorphic history that is composed of the Archaean and Palaeoproterozoic periods. This history favours the conclusion that the AE metamorphism recorded in the relic eclogites within the amphibolites occurred during the Mesoarchaean to Neoarchaean periods. The deformation and metamorphism of the amphibolite facies of the second period resulted from the Lapland–Kola collisional orogeny at 1.91–1.93 Ga, which led to eclogite–high-pressure granulite (E–HPG) facies conditions in the lowermost portions of the over-thickened crust in Belomorian Province (the southwestern foreland of the Lapland–Kola collisional orogen). The Palaeoproterozoic E–HPG overprint was reported from the Palaeoproterozoic Gridino mafic dikes. Although the ages of the oldest low Th/U zircons are close to the time of the Lapland–Kola collision, the low Th/U 1.9–1.8 Ga zircons reflect a zircon response to regional fluid infiltration in the eclogites during slow exhumation following the Lapland–Kola orogeny and do not record any metamorphic event. Contrary to the Palaeoproterozoic E–HPG overprint, the areal occurrence of the 2.7–2.8 Ga AE eclogites with mid-ocean ridge basalt-like chemistry and their paragenetic link with the TTG gneisses suggest a tectonic regime that involves subduction. This research favours concepts suggesting that the modern-style plate tectonics has operated in some places, at least since the late Mesoarchaean.  相似文献   

9.
黄陵野马洞基性岩脉中锆石的U-Pb年龄和Hf同位素组成   总被引:1,自引:0,他引:1  
采用激光剥蚀-等离子质谱(LA-ICP-MS)分析技术测定野马洞基性岩脉中锆石的U-Pb年龄和Hf同位素组成,以探讨黄陵地区TTG片麻岩原岩的形成及变质时间、是否存在比崆岭群更古老的地壳等问题。野马洞辉绿岩脉(1850 Ma)侵入TTG片麻岩,并从TTG片麻岩中捕获了大量捕掳晶锆石。捕掳晶锆石岩浆结晶核部的U-Pb年龄分别为2842 Ma、2900 Ma和2949 Ma,指示TTG花岗岩体为复式岩体,其至少经历了2949 Ma、2900 Ma和2842 Ma三期岩浆作用。捕掳晶锆石变质边部的U-Pb年龄为2557 Ma,指示TTG花岗岩体转变为TTG片麻岩,是"水月寺运动"及其构造热事件共同作用的结果,其变形变质的时间为2557~2511 Ma。捕掳晶锆石的εHf(t)为-9.85~0.89、平均值为-4.07,亏损地幔模式年龄TDM为3.6~3.2 Ga,指示黄陵地区存在比崆岭群(3.2 Ga)更古老的陆壳。  相似文献   

10.
The Kurtoğlu metamorphic complex, that forms part of the pre-Liassic basement of the Sakarya zone in northern Turkey, consists of at least two tectonic units. Blueschist-facies rocks of unknown metamorphic age in the southern part of the complex are tectonically overlain by Variscan low-pressure high-temperature metamorphic rocks. The latter comprise mica schists and fine-grained gneisses, cut by metaleucogranitic dikes, as well as migmatitic biotite gneisses and subordinate amphibolite intercalations. Structural data indicate that metamorphism and penetrative deformation occurred after dyke intrusion. Peak metamorphic conditions of the mica schists, fine-grained gneisses and metaleucogranites are estimated to ∼650°C and ∼0.4 GPa, based on phase relationships in the system NCKFMASH, Fe–Mg partitioning between garnet and biotite as well as garnet-aluminosilicate-quartz-plagioclase (GASP) and garnet-plagioclase-biotite-quartz (GBPQ) barometry. Peak temperatures of the migmatitic biotite gneisses and amphibolite intercalations are not well constrained but might have been significantly higher (690–740°C), as suggested from hornblende-plagioclase thermometry. 40Ar–39Ar incremental dating on muscovite and biotite fractions from the mica schists and fine-grained gneisses yielded plateau ages of ∼323 Ma. Significantly older model ages of ∼329 and ∼337 Ma were obtained on muscovite fractions from two metaleucogranite samples. These fractions contain both relict igneous and newly formed metamorphic muscovite.  相似文献   

11.
Although eclogites in the Belomorian Province have been regarded as Archean in age and among the oldest in the world, there are also multiple studies that have proposed a Paleoproterozoic age. Here, we present new data for the Gridino‐type eclogites, which occur as boudins and metamorphosed dykes within tonalite–trondhjemite–granodiorite gneisses. Zircon from these eclogites has core and rim structures. The cores display high Th/U ratios (0.18–0.45), negative Eu anomalies and strong enrichment in HREE, and have Neoarchean U–Pb ages of c. 2.70 Ga; they are interpreted to be magmatic in origin. Zircon cores have δ18O of 5.64–6.07‰ suggesting the possibility of crystallization from evolved mantle‐derived magmas. In contrast, the rims, which include the eclogite facies minerals omphacite and garnet, are characterized by low Th/U ratios (<0.035) and flat HREE patterns, and yield U–Pb ages of c. 1.90 Ga; they are interpreted to be metamorphic in origin. Zircon rims have elevated δ18O of 6.23–6.80‰, which was acquired during eclogite facies metamorphism. Based on petrography and phase equilibria modelling, we recognize a prograde epidote amphibolite facies mineral assemblage, the peak eclogite facies mineral assemblage and a retrograde high‐P amphibolite facies mineral assemblage. The peak metamorphic conditions of 695–755°C at >18 kbar for the Gridino‐type eclogites suggest an apparent thermal gradient of <39–42°C/kbar for the Lapland–Kola collisional orogeny.  相似文献   

12.
The North Qinling Block (NQB) is an important segment of the Qinling Orogen in Central China. Here we report the results from SIMS geochronology and oxygen isotopes, as well as LA-MC-ICPMS Hf isotopic analyses on zircon grains from a suite of metamorphic rocks (felsic gneisses, garnet plagioclase amphibolites, and retrograde eclogite dikes) in the Qinling Group of the NQB. The age data show that these rocks underwent at least two episodes of metamorphism with the peak at 483–501 Ma, followed by 454–470 Ma retrograde metamorphism. These results are generally coeval with the periods of 500–480 Ma for peak metamorphism and 460–420 Ma for retrograde metamorphism previously obtained from the HP/UHP metamorphic rocks of the NQB. During the prograde and retrograde metamorphism, widespread fluid and melt circulation within the block has been identified from the geochemical features of the metamorphic zircons. The fluids that circulated in the felsic gneisses and retrograde eclogite dikes originated from the dehydration of altered oceanic basalts as inferred from the exceedingly low Th/U ratios, positive εHf(t) (> 5) and extremely δ18O (10.01–13.91‰) values in metamorphic zircons. In contrast, the melt involved in the formation of garnet plagioclase amphibolites appears to have been derived from continental sediments interlayered with the oceanic basalts since zircons crystallized during the peak and retrograde metamorphism show typical magmatic features with high U and Th contents and Th/U ratios and enriched Hf (εHf(t) =  5.42 to − 0.18) and oxygen isotope composition (δ18O around 8‰). Geochronological and geochemical features of the magmatic cores of the clear core-rim textured zircons demonstrate that the protoliths of the gneisses were intermediate-acid volcanic rocks erupted before Neoproterozoic (800 Ma), which is further supported by the intrusion of basaltic magma of asthenospheric origin as represented by protoliths of retrograde eclogite dikes, with the oldest magmatic zircon formed at 789 Ma. The protoliths of garnet plagioclase amphibolites appear to be altered oceanic basalts but had been significantly affected by the melt during the metamorphism. Combined with the previous studies, the Qinling Group experienced overall subduction in the Early Paleozoic. The NQB as represented by the Qinling Group was most likely a discrete micro-block in the Neoproterozoic, and underwent deep subduction in the Cambrian (483–501 Ma) and exhumation in Ordovician (454–470 Ma). We propose that the NQB preserves a complete cycle of tectonic evolution of an orogen from an oceanic basin spreading, and micro-continent formation to deep subduction and exhumation.  相似文献   

13.
We report field relationships, petrography and isotopic ages from two superposed basement units of the Kabul Block, the so called Lower Sherdarwaza and Upper Welayati formations. The Sherdarwaza Formation is represented mostly by migmatites and gneisses that are derived from pelitic and psammitic lithologies with lenses and layers of mafic and carbonate rocks. Several bodies of orthogneisses are also exposed in the Sherdarwaza Formation. The Upper Welayati Formation is characterized by micaschist, quartzite and amphibolites. SHRIMP U–Pb data on zircon from the orthogneiss in the Sherdarwaza Formation indicates a Neoarchean age of ca 2.5–2.8 Ga for their magmatic crystallization. The rocks exhibit granulite facies conditions of 5–7 kbar and 800 °C that are documented by the presence of orthopyroxene and Ti-rich biotite in the orthogneiss and by olivine and phlogopite in some calc-silicate rocks at contact with marble. A Paleoproterozoic age of ca. 1.85–1.80 Ga for this metamorphism was obtained using U-Pb SHRIMP dating on zircon and U-Th dating on monazite. Mineral textural relations also show a younger amphibolite facies metamorphism that is documented in both the Sherdarwaza and Welayati formations. This metamorphism occurred at relatively higher pressure conditions of up to 9 kbar at ca. 650 °C, compared to the granulite facies event. A Neoproterozoic age of ca 0.85–0.9 Ga, for this metamorphism is confirmed by Ar-Ar data on biotite and white mica as well as by U-Th data on monazite. By combining the presented results on the metamorphic petrology, geochronology and geochemistry, we conclude that: (1) The Kabul basement is a fragment of an Archean block (craton); (2) the ca. 1.85–1.8 and 0.9–0.85 Ga metamorphism marks an important orogenic events for the basement rocks of the Kabul Block which was stabilized during the early Precambrian; (3) the two metamorphic ages correlate well with global-scale orogenies related to the assembly of the Paleoproterozoic Columbia and Neoproterozoic Rodinia supercontinents; (4) based on metamorphic characteristics and ages, the Kabul basement rocks show an affinity to the Neoarchean rocks of the Tarim and/or South China cratons.  相似文献   

14.
在柴北缘的鱼卡-锡铁山-沙柳河一带,出露夹有榴辉岩透镜体的花岗质片麻岩(正片麻岩)和副片麻岩(片岩)。地球化学和Sm-Nd同位素数据显示副片麻岩(片岩)与正片麻岩具有类似的地球化学成分和一致的Nd模式年龄(1.88~2.18Ga),结合副片麻岩(片岩)局部包在正片麻岩中的野外关系,正片麻岩可能为副片麻岩(片岩)原地熔融作用的产物。U-Pb锆石测定表明熔融作用产生的正片麻岩的岩浆形成时代为952Ma。另外,这些夹榴辉岩的片麻岩(片岩)也与柴北缘北侧不夹榴辉岩的深变质基底片麻岩和中南祁连地块的变质基底片麻岩有相似Sm-Nd同位素特征和近一致Nd模式年龄(1.87~2.26Ga)。表明它们具有明显的亲缘关系,可能来源于具有古元古代晚期地壳形成年龄的同一变质基底。然而,与柴北缘北 侧和祁连地块的深变质基底岩石不同的是,这套含榴辉岩的片麻岩(片岩)明显遭受了早古生代变质作用的影响,正片麻岩锆石U-Pb测定获得的下交点年龄为478±44Ma,与柴北缘地区榴辉岩的变质锆石的年龄在误差范围内一致;而已在都兰地区副片麻岩锆石中柯石英包体的发现也证明了含榴辉岩的片麻岩(片岩)与榴辉岩一样同样经历了UHP变质作用。因此,我们认为柴北缘含榴辉岩的片麻岩虽然具有与相邻变质基底相似的早期演化历史,但在早古生代又与所夹的榴辉岩  相似文献   

15.
The paper presents data on high-grade silicate–carbonate rocks (calciphyres) from the Irkut block (Sharyzhalgai uplift, southwestern Siberian craton). Their origin and age were determined from the rock characteristics, U–Pb dating, REE content, and Hf isotope composition of zircon. The calciphyres occur both as independent section fragments and as interbeds within Paleoproterozoic garnet-bearing and high-alumina (cordierite- and sillimanite-bearing) gneisses. They were produced by metamorphism of terrigenous-carbonate sediments. The terrigenous sediments range in maturity from arenites and wackes to argillaceous rocks; this is consistent with the reconstruction of the sedimentary protoliths of paragneisses, which are predominant in the metasedimentary rocks. The petrogeochemical features of the calciphyres, their LREE enrichment relative to “pure” carbonate rocks, and a distinct Eu anomaly were inherited from the terrigenous component of calc-silicate sediments. The Nd model age (2.4–2.7 Ga) of the calciphyres and the value THf(DM-2st) = 2.5–3.0 Ga for zircon from these rocks indicate that carbonate accumulation was accompanied by the supply of terrigenous material, which formed during the erosion of Archean and Paleoproterozoic crust. Zircon from the calciphyres is similar to metamorphic zircon in REE patterns and Th/U ratios. It might have been of detrital origin and then recrystallized during high-temperature metamorphism. Terrigenous-silicate rocks were metamorphosed at ca. 1.87 Ga. This is close to the previous age estimates for the terrigenous rocks metamorphism (1.85–1.86 Ga) and the age of baddeleyite from apocarbonate metasomatic rocks (1.86 Ga).  相似文献   

16.
The geodynamic evolution of the early Paleozoic ultrahigh-pressure metamorphic belt in North Qaidam, western China, is controversial due to ambiguous interpretations concerning the nature and ages of the eclogitic protoliths. Within this framework, we present new LA-ICP-MS U–Pb zircon ages from eclogites and their country rock gneisses from the Xitieshan terrane, located in the central part of the North Qaidam UHP metamorphic belt. Xitieshan terrane contains clearly different protolith characteristics of eclogites and as such provides a natural laboratory to investigate the geodynamic evolution of the North Qaidam UHP metamorphic terrane. LA-ICP-MS U–Pb zircon dating of three phengite-bearing eclogites and two country rock gneiss samples from the Xitieshan terrane yielded 424–427 Ma and 917–920 Ma ages, respectively. The age of 424–427 Ma from eclogite probably reflects continental lithosphere subduction post-dating oceanic lithosphere subduction at ~ 440–460 Ma. The 0.91–0.92 Ga metamorphic ages from gneiss and associated metamorphic mineral assemblages are interpreted as evidence for the occurrence of a Grenville-age orogeny in the North Qaidam UHPM belt. Using internal microstructure, geochemistry and U–Pb ages of zircon in this study, combined with the petrological and geochemical investigations on the eclogites of previous literature’s data, three types of eclogitic protoliths are identified in the Xitieshan terrane i.e. 1) Subducted early Paleozoic oceanic crust (440–460 Ma), 2) Neoproterozoic oceanic crust material emplaced onto micro-continental fragments ahead of the main, early Paleozoic, collision event (440–420 Ma) and 3) Neoproterozoic mafic dikes intruded in continental fragments (rifted away from the former supercontinent Rodinia). These results demonstrate that the basement rocks of the North Qaidam terrane formed part of the former supercontinent Rodinia, attached to the Yangtze Craton and/or the Qinling microcontinent, and recorded a complex tectono-metamorphic evolution that involved Neoproterozoic and Early Paleozoic orogenies.  相似文献   

17.
We present results of study of mineral assemblages and PT-conditions of metamorphism of mafic garnet–two-pyroxene and two-pyroxene granulites in the Early Precambrian metamorphic complex of the Angara–Kan terrane as well as the U–Pb age and trace-element and Lu–Hf isotope compositions of zircon from these rocks and the zircon/garnet REE distribution coefficients. The temperatures of metamorphism of two-pyroxene granulites are estimated as 800–870 to ~ 900 °C. Mafic garnet–two-pyroxene granulites contain garnet coronas formed at 750–860 °C and 8–9.5 kbar. The formation of the garnet coronas proceeded probably at the retrograde stage during cooling and was controlled by the rock composition. The age (1.92–1.94 Ga) of zircon cores, which retain the REE pattern typical of magmatic zircon, can be taken as the minimum age of protolith for the mafic granulites. The metamorphic zircon generation in the mafic granulites is represented by multifaceted or soccerball crystals and rims depleted in Y, MREE, and HREE compared to the cores. The age of metamorphic zircon in the garnet–two-pyroxene (~ 1.77 Ga) and two-pyroxene granulites (~ 1.85 and 1.78 Ga) indicates two episodes of high-temperature metamorphism. The presence of one generation (1.77 Ga) of metamorphic zircon in the garnet–two-pyroxene granulites and, on the contrary, the predominance of 1.85 Ga zircon in the two-pyroxene granulites with single garnet grains suggest that the formation of the garnet coronas proceeded at the second stage of metamorphism. The agreement between the zircon/garnet HREE distribution coefficients and the experimentally determined values at 800 °C suggests the simultaneous formation of ~ 1.77 Ga metamorphic zircon and garnet. Zircon formation by dissolution/reprecipitation or recrystallization in a closed system without exchange with the rock matrix is confirmed by the close ranges of 176Hf/177Hf values for the core and rims. The positive εHf values (up to + 6.2) for the zircon cores suggest that the protolith of mafic granulites are derived from depleted-mantle source. The first stage of metamorphism of the mafic granulites and paragneisses of the Kan complex (1.85–1.89 Ga) ended with the formation of collisional granitoids (1.84 Ga). The second stage (~ 1.77 Ga) corresponds to the intrusion of the second phase of subalkalic leucogranites of the Taraka pluton and charnockites (1.73–1.75 Ga).  相似文献   

18.
The Orlica–?nie?nik complex (OSC) is a key geological element of the eastern Variscides and mainly consists of amphibolite facies orthogneisses and metasedimentary rocks. Sporadic occurrences of eclogites and granulites record high‐pressure (HP) to ultrahigh‐pressure (UHP) metamorphic conditions. A multimethod geochronological approach (40Ar–39Ar, Rb–Sr, Sm–Nd, U–Pb) has been used to gain further insights into the polymetamorphic evolution of eclogites and associated country rocks. Special attention was given to the unresolved significance of a 370‐ to 360 Ma age group that was repeatedly described in previous studies. Efforts to verify the accuracy of c. 370 Ma K–Ar phengite and biotite dates reported for an eclogite and associated country‐rock gneiss from the location Nowa Wie? suggest that these dates are meaningless, due to contamination with extraneous Ar. Extraneous Ar is also considered to be responsible for a significantly older 40Ar–39Ar phengite date of c. 455 Ma for an eclogite from the location Wojtowka. Attempts to further substantiate the importance of 370–360 Ma zircon dates as an indicator for a melt‐forming high‐temperature (HT) episode did not provide evidence in support of anatectic processes at this time. Instead, SHRIMP U–Pb zircon dating of leucosomes and leucocratic veins within both orthogneisses and (U)HP granulites revealed two age populations (490–450 and 345–330 Ma respectively) that correspond to protolith ages of the magmatic precursors and late Variscan anatexis. The results of this study further underline the importance of Late Carboniferous metamorphic processes for the evolution of the OSC that comprise the waning stages of HP metamorphism and lower pressure HT overprinting with partial melting. Eclogites and their country rocks provided no chronometric evidence for an UHP and ultrahigh‐temperature episode at 387–360 Ma, as recently suggested for granulites from the OSC, based on Lu–Hf garnet ages ( Anczkiewicz et al., 2007 ).  相似文献   

19.
Coesite- and microdiamond- bearing ultra-high pressure (UHP) eclogites in the North Qinling terrane have been widely retrogressed to amphibolites. Previous geochronological studies on these UHP rocks mainly focused on the timing of peak eclogite facies metamorphism. The Kanfenggou UHP metamorphic domain is one of the best-preserved coesite-bearing eclogite occurrences in the North Qinling terrane. In this study, mafic amphibolites and host schists from this domain were collected for 40Ar/39Ar dating to constrain their retrograde evolution. Two generations of amphibole are recognized based on their mineral parageneses and 40Ar/39Ar ages. A first generation of amphibole from garnet amphibolites yielded irregularly-shaped age spectra with anomalously old apparent ages. Isochron ages of 484–473 Ma and initial 40Ar/36Ar ratios of 3695–774 are obtained from this generation of amphibole, indicating incorporation of excess argon. Second generation amphibole occurs in epidote amphibolites yielded flat age spectra with plateau ages of 464–462 Ma without evidence for excess argon. These ages suggest that the amphibolite-facies metamorphism has taken place as early as 484 Ma and lasted until 462 Ma for the North Qinling UHP metamorphic rocks. Phengite from the country-rock schists yielded 40Ar/39Ar plateau ages of 426–396 Ma, with higher phengite Si contents associated with the older the plateau ages. Based on our new 40Ar/39Ar ages and previous zircon UPb geochronological data, we construct a new detailed pressure-temperature-time (P-T-t) path illustrating the retrograde metamorphism and exhumation rate of the North Qinling eclogites and host schists. The P-T-t path suggests that these UHP metamorphic rocks experienced initial medium-to-high exhumation rates (ca. 8.7 mm/yr) during the Early Ordovician (489–484 Ma), which was mainly derived from buoyancy forces. Subsequently, the exhumation rate decreased gradually from ~0.8 to 0.3 mm/yr from 484 to 426 Ma, which was probably governed by extension and/or erosion.  相似文献   

20.
Qiu and Wijbrans [Qiu H.-N. and Wijbrans J. R. (2006) Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: new insights from 40Ar/39Ar dating by stepwise crushing. Geochim. Cosmochim. Acta70, 2354-2370] present three Ar-Ar age spectra for fluid inclusions in garnet from eclogite at Bixiling in the Dabie orogen, east-central China. These Paleozoic ages of 427 ± 20 to 444 ± 10 Ma are interpreted to represent the first formation of Dabie ultrahigh-pressure (UHP) eclogite and thus require subduction of Yangtze crust to have started much earlier than previously accepted. However, no petrographic evidence, such as mineral inclusions in the garnet relating to the particular metamorphic conditions, is presented to substantiate the proposed UHP metamorphic event. Because garnet growth is not uniquely responsible for UHP eclogite-facies metamorphism, a distinction between UHP and high-pressure (HP) metamorphic events must be made in the interpretation of geochronological results. Available data from mineral Sm-Nd and zircon U-Pb dating of eclogites from the same area have firmly established that the UHP eclogite-facies metamorphism took place at Triassic. Neither the age of UHP metamorphism nor the timing of continental collision is reliably constrained by their presented data; the fluid inclusions in garnet must contain inherited 40Ar from UHP eclogite precursor, without considerable resetting of the Ar-Ar isotopic system during Triassic UHP metamorphism. Therefore, their data are either meaningless, or at best viewed as the age of garnet growth by low-T/HP blueschist/eclogite-facies metamorphism of the UHP eclogite precursor during arc-continent collision in the early Paleozoic. Furthermore, it is critical for metamorphic geochronology to substantiate the timing of UHP metamorphic event by means of zircon U-Pb in situ dating on coesite-bearing domains of metamorphically grown zircon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号