首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ATMS卫星资料的同化应用及与AMSUA/MHS的比较研究   总被引:2,自引:0,他引:2  
针对数值预报中ATMS卫星资料的同化应用问题,在WRFDA框架下扩展了对ATMS卫星资料的同化功能,选择2012年7月第9号强台风“苏拉”开展初步研究,比较了NOAA18卫星上搭载微波传感器AMSUA/MHS的结果,分析卫星资料特征并试验资料同化应用对区域数值预报的影响。结果表明,ATMS探测质量优于或与AMSUA/MHS相当;同时由于ATMS具备的高空间覆盖率、增多的温度探测扫描点和湿度探测通道,可为资料同化系统提供更丰富的观测信息,有效改善数值预报效果。ATMS卫星资料的降噪处理是资料同化应用的一个初始环节,对于个例的研究结果表明,总体上可以降低噪声和提高资料的使用效果,但在湿度探测段低层通道存在经偏差订正后降噪处理结果误差有所增大的现象,说明针对处理方式还需要调整资料应用的多个环节。偏差订正前,卫星微波资料同化目前普遍使用的ATMS温度探测9通道和湿度探测22通道的卫星观测和模拟间存在较大偏差,是ATMS资料同化应用中需要注意的。此外,ATMS卫星探测与AMSUA/MHS探测通道设置较大的差别之一在于窗区通道,由此主要依据窗区通道探测的云检测方案在ATMS资料同化应用中需要加以调整和试验。   相似文献   

2.
FY-3A微波资料偏差订正及台风路径预报应用   总被引:2,自引:0,他引:2       下载免费PDF全文
我国极轨气象卫星FY-3A大大增强了对地球系统的综合探测能力,而偏差订正对卫星资料的应用非常必要。试验中FY-3A卫星微波资料的偏差订正方案是在Harris等的TOVS辐射资料偏差订正经验方法的基础上结合WRF-3DVAR系统发展的,偏差订正后微波资料各通道拟合结果基本位于主对角线上,大多数卫星观测数据与观测算子利用背景场计算的亮温值分布趋于合理,偏差得到很大程度的降低。偏差订正后,利用数值模式直接同化FY-3A气象卫星微波资料,通过对2008年和2009年的4个台风进行预报评估表明:同化FY-3A气象卫星资料后路径预报能力提高明显,尤其是36 h后路径预报结果;同化FY-3A气象卫星微波资料后台风预报路径误差平均降低20%,而只同化常规资料路径误差仅仅降低了4%。  相似文献   

3.
针对FY-3A星载微波垂直探测的同化应用,在扩展WRF3Dvar中FY-3A微波资料同化功能和快速辐射传输模式RTTOV微波云雨粒子散射RTTOV-SCATT模块接口的基础上,以2008年“凤凰”台风为研究对象,试验了FY-3A晴空条件下微波资料同化应用对数值预报的影响,并以此为控制试验,进一步讨论云检测方案和偏差订正调整对资料应用效果的作用。在WRF3Dvar同一框架下,使用RTTOV和CRTM云雨散射模块对云雨条件下FY-3A微波亮温进行模拟,分析云雨辐射效应对FY-3A微波温度和湿度传感器观测模拟的影响,并比较两个快速辐射传输模式结果间的异同。结果表明:本个例中FY-3A微波资料的使用对台风强度预报误差的减小比路径预报更为明显。云检测是影响卫星资料效能发挥的关键因素之一,3.0和5.0分别是MWTS和MWHS使用单窗区通道作为云检测时的合适阀值。使用FY-3A资料导出的偏差订正系数可以改善偏差订正结果,并提高预报准确率。此外,对于MWTS,通道1是受云雨粒子辐射效应影响最显著的通道,通道2同样具有明显影响。MWHS全部5个探测通道均受云雨粒子辐射效应影响,云雨条件下通道1、2的模拟偏差最大。RTTOV和CRTM的结果具有相同的统计特征,但CRTM云雨粒子辐射效应带来的偏差比RTTOV要大。   相似文献   

4.
利用ATOVS卫星辐射率资料和NCEP资料,采用中尺度数值模式WRF(V3.3)及其同化系统WRF-3DVar,设计了几组同化试验方案,对由0908号台风"莫拉克"导致的台湾南部2009年8月8—9日特大暴雨过程进行数值预报。结果表明,直接同化ATOVS辐射率资料对初始温度场、湿度场和风场均有较明显的改善,其中连续循环同化试验的改善效果最显著,同化后初始场增加了暴雨中心上空对流不稳定性,同时风场也表现出更强的低层辐合、高层辐散的中尺度特征。对比不同的辐射率资料发现,同化MHS资料对湿度场改进效果较好,同化AMSUA资料对温度场和风场改进效果较好,同时同化MHS和AMSUA资料改进效果整体上要好于前两者。在对降水预报定量检验中,同化试验的整体评分要高于控制试验,特别是降水临界值超过300 mm后评分提高最为显著。连续循环同化试验对这次台风暴雨的预报与实况最为接近。  相似文献   

5.
基于美国台风预报系统(Hurricane Weather Research and Forecasting,HWRF),研究了气团订正方法对GOES-13/15静止卫星成像仪资料同化效果的改进作用,选取了2012年6月23日生成于大西洋地区的台风Debby作为研究对象,通过一组对照试验比较了气团订正前后台风路径和初始场相关物理量的差异,结果表明:气团订正能显著减小GOES-13/15静止卫星成像仪资料的系统偏差,明显提高台风路径的预报效果,气团订正使得预报的台风路径与观测路径的平均偏差和标准差降低了30%左右,提前6 h实现了台风路径的正确转向。物理机制分析表明,经过气团订正后的静止卫星资料增强了位于台风东南侧副热带高压的强度,同时增加了台风东部的温度和比湿,在引导气流和大气温、湿场的共同作用下,台风预报路径实现了正确转向。   相似文献   

6.
根据微波湿度计MHS(Microwave Humidity Sounder)辐射率资料及GRAPES(Global/Regional Assimilation and Pr Ediction System)模式的特点,建立适用于MHS资料的偏差订正系统,该系统包括扫描和气团偏差订正,其中气团偏差订正考虑水汽资料的特性,采用三种不同预报因子组合的方案。偏差订正结果表明:MHS各个通道的扫描偏差表现出不同特征;偏差订正后观测残差基本服从均值为零的高斯分布,且观测残差的均值有所降低并随时间变化平稳;三种气团偏差订正方案都有明显的订正效果,其中方案三的订正效果最佳。  相似文献   

7.
肖弘毅  韩威  白一泓 《气象学报》2022,80(5):777-790
卫星微波仪器的辐射率资料,由于兼具卫星观测的全天空优势和微波观测的全天候特性,成为数值天气预报系统同化的日益重要的角色。微波成像仪作为被动微波辐射计的重要一类,其在数值预报中的应用潜力亟待进一步的检验和更充分的挖掘。针对全球水循环变化观测卫星GCOM-W上搭载的第2代先进微波扫描辐射计AMSR2的10个通道,建立了半径200 km的稀疏化方案;研发了包含9项检验的质量控制方案,对于污染低频通道观测的太阳耀光现象和无线电信号干扰等因素进行屏蔽;设计基于经典预报因子的偏差订正方案,对仪器系统偏差进行有效的校正;采用基于变分同化后验估计的观测误差统计,克服了观测误差难以准确估计的问题。通过以上方法,GCOM-W AMSR2共有10个通道辐射率资料在中国自主研发的全球/区域同化预报系统(CMA_GFS,原名为GRAPES_GFS)3.0版的四维变分同化系统(4DVar)中实现了直接同化应用。1个月的批量试验证明,同化GCOM-W AMSR2后,CMA_GFS湿度分析场得到了一定的改进,各量级定量降水中期预报评分有所提高,同时,GCOM-W AMSR2辐射率直接同化对CMA_GFS南半球和赤道地区预报有明显正贡献。研究证实AMSR2能够很好地弥补常规观测资料稀疏区的资料匮乏,发挥水汽敏感特性,改进湿度分析和降水预报的技巧。   相似文献   

8.
利用美国NCEP(National Centers for Environmental Prediction)发展的GSI(Gridpoint Statistical Interpolation)同化系统和GSM(Global Spectral Model)全球频谱预报模式作为循环同化系统,选用2017年第13号台风为研究个例,采用全空和晴空两种同化方案对AMSU-A(The Advanced Microwave Sounding Unit-A)辐射率观测开展同化对比试验,并对台风"天鸽"个例进行5 d预报,研究AMSU-A全空辐射率同化对台风天鸽发展过程预报的影响。结果表明,全空同化方案相比晴空同化方案预报的台风路径、台风中心气压以及台风最大风速预报误差更小;全空同化方案对台风"天鸽"生命周期的模拟更加准确,更接近中国气象局发布的台风天鸽最佳路径的最低气压,而晴空同化方案预报的台风发展较弱,无法预报出成熟期的台风强度;全空同化方案能够增加低层通道海上厚云覆盖区域辐射率资料同化量,增幅占AMSUA同化观测总量10%,从而改进海洋区域天气系统的热力场结构。  相似文献   

9.
风云三号卫星微波大气温度探测仪资料偏差订正方法研究   总被引:2,自引:0,他引:2  
为推动中国风云三号卫星(FY-3A/B)资料在区域数值天气预报中的同化研究,重点研究FY-3A的大气温度垂直探测仪(MWTS)资料的偏差订正问题。在欧洲中期天气预报中心(ECMWF)原全球TOVS辐射偏差订正方案的基础上,结合MWTS资料特征,建立适用于FY-3A卫星MWTS辐射率资料的偏差订正系统,并评价MWTS的偏差订正效果。结果表明:(1) 同纬度带和扫描位置的扫描偏差不同,各通道表现出不同的偏差特征,通道1扫描偏差较大(0~5 K),通道2、3、4较小(0~0.6 K);(2) 扫描偏差订正和气团偏差订正后的观测残差基本符合均值为零的正态分布;(3) 偏差订正后的观测残差标准方差有所降低,这将提高卫星资料对分析场的调整。证明了FY-3A MWTS资料质量较好,具有同化应用的潜力,开发的偏差订正系统可为FY-3A MWTS资料在区域模式中的同化应用提供条件。   相似文献   

10.
目前多数资料同化系统中对卫星的观测值都是采用晴空模拟,然而用晴空辐射传输模式模拟云区卫星微波通道的辐射值会造成与观测较大的偏差,导致大量云区卫星资料被直接抛弃无法进入同化系统,因而有必要改进云区卫星辐射亮温的模拟能力,进而提高同化系统中云区卫星资料利用率。以2010年台风“圆规”、“凡比亚”和“鲇鱼”为例,基于先进的微波扫描辐射计AMSR-E观测应用一维变分算法反演台风区域的云宏观参数,包括云液水含量廓线、云冰水含量廓线和雨水含量廓线;然后,以大气温度、湿度廓线及这些反演的云参数作为快速辐射传输模式CRTM的输入参数,模拟AMSR-E各通道的辐射亮温。通过对比晴空、有云两种情况下模拟亮度温度与实际观测亮度温度间的偏差,发现增加云参数作为辅助参数、启动辐射传输的散射模块,可以有效地改进台风外围云区卫星辐射亮温的模拟效果,大幅减少模拟亮温与观测亮温间的偏差,增加了同化进数值预报系统的卫星观测数据量。   相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号