首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
As a follow-up of a previously published article on the contribution of tropical waves, this study explores the evolution of the mid-tropospheric mesoscale cyclonic vortex(MV) during the formation of Typhoon Megi(2010) with a successful cloud-resolving simulation. It is found that the formation and intensification of the MV were related to the deep convection and subsequent stratiform precipitation, while the weakening of the MV was related to the shallow convection. Both the upward transport of vorticity related to the deep convection and the horizontal convergence associated with the stratiform precipitation contributed to the formation and intensification of the MV. Even though the latter was dominant, the former could not be ignored, especially in the early stage of the MV. The MV played dual roles in the formation of Megi. On the one hand, the formation and intensification of MV were primarily associated with the stratiform precipitation, which induced the low-level divergence inhibiting the spin-up of the near-surface cyclonic circulation. On the other hand, the coupled low-level cold core under the MV benefited the accumulation of the convective available potential energy(CAPE),which was favorable for the convective activity. A sensitivity experiment with the evaporative cooling turned off indicated that the development of the MV retarded the genesis process of Megi.  相似文献   

2.
超强台风威马逊快速增强及大尺度环流特征   总被引:2,自引:2,他引:0       下载免费PDF全文
超强台风威马逊(1409)登陆前发生快速增强现象,并成为我国有气象记录以来的最强登陆台风。该文利用中国气象局台风最佳路径资料、NCEP FNL分析资料、NOAA高分辨率逐日最优插值海表温度融合分析资料和天气学、动力学诊断分析方法,分析这次罕见的台风快速增强过程。研究结果表明:威马逊(1409)快速增强与持续有利背景场有关,如海温异常偏暖、低空急流和越赤道气流的增强、环境风垂直切变维持较小、高层维持较强流出气流等。尤其是台风下游大气处于热力不稳定,在其他有利因子的共同作用下,台风移入热力不稳定环境场中,有利于台风环流内部对流活动的增强和对流凝结潜热效率的增加,从而有利于台风强度增加。动能诊断方程表明:威马逊(1409)快速增强期间低层动能主要来源于风穿越等压线所作的功,这与台风环流内强降雨释放的对流凝结潜热驱动台风中心附近上升、外围下沉的垂直环流圈的加强紧密联系。  相似文献   

3.
The sensitivity of TC intensification and track to the initial inner-core structure on a β plane is investigated using a numerical model. The results show that the vortex with large inner-core winds(CVEX-EXP) experiences an earlier intensification than that with small inner-core winds(CCAVE-EXP), but they have nearly the same intensification rate after spin-up. In the early stage, the convective cells associated with surface heat flux are mainly confined within the inner-core region in CVEXEXP, whereas the vortex in CCAVE-EXP exhibits a considerably asymmetric structure with most of the convective vortices being initiated to the northeast in the outer-core region due to the β effect. The large inner-core inertial stability in CVEX-EXP can prompt a high efficiency in the conversion from convective heating to kinetic energy. In addition, much stronger straining deformation and PBL imbalance in the inner-core region outside the primary eyewall ensue during the initial development stage in CVEX-EXP than in CCAVE-EXP, which is conducive to the rapid axisymmetrization and early intensification in CVEX-EXP. The TC track in CVEX-EXP sustains a northwestward displacement throughout the integration, whereas the TC in CCAVE-EXP undergoes a northeastward recurvature when the asymmetric structure is dominant. Due to the enhanced asymmetric convection to the northeast of the TC center in CCAVE-EXP, a pair of secondary gyres embedded within the large-scale primary β gyres forms, which modulates the ventilation flow and thus steers the TC to move northeastward.  相似文献   

4.
薛霖  李英 《大气科学》2016,40(6):1107-1116
台风Meranti(1010)北上进入台湾海峡过程中迅速加强,登陆时达到其最大强度。利用中国气象局上海台风研究所最佳路径资料、NCEP GFS 0.5°×0.5°资料及中尺度数值模式WRF,诊断分析台湾地形诱生的中尺度系统对台风Meranti迅速加强的影响。研究发现,Meranti在进入海峡过程中,台湾地形在台湾海峡内诱生出中尺度涡旋,激发中尺度扰动波列,加强台风环流内的垂直运动。台风水汽、热量的收支诊断表明,强烈的上升运动使热量和水汽向上输送,加强台风内的积云对流和潜热释放,使其强度增强。计算台湾地形诱生中尺度系统与台风间的动能交换发现,中尺度系统通过加强垂直运动向台风中高层输送涡动动能,使中尺度系统动能向台风动能转换,为Meranti的迅速加强提供能源。敏感性试验表明,如果台湾地形不存在,中尺度系统消失,台风的水汽、热量的向上输送和积云对流明显减弱,Meranti则不能达到迅速加强标准。  相似文献   

5.
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly.  相似文献   

6.
台风“麦莎”的强度对台风前部飑线发展过程影响的研究   总被引:7,自引:4,他引:3  
对2005年8月5日16时(UTC,下同)至6日00时发生的一次台风前部飑线过程进行了数值模拟,分析表明:台前飑线在母体台风和副高之间的湿区生成。台风为这次台前飑线过程提供了有利的条件,包括强的低空急流输送充沛的水汽,强的不稳定环境产生大的对流有效位能以及强的地表辐合,使得初始的离散的对流单体组织发展形成台前飑线。成熟时期的台前飑线虽然比中纬度和热带飑线的变压强度小,但是具有更强的低层暖湿空气入流,中层的入流范围也更加宽广。敏感性试验结果表明:台风强度越强,其台前飑线的回波强度越强,移动速度更快,生命史也更长。强台风使得低空垂直风切变更大,有利于台前飑线的生成和发展,在台前飑线发展成熟后,低空垂直风切变强度减小,不利于台前飑线的维持,加之低空水汽输送的减少,使其逐渐趋向衰亡。  相似文献   

7.
A coupled air-sea model for tropical cyclones (TCs) is constructed by coupling the Pennsylvania State University/National Center for Atmospheric Research mesoscale model (MM5) with the Princeton Ocean Model.Four numerical simulations of tropical cyclone development have been conducted using different configurations of the coupled model on the f-plane.When coupled processes are excluded,a weak initial vortex spins up into a mature symmetric TC that strongly resembles those observed and simulated in prior research.The coupled model reproduces the reduction in sea temperature induced by the TC reasonably well,as well as changes in the minimum central pressure of the TC that result from negative atmosphere-ocean feedbacks.Asymmetric structures are successfully simulated under conditions of uniform environmental flow.The coupled ocean-atmosphere model is suitable for simulating air-sea interactions under TC conditions.The effects of the ocean on the track of the TC and changes in its intensity under uniform environmental flow are also investigated.TC intensity responds nonlinearly to sea surface temperature (SST).The TC intensification rate becomes smaller once the SST exceeds a certain threshold.Oceanic stratification also influences TC intensity,with stronger stratification responsible for a larger decrease in intensity.The value of oceanic enthalpy is small when the ocean is weakly stratified and large when the ocean is strongly stratified,demonstrating that the oceanic influence on TC intensity results not only from SST distributions but also from stratification.Air-sea interaction has only a slight influence on TC movement in this model.  相似文献   

8.
The evolution of a mesoscale convective system (MCS) that caused strong precipitation in the northern area of Dabie Mountain during 21-22 June 2008 is analyzed, along with the evolution of the associated meso-β-scale convective vortex (MCV). The mesoscale reanalysis data generated by the Local Analysis and Prediction System (LAPS) at a 3-km horizontal resolution and a 1-h time resolution during the South China Heavy Rainfall Experiment (SCHeREX) were utilized. The results show that two processes played key roles in the enhancement of convective instability. First, the mesoscale low-level jet strengthened and shifted eastward, leading to the convergence of warm-wet airflow and increasing convective instability at middle and low levels. Second, the warm-wet airflow interacted with the cold airflow from the north, causing increased vertical vorticity in the vicinity of steeply sloping moist isentropic surfaces. The combined action of these two processes caused the MCS to shift progressively eastward. Condensation associated with the MCS released latent heat and formed a layer of large diabatic heating in the middle troposphere, increasing the potential vorticity below this layer. This increase in potential vorticity created favorable conditions for the development of a low-level vortex circulation. The vertical motion associated with this low-level vortex further promoted the development of convection, creating a positive feedback between the deep convection and the low-level vortex circulation. This feedback mechanism not only promoted the maturation of the MCS, but also played the primary role in the evolution of the MCV. The MCV formed and developed due to the enhancement of the positive feedback that accompanied the coming together of the center of the vortex and the center of the convection. The positive feedback peaked and the MCV matured when these two centers converged. The positive feedback weakened and the MCV began to decay as the two centers separated and diverged.  相似文献   

9.
The Advanced Research WRF(Weather Research and Forecasting) model is used to simulate the evolution of a mesoscale convective vortex(MCV) that formed on the Meiyu front and lasted for more than two days. The simulation is used to investigate the underlying reasons for the genesis, intensification, and vertical expansion of the MCV. This MCV is of a type of mid-level MCV that often develops in the stratiform regions of mesoscale convective systems. The vortex strengthened and reached its maximum intensity and vertical extent(from the surface to upper levels) when secondary organized convection developed within the mid-level circulation. The factors controling the evolution of the kinetic and thermal structure of the MCV are examined through an analysis of the budgets of vorticity, temperature, and energy. The evolution of the local Rossby radius of deformation reveals the interrelated nature of the MCV and its parent mesoscale convective system.  相似文献   

10.
The strong heavy rainfall on 3-5 July 2003 causing the severe flooding in Huaihe River basin (HRB), China is studied. It is noted that there are sometimes mesoscale convective vortex (MCV) in East Asia during the mei-yu season. Simulation results from the ARPS (Advanced Regional Prediction) data analysis system (ADAS) and WRF model were used to study the development of the mesoscale convective system (MCS) and mesoscale convective vortex (MCV). It is confirmed that the MCV formed during the development of a...  相似文献   

11.
廖捷  谈哲敏 《气象学报》2005,63(5):771-789
2003年7月4~5日在江淮地区沿梅雨锋有一系列中尺度对流系统相继生成和强烈发展,导致了江淮地区特大暴雨的形成。该研究利用中尺度数值模式MM5对这次梅雨锋暴雨过程进行了数值模拟,在模拟结果的基础上重点分析了不同尺度天气系统相互作用对这次特大暴雨过程的影响作用。在这次特大暴雨过程中,位于梅雨锋北侧的东北—西南走向深厚、稳定的短波槽系统与槽前从西南移来的低涡系统相配合,加强了位于梅雨锋北侧的反气旋性扰动发展,从而导致梅雨锋北侧反气旋性涡旋的形成。该类反气旋性涡旋形成对江淮切变线的加强与维持起重要作用。中尺度对流系统的潜热释放首先导致梅雨锋低层切变线上的中尺度对流性涡旋(MCV)的形成,而中尺度对流性涡旋的形成进一步加强了切变线上的低层辐合,中尺度对流性涡旋消亡后,在切变线上形成低涡。梅雨锋附近主要存在4种不同垂直环流,它在降水的不同阶段具有不同的结构、配置与动力学作用。其中跨锋面、高层非地转两支垂直环流对锋区的对流扰动发展和暴雨形成最为重要,而降水发展可以调整锋区垂直环流的结构、配置,随降水的减弱,梅雨锋区的不同垂直环流系统又重新恢复到先前结构。梅雨锋上不同尺度、高度的天气系统之间的相互作用主要通过这些垂直环流系统调整实现。  相似文献   

12.
Observation from automatic weather stations, radars and TRMM satellites are employed to investigate the precipitation distribution of tropical cyclone (TC) Koppu (0915) that made landfall on Guangdong province in 2009. The results show that the precipitation of landfall TC Koppu is featured by significant asymmetry and mesoscale structure, and occurs mainly to the left of its moving path. By examining the sea surface temperature (SST), water vapor flux, Q vector, vertical wind shear of environment etc., it is found out that the distribution of SST, water vapor convergence, low-level convective ascending and vertical wind shear facilitates the TC precipitation to take place to the left of the TC moving path. The mesoscale structure separated by Barnes band-pass filter presents that the precipitation of landfall KOPPU has some organized mesoscale spiral structures, which is around the TC center and composed of the form of belts or blocks. The heavy local rainfall of landfall TC Koppu is primarily associated with the rainfall due to mesoscale spiral structure.  相似文献   

13.
热带气旋强度与结构研究新进展   总被引:19,自引:6,他引:13       下载免费PDF全文
主要回顾热带气旋(TC)强度与结构变化的研究发展近况。以往热带气旋的理论研究认为在给定的大气和海洋热状况下,存在着一个TC所能达到的最大可能强度(MPI)。但实际上,海洋生成的热带气旋达到的最大强度普遍要比由MPI理论计算得到最大强度要低。近几年的研究表明,存在着内部和外部的不利因子通过对TC结构的改变来阻碍其加强,从而限制TC的强度。以往认为在诸多因子中,垂直风切变产生的内核区非对称结构与眼墙区下方海水上涌造成的海面冷却是制约TC达到MPI的主要因子。最新的研究进一步指出,产生TC非对称性的中尺度过程对其强度与结构的变化至关重要。中尺度过程包含有对流耦合的涡旋Rossby波、内外圈螺旋雨带、嵌于TC环流内的中尺度涡旋。外部的环境气流也是通过这些眼墙的中尺度过程影响到TC的强度与结构变化。  相似文献   

14.
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location o  相似文献   

15.
Based on the Tropical Cyclone(TC briefly thereafter)Yearbook 1980-2009,this paper first analyzes the number and intensity change of the TCs which passed directly over or by the side of Poyang Lake(the distance of TC center is less than 1°longitude or 1°latitude from the Lake)among all the landfalling TCs in China during the past 30 years.Two cases are examined in detail in this paper.One is severe typhoon Rananim with a speed of 3.26 m/s and a change of 1 hPa in intensity when it was passing the Lake.The other is super typhoon Saomai with a faster moving speed of 6.50 m/s and a larger change in intensity of 6 hPa.Through numerical simulation experiments,this paper analyzes how the change of underlying surface from water to land contributes to the differences in intensity,speed and mesoscale convection of the two TCs when they passed the Lake.Results show that the moisture and dynamic condition above the Lake were favorable for the maintenance of the intensity when Rananim was passing through Poyang Lake,despite the moisture supply from the ocean was cut off.As a result,there was strong convection around the lake which led to a rainfall spinning counter-clockwise as it was affected by the TC movement.However,little impact was seen in the Saomai case.These results indicate that for the TCs coming ashore on Poyang Lake with a slow speed,the large water body is conducive to the sustaining of the intensity and strengthening of the convection around the TC center and the subsequent heavy rainfall.On the contrary,a fast-moving TC is less likely to be influenced by the underlying surface in terms of intensity and speed.  相似文献   

16.
台风榴莲(2001)在季风槽中生成的机制探讨   总被引:2,自引:0,他引:2  
利用NCEP 1°×1°分析资料、TMI海温资料、卫星云图资料对季风槽中南海台风榴莲(2001)生成机制进行了分析,揭示了大尺度环境流场、温暖洋面、中尺度对流活动对热带气旋(TC)生成的控制作用.结果表明,水平风速垂直切变的演变在一定程度上指示着TC在暖湿洋面上生成的时间,水平风速垂直切变由强向弱转变,在TC发生前18小时迅速减小到10 m/s,随后在10 m/s以下维持少变,垂直切变的变化主要反映了对流层高层环流形势的演变;在对流层中低层,季风槽的形成和加强对TC的生成有重要作用,由于热带温暖洋面作用,季风槽首先表现出有利于单体对流和带状对流发生发展的条件性对流不稳定特征,随着季风槽的加强,季风槽进一步表现出有利于中尺度扰动发生发展的正压不稳定特征;季风槽槽线南侧的低空急流的经向分布很宽广,由105°E越赤道气流和中南半岛偏西气流(其源头是索马里越赤道低空急流)汇合而成,急流的加强活动具有经向差异,由于边界层高θ_e空气辐合抬升产生两条经向距离约300 km的显著带状对流云系,槽线南侧风速分布的经向差异导致两条带状云系发生追赶,并逐步在季风槽底部槽线附近合并加强为MCC,进而导致中尺度涡旋(MCV)的产生并最终发展成为TC.分析结果还表明,为深对供应丰富对流有效位能的主要是来自台风发生区域本地南海暖洋面的地面热通量,南海暖洋面对TC生成有重要贡献.台风榴莲的生成是一个多尺度相互作用过程,主要包括涡旋对流热塔、与带状对流云系伴随的涡度带的升尺度,涡度带合并成长为MCV,以及大尺度条件对TC在季风槽中生成的时间及地点的控制作用等.  相似文献   

17.
冷涡对两类对流系统结构演变作用的个例模拟对比分析   总被引:1,自引:1,他引:0  
蔡雪薇  谌芸  沈新勇  刘靓珂  葛蕾 《气象》2018,44(6):790-801
2015年8月22日,在同一冷涡背景下,华北东北部形成了多单体风暴,而在黄淮地区出现飑线过程。本文根据观测资料给出冷涡对中尺度对流系统发生发展的动力和热力作用,并基于WRF中尺度数值模式的模拟结果,对比分析了两类对流系统的形态结构演变和运动过程的差异、差异产生的原因及冷涡的作用,主要结论如下:(1)两类对流系统均位于冷涡后部,但形态演变和运动过程差异显著,北部分散性对流受地面风辐合及地形抬升的共同影响发展形成多单体风暴,呈西北—东南排列,主要以前向传播的方式缓慢向东南偏南方向运动,带来短时强降水为主的天气;南部线状对流由山东西北部和河南北部形成的多个孤立单体合并后形成,随后在黄淮地区发展为飑线系统,在平流移动为主的作用下向东南方向快速运动,产生雷暴大风和冰雹天气。(2)北部多单体风暴在冷暖气团交界面形成,位于冷涡西南象限,低层水汽和能量充足;新对流单体在边界层被触发后,沿着低层切变线向高能区传播。(3)南部飑线系统在冷槽后的地面干暖区低压带中形成,中尺度对流系统产生的冷池和雷暴高压的出流与环境相互作用,低层水汽条件转好,使得单体不断传播和合并,发展为飑线系统。(4)中层后部入流的强度和环境水汽条件对两类对流系统组织化过程有不同影响,飑线中层后部入流的增强主要来自环境西风分量的增加,与冷涡发展演变使得环境风场增强有关;北部对流湿层深厚,所处的中层风场弱,不利于多单体风暴组织化发展;南部飑线系统位于更强的环境西风引导气流中,后部中层入流强、高层环境空气干,有利于强下沉气流形成,从而促进雷暴高压和冷池的发展,强下沉气流还使中低层的风速增加,垂直风切变增强,有利于对流单体组织化发展形成线状对流。  相似文献   

18.
Liguang Wu  Li Tao 《Climate Dynamics》2011,36(9-10):1851-1864
Although previous studies reported upward trends in the basin-wide average lifetime, annual frequency, proportion of intense hurricanes and annual accumulated power dissipation index of Atlantic tropical cyclones (TCs) over the past 30?years, the basin-wide intensity did not increase significantly with the rising sea surface temperature (SST). Observational analysis and numerical simulation conducted in this study suggest that Sahel rainfall is the key to understanding of the long-term change of Atlantic TC intensity. The long-term changes of the basin-wide TC intensity are generally associated with variations in Sahara air layer (SAL) activity and vertical wind shear in the main development region (MDR), both of which are highly correlated with Sahel rainfall. The drying Sahel corresponds to an equatorward shift in the African easterly jet and African easterly wave activity, introducing the SAL to lower latitudes and increasing the MDR vertical wind shear. As a result, Atlantic TCs are more vulnerable to the suppressing effects of the SAL and vertical wind shear. Since the SST warming, especially in the tropical Indian Ocean, is a dominant factor for the Sahel drying that occurred over the past 30?years, it is suggested that the remote effect of SST warming is important for the long-term change of Atlantic TC intensity. Although influence of the AMO warm phase that started in the early 1990s alone can provide a favorable condition for TC intensification, its influence may have been offset by the influence of the ongoing SST warming, particularly in the Indian Ocean. As a result, there was no significant trend observed in the basin-wide average and peak intensity of Atlantic TCs.  相似文献   

19.
The atmospheric and oceanic conditions are examined during different stages of the lifecycle of western North Pacific tropical cyclones (TCs), with the intention to understand how the environment affects the intensity change of TCs in this area. It is found that the intensification usually occurs when the underlying sea surface temperature (SST) is higher than 26℃. TCs usually experience a rapid intensification when the SST is higher than 27.5℃ while lower than 29.5℃. However, TCs decay or only maintain its intensity when the SST is lower than 26℃. The intensifying TCs usually experience a low-to-moderate vertical wind shear (2-10 ms-1 ). The larger the vertical wind shear, the slower the TCs strengthen. In addition, the convective available potential energy (CAPE) is much smaller in the developing stage than in the formation stage of TCs. For the rapidly intensifying TCs, the changes of SST, CAPE, and vertical wind shear are usually small, indicating that the rapid intensification of TCs occurs when the evolution of the environment is relatively slow.  相似文献   

20.
As a follow-up of a previously published article on the synoptic background of the development of the severe convective weather that happened in Chongqing on 6 May 2010, this study further examines the initiation of the severe convective weather via a better high-resolution simulation with the Weather Research and Forecasting (WRF) model. It is found that the cold front approaching Chongqing from the northwest played a critical role in the initiation of the severe convective weather. As the cold front approached Chongqing, the low-to-mid level updrafts ahead of the front acted to increase the atmospheric lapse rate via the stretching effect, which in combination with the low-level diabatic heating induced by the sensible heat fluxes and infrared radiation emitted from the ground surface led to the continuous decrease of the low-level static stability and the increase of the convective available potential energy (CAPE) in Chongqing area. This provided necessary unstable energy for the development of deep moist convection. Furthermore, along with the reaching of a nearly east-west-oriented mesoscale convergence line from the southeast of Chongqing, the outflow right above the cold front began to interact with that above the mesoscale convergence line and induced distinct convergence at the altitude of approximately 1-2 km in the triangular area sandwiched by the cold front and the mesoscale convergence line. It is found that the updrafts associated with this convergence provided lifting necessary for the initiation of the severe convection. The sensitivity experiment without the terrain west of Chongqing indicates that the local topography did not play an important role in the initiation of this severe convective weather.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号