首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer–wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.  相似文献   

2.
The intermittent structure of turbulence within the canopy sublayer (CSL) is sensitive to the presence of foliage and to the atmospheric stability regime. How much of this intermittency originates from amplitude variability or clustering properties remains a vexing research problem for CSL flows. Using a five-level set of measurements collected within a dense hardwood canopy, the clustering properties of CSL turbulence and their dependence on atmospheric stability are explored using the telegraphic approximation (TA). The binary structure of the TA removes any amplitude variability from turbulent excursions but retains their zero-crossing behaviour, and thereby isolating the role of clustering in intermittency. A relationship between the spectral exponents of the actual and the TA series is derived across a wide range of atmospheric stability regimes and for several flow variables. This relationship is shown to be consistent with a relationship derived for long-memory and monofractal processes such as fractional Brownian motion (fBm). Moreover, it is demonstrated that for the longitudinal and vertical velocity components, the vegetation does not appreciably alter fine-scale clustering but atmospheric stability does. Stable atmospheric stability conditions is characterized by more fine scale clustering when compared to other atmospheric stability regimes. For scalars, fine-scale clustering above the canopy is similar to its velocity counterpart but is significantly increased inside the canopy, especially under stable stratification. Using simplified scaling analysis, it is demonstrated that clustering is much more connected to space than to time within the CSL. When comparing intermittency for flow variables and their TA series, it is shown that for velocity, amplitude variations modulate intermittency for all stability regimes. However, amplitude variations play only a minor role in scalar intermittency. Within the crown region of the canopy, a ‘double regime’ emerges in the inter-pulse duration probability distributions not observed in classical turbulence studies away from boundaries. The double regime is characterized by a power-law distribution for shorter inter-pulse periods and a log-normal distribution for large inter-pulse periods. The co-existence of these two regimes is shown to be consistent with near-field/far-field scaling arguments. In the near-field, short inter-pulse periods are controlled by the source strength, while in the far-field long inter-pulse periods are less affected by the precise source strength details and more affected by the transport properties of the background turbulence.  相似文献   

3.
Concentration fluctuation data from surface-layer released smokeplumes have been investigated with the purpose of finding suitable scaling parametersfor the corresponding two-particle, relative diffusion process.Dispersion properties have been measured at downwind ranges between 0.1 and 1 km from a continuous, neutrally buoyant ground level source. A combinationof SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatialresolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detectionin combination with simultaneous gas chromatograph (SF6) reference measurements. The database includes detailed crosswind concentration fluctuation measurements. Each experiment, typically of 1/2-hour duration, containsplume mean and variance concentration profiles, intermittency profiles andexceedence and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance-neighbour function is found to scale with the surface-layer friction velocity,and not with the inertial subrange dissipation rate, over the range of distance-neighbour separations considered.  相似文献   

4.
The paper reveals that the variations in parameters like u*, the scaling velocity and θ*. The scaling tempera-ture during the various phases of monsoon might be linked with subsynoptic features. The rise in u* is mainly connected with the presence of lower tropospheric cyclonic vorticity over a subsynoptic scale of the site. However the variations in θ* is mainly linked with the various phases of monsoon and θ* shows a sharp rise in presence of low level convective cloud.Besides the correlation studies of u and u*, θv and θv* , θv-θv0 and θv* are undertaken. The correlation be?tween θv and θv* is poor. In other two cases correlations are good. Besides u/u* , has shown good coefficient of variation values within the ζ range.  相似文献   

5.
The Monin–Obukhov similarity theory (MOST) functions fε and fT, of the dissipation rate of turbulent kinetic energy (TKE). ε, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover a relatively wide stability range, i.e. ζ=z/L of up to 10, where z is the height and L the Obukhov length. The best fits were given by fε = 0.8 + 2.5ζ and fT= 4.7[ 1+1.6(ζ)2/3], which differ somewhat from previously published functions. ε was obtained from spectra of the longitudinal wind velocity using a time series model (ARMA) method instead of the traditional Fourier transform. The neutral limit fε =0.8 implies that there is an imbalance between TKE production and dissipation in the simplified TKE budget equation. Similarly, we found a production-dissipation imbalance for the temperature fluctuation budget equation. Correcting for the production-dissipation imbalance, the ‘standard’ MOST functions for dimensionless wind speed and temperature gradients (φm and φm) were determined from fε and fT and compared with the φm and φh formulations of Businger and others. We found good agreement with the Beljaars and Holtslag [J. Appl. Meteorol. 30, 327–341 (1991)] relations. Lastly, the flux and gradient Richardson numbers are discussed also in terms of fε and fT.  相似文献   

6.
Measurements of atmospheric turbulence made during the Surface Heat Budget of the Arctic Ocean Experiment (SHEBA) are used to examine the profile stability functions of momentum, φ m , and sensible heat, φ h , in the stably stratified boundary layer over the Arctic pack ice. Turbulent fluxes and mean meteorological data that cover different surface conditions and a wide range of stability conditions were continuously measured and reported hourly at five levels on a 20-m main tower for 11 months. The comprehensive dataset collected during SHEBA allows studying φ m and φ h in detail and includes ample data for the very stable case. New parameterizations for φ m (ζ) and φ h (ζ) in stable conditions are proposed to describe the SHEBA data; these cover the entire range of the stability parameter ζ = z/L from neutral to very stable conditions, where L is the Obukhov length and z is the measurement height. In the limit of very strong stability, φ m follows a ζ 1/3 dependence, whereas φ h initially increases with increasing ζ, reaches a maximum at ζ ≈ 10, and then tends to level off with increasing ζ. The effects of self-correlation, which occur in plots of φ m and φ h versus ζ, are reduced by using an independent bin-averaging method instead of conventional averaging.  相似文献   

7.
Local Scales of Turbulence in the Stable Boundary Layer   总被引:1,自引:1,他引:0  
Local, gradient-based scales, which contain the vertical velocity and temperature variances, as well as the potential temperature gradient, but do not include fluxes, are tested using data collected during the CASES-99 experiment. The observations show that the scaling based on the temperature variance produces relatively smaller scatter of empirical points. The resulting dimensionless statistical moments approach constant values for sufficiently large values of the Richardson number Ri. This allows one to derive predictions for the Monin–Obukhov similarity functions φ m and φ h , the Prandtl number Pr and the flux Richardson number Rf in weak turbulence regime.  相似文献   

8.
Large-eddy simulations (LESs) are employed to investigate the turbulence characteristics in the shear-free convective boundary layer (CBL) driven by heterogeneous surface heating. The patterns of surface heating are arranged as a chessboard with two different surface heat fluxes in the neighbouring patches, and the heterogeneity scale Λ in four different cases is taken as 1.2, 2.5, 5.0 and 10.0 km, respectively. The results are compared with those for the homogeneous case. The impact of the heterogeneity scale on the domain-averaged CBL characteristics, such as the profiles of the potential temperature and the heat flux, is not significant. However, different turbulence characteristics are induced by different heterogeneous surface heating. The greatest turbulent kinetic energy (TKE) is produced in the case with the largest heterogeneity scale, whilst the TKE in the other heterogeneous cases is close to that for the homogeneous case. This result indicates that the TKE is not enhanced unless the scale of the heterogeneous surface heating is large enough. The potential temperature variance is enhanced more significantly by a larger surface heterogeneity scale. But this effect diminishes with increasing CBL height, which implies that the turbulent eddy structures are changed during the CBL development. Analyses show that there are two types of organized turbulent eddies: one relates to the thermal circulations induced by the heterogeneous surface heating, whilst the other identifies with the inherent turbulent eddies (large eddies) induced by the free convection. At the early stage of the CBL development, the dominant scale of the organized turbulent eddies is controlled by the scale of the surface heterogeneity. With time increasing, the original pattern breaks up, and the vertical velocity eventually displays horizontal structures similar to those for the homogeneous heating case. It is found that after this transition, the values of λ/z i (λ is the dominant horizontal scale of the turbulent eddies, z i is the boundary-layer height) ≈1.6, which is just the aspect ratio of large eddies in the CBL.  相似文献   

9.
Scaling velocities relevant for turbulent flows in the planetary boundary layer are discussed. It is suggested that the scaling parameters should be determined by integrated bulk properties of the respective turbulent production terms. According to this concept, a new velocity scale, replacing the friction velocityu*, is proposed depending on bothu* and the geostrophic windu g . The convective velocity scalew* can be determined by the integral of the buoyancy production term and is therefore an appropriate velocity scale. Examination of Minnesota and Kansas data shows that these data do not give the possibility of verifying whether the new scaling velocity is more appropriate thanu*. This is because the range of variability of atmospheric stability during the field measurements is too small. However, theoretical considerations based on integrated properties of the turbulence, through the depth of the planetary boundary layer, are given in support of the new scaling velocity.  相似文献   

10.
We present a new account of the kinetic energy budget within an unstable atmospheric surface layer (ASL) beneath a convective outer layer. It is based on the structural model of turbulence introduced by McNaughton (Boundary-Layer Meteorology, 112: 199–221, 2004). In this model the turbulence is described as a self-organizing system with a highly organized structure that resists change by instability. This system is driven from above, with both the mean motion and the large-scale convective motions of the outer layer creating shear across the surface layer. The outer convective motions thus modulate the turbulence processes in the surface layer, causing variable downwards fluxes of momentum and kinetic energy. The variable components of the momentum flux sum to zero, but the associated energy divergence is cumulative, increasing both the average kinetic energy of the turbulence in the surface layer and the rate at which that energy is dissipated. The tendency of buoyancy to preferentially enhance the vertical motions is opposed by pressure reaction forces, so pressure production, which is the work done against these reaction forces, exactly equals buoyant production of kinetic energy. The pressure potential energy that is produced is then redistributed throughout the layer through many conversions, back and forth, between pressure potential and kinetic energy with zero sums. These exchanges generally increase the kinetic energy of the turbulence, the rate at which turbulence transfers momentum and the rate at which it dissipates energy, but does not alter its overall structure. In this model the velocity scale for turbulent transport processes in the surface layer is (kzɛ)1/3 rather than the friction velocity, u*. Here k is the von Kármán constant, z is observation height, ɛ is the dissipation rate. The model agrees very well with published experimental results, and provides the foundation for the new similarity model of the unstable ASL, replacing the older Monin–Obukhov similarity theory, whose assumptions are no longer tenable.  相似文献   

11.
Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale of the patches; that is, with LTrms ≈1.2LR and viscous dissipation rate 0*. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with 0 ≈ 3LT2N3(≈ 280*) and LT/√6 ≈ LTrms, but this rapidly decays into a more persistent active-fossil state with 0F ≈ 30vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with F. The last turbulence eddies, with F, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large 0/F ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 0.6 LR persist as turbulence fossils (by retaining the memory of o) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates and turbulence activity coefficients of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.  相似文献   

12.
A comprehensive model for the prediction of concentration fluctuations in plumes dispersing in the complex and highly disturbed wind flows in an urban environment is formulated. The mean flow and turbulence fields in the urban area are obtained using a Reynolds-averaged Navier-Stokes (RANS) flow model, while the standard k-ϵ turbulence model (k is the turbulence kinetic energy and ϵ is the viscous dissipation rate) is used to close the model. The RANS model provides a specification of the velocity statistics of the highly disturbed wind flow in the urban area, required for the solution of the transport equations for the mean concentration and concentration variance (both of which are formulated in the Eulerian framework). A physically-based formulation for the scalar dissipation time scale t d , required for the closure of the transport equation for , is presented. This formulation relates t d to an inner time scale corresponding to “internal” concentration fluctuation associated with relative dispersion, rather than an outer time scale associated with the entire portion of the fluctuation spectrum. The two lowest-order moments of concentration ( and ) are used to determine the parameters of a pre-chosen functional form for the concentration probability density function (clipped-gamma distribution). Results of detailed comparisons between a water-channel experiment of flow and dispersion in an idealized obstacle array and the model predictions for mean flow, turbulence kinetic energy, mean concentration, concentration variance, and concentration probability density function are presented.  相似文献   

13.
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.  相似文献   

14.
Recently, several attempts have been made to model the wind velocity in an urban canopy in order to accurately predict the mixing and transport of momentum, heat, and pollutants within and above the canopy on an urban scale. For this purpose, unverified assumptions made by Macdonald (Boundary-Layer Meteorol 97:25–45, 2000) to develop a model for the profile of the mean wind velocity within an urban canopy have been used. In the present study, in order to provide foundations for improving the urban canopy models, the properties of the spatially-averaged mean quantities used to make these assumptions have been investigated by performing large-eddy simulations (LES) of the airflow around square and staggered arrays of cubical blocks with the following plan area densities: λ p = 0.05, 0.11, 0.16, 0.20, 0.25, and 0.33. The LES results confirm that the discrepancy between the spatial average of wind velocity and Macdonald’s five-point average of wind velocity can be large in both types of arrays for large λ p . It is also confirmed that Prandtl’s mixing length varies significantly with height within the canopy, contrary to Macdonald’s assumption for both types of arrays and for both small and large λ p . On the other hand, in accordance with Macdonald’s assumption, the sectional drag coefficient is found to be almost constant with height except in the case of staggered arrays with high λ p .  相似文献   

15.
The effect of topographical slope angle and atmospheric stratification on turbulence intensities in the unstably stratified surface layer have been parameterized using observations obtained from a three-dimensional sonic anemometer installed at 8 m height above the ground at the Seoul National University (SNU) campus site in Korea for the years 1999–2001. Winds obtained from the sonic anemometer are analyzed according to the mean wind direction, since the topographical slope angle changes significantly along the azimuthal direction. The effects of the topographical slope angle and atmospheric stratification on surface-layer turbulence intensity are examined with these data. It is found that both the friction velocity and the variance for each component of wind normalized by the mean wind speed decrease with increase of the topographical slope angle, having a maximum decreasing rate at very unstable stratification. The decreasing rate of the normalized friction velocity (u * /U) is found to be much larger than that of the turbulence intensity of each wind component due to the reduction of wind shear with increase in slope angle under unstable stratification. The decreasing rate of the w component of turbulence intensity (σ w /U) is the smallest over the downslope surface whereas that of the u component (σ u /U) has a minimum over the upslope surface. Consequently, σ w /u * has a maximum increasing rate with increase in slope angle for the downslope wind, whereas σ u /u * has its maximum for the upslope wind. The sloping terrain is found to reduce both the friction velocity and turbulence intensity compared with those on a flat surface. However, the reduction of the friction velocity over the sloping terrain is larger than that of the turbulence intensity, thereby enhancing the turbulence intensity normalized by the friction velocity over sloping terrain compared with that over a flat surface.  相似文献   

16.
The nocturnal atmospheric boundary layer (ABL) poses several challenges to standard turbulence and dispersion models, since the stable stratification imposed by the radiative cooling of the ground modifies the flow turbulence in ways that are not yet completely understood. In the present work we perform direct numerical simulation of a turbulent open channel flow with a constant (cooling) heat flux imposed at the ground. This configuration provides a very simplified model for the surface layer at night. As a result of the ground cooling, the Reynolds stresses and the turbulent fluctuations near the ground re-adjust on times of the order of L/u τ , where L is the Obukhov length scale and u τ is the friction velocity. For relatively weak cooling turbulence survives, but when ReL=Lut/n <~100{Re_L=Lu_\tau/\nu \lesssim 100} turbulence collapses, a situation that is also observed in the ABL. This criterion, which can be locally measured in the field, is justified in terms of the scale separation between the largest and smallest structures of the dynamic sublayer.  相似文献   

17.
The characteristics of turbulent moisture on Huaihe river basin in China   总被引:6,自引:0,他引:6  
Summary ?A lot of work on near surface turbulence characteristics has been done in the experimental study of atmospheric turbulence, but little work on fluctuating scalar field has been done, especially on some quantities such as moisture and pollution. In this paper, with the methods of statistical theory, Fourier transform, fractal geometry and wavelet transform, the turbulent moisture data obtained from Huaihe River Basin Experiment (HUBEX) are studied to explore the statistical, spectral, fractal and intermittent characteristics of turbulent moisture. The results show that: (1) In the high humid area such as Huaihe river basin, the moisture plays an important role in the surface energy balance, energy transportation and cycle. (2) The energy spectra and cospectra are in agreement with the “−2/3” and “−4/3” scaling power law correspondingly in inertial sub-range. (3) The fractal dimension of turbulent moisture in Huaihe river basin is clearly higher than that in other areas (such as Beijing). (4) The fluctuating moisture field has strong intermittency, and is not in accordance with the Kolmogorov theory. With the orthonormal wavelet transform, the dissipative events of the fluctuating moisture field contributing to inertial sub-range intermittency buildup have been identified. After the dissipative events have been suppressed by introducing a conditioning wavelet sampling scheme, the intermittency that affects the statistical structure of inertial sub-range is restrained. However the repressive effects of intermittency on turbulent moisture field are worse than those on turbulent velocity field. The reason may be either the intermittency of turbulent moisture is strong or some coherence structures exist in the turbulent moisture field. Received April 27, 2001; Revised January 23, 2002  相似文献   

18.
In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the sense that we assume that the buoyancy length scale is similar to neutral length scaling. This implies that the buoyancy length scale is: B  = κ B z B , with κ B κ, the von Karman constant. With this concept it is shown that the physical relevance of the local scaling parameter z/Λ naturally appears, and that the α coefficient of the log-linear similarity functions is equal to c/κ 2, where c is a constant close to unity. The predicted value α ≈ 1/κ 2 = 6.25 lies within the range found in observational studies. Finally, it is shown that the traditionally used inverse linear interpolation between the mixing length in the neutral and buoyancy limits is inconsistent with the classical log-linear stability functions. As an alternative, a log-linear consistent interpolation method is proposed.  相似文献   

19.
用南京、射阳的常规探空资料建立了估算折射率结构常数Cn2和湍能耗散率ε垂直变化理论模式。结果表明:用该理论模式计算的ε值与用天气脉冲多普勒雷达探测的速度谱宽σr2再估算得到的ε值有较好的一致性。  相似文献   

20.
Data collected during the SHEBA and CASES-99 field programs are employed to examine the flux–gradient relationship for wind speed and temperature in the stably stratified boundary layer. The gradient-based and flux-based similarity functions are assessed in terms of the Richardson number Ri and the stability parameter z*, z being height and Λ* the local Obukhov length. The resulting functions are expressed in an analytical form, which is essentially unaffected by self-correlation, when thermal stratification is strong. Turbulence within the stably stratified boundary layer is classified into four regimes: “nearly-neutral” (0 < z* < 0.02), “weakly-stable” (0.02 < z* < 0.6), “very-stable” (0.6 < z* < 50), and “extremely-stable” (z* > 50). The flux-based similarity functions for gradients are constant in “nearly-neutral” conditions. In the “very-stable” regime, the dimensionless gradients are exponential, and proportional to (z*)3/5. The existence of scaling laws in “extremely-stable” conditions is doubtful. The Prandtl number Pr decreases from 0.9 in nearly-neutral conditions and to about 0.7 in the very-stable regime. The necessary condition for the presence of steady-state turbulence is Ri < 0.7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号