首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
In areas where peatlands are abundant, they are likely to play a significant role in the hydrological and hydrogeological dynamics of a watershed. Although individual case studies are reported in the literature, there is a large range of aquifer–peatland interactions and there is a need to understand the controls of these interactions. The objectives of this study were (1) to better understand aquifer–peatland connections and how these may be predicted by geology and geomorphic location and (2) to provide a variety of reference sites for glacial geological settings. Slope and depression peatlands were studied in the Abitibi‐Témiscamingue region and in the St. Lawrence Lowlands, two contrasting regions of southern Quebec. A total of 12 transects that span a shallow aquifer–peatland interface were instrumented with piezometers. Field investigations included peatland characterization, monthly water level monitoring, and continuous hydraulic head measurements with pressure transducers. The results indicate that 7 of the 12 transects receive groundwater from the surrounding shallow aquifer. At the peatland margin, four lateral flow patterns were identified and associated with slope peatlands (parallel inflow and divergent flow) and with depression peatlands (convergent flow and parallel outflow). Vertical hydraulic gradients suggest that water flows mainly downwards, i.e. from the peatland to the underlying mineral deposits. Vertical connectivity appears to decrease as the distance from the peatland margin increases. All of these exchanges are important components in the sustainability of peatland hydrogeological functions. The regional comparison of aquifer–peatland flow dynamics performed in this study provides a new set of referenced data for the assessment of aquifer–peatland connectivity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This study investigated how hydrogeological setting influences aquifer–peatland connections in slope and basin peatlands. Steady-state groundwater flow was simulated using Modflow on 2D transects for an esker slope peatland and for a basin peatland in southern Quebec (Canada). Simulations investigated how hydraulic heads and groundwater flow exported toward runoff from the peatland can be influenced by recharge, hydraulic properties, and heterogeneity. The slope peatland model was strongly dominated by horizontal flow from the esker. This suggests that slope peatlands are dependent on the hydrogeological conditions of the adjacent aquifer reservoir, but are resilient to hydrological changes. The basin peatland produced groundwater outflow to the surface aquifer. Lateral and vertical peat heterogeneity due to peat decomposition or compaction were identified as having a significant influence on fluxes. These results suggest that basin peatlands are more dependent on recharge conditions, and could be more susceptible to land use and climate changes.  相似文献   

3.
Peat specific yield (SY) is an important parameter involved in many peatland hydrological functions such as flood attenuation, baseflow contribution to rivers, and maintaining groundwater levels in surficial aquifers. However, general knowledge on peatland water storage capacity is still very limited, due in part to the technical difficulties related to in situ measurements. The objectives of this study were to quantify vertical SY variations of water tables in peatlands using the water table fluctuation (WTF) method and to better understand the factors controlling peatland water storage capacity. The method was tested in five ombrotrophic peatlands located in the St. Lawrence Lowlands (southern Québec, Canada). In each peatland, water table wells were installed at three locations (up‐gradient, mid‐gradient, and down‐gradient). Near each well, a 1‐m long peat core (8 cm × 8 cm) was sampled, and subsamples were used to determine SY with standard gravitational drainage method. A larger peat sample (25 cm × 60 cm × 40 cm) was also collected in one peatland to estimate SY using a laboratory drainage method. In all sites, the mean water table depth ranged from 9 to 49 cm below the peat surface, with annual fluctuations varying between 15 and 29 cm for all locations. The WTF method produced similar results to the gravitational drainage experiments, with values ranging between 0.13 and 0.99 for the WTF method and between 0.01 and 0.95 for the gravitational drainage experiments. SY was found to rapidly decrease with depth within 20 cm, independently of the within‐site location and the mean annual water table depth. Dominant factors explaining SY variations were identified using analysis of variance. The most important factor was peatland site, followed by peat depth and seasonality. Variations in storage capacity considering site and seasonality followed regional effective growing degree days and evapotranspiration patterns. This work provides new data on spatial variations of peatland water storage capacity using an easily implemented method that requires only water table measurements and precipitation data.  相似文献   

4.
The form and functioning of peatlands depend strongly on their hydrological status, but there are few data available on the hydraulic properties of tropical peatlands. In particular, the saturated hydraulic conductivity (K) has not previously been measured in neotropical peatlands. Piezometer slug tests were used to measure K at two depths (50 and 90 cm) in three contrasting forested peatlands in the Peruvian Amazon: Quistococha, San Jorge and Buena Vista. Measured K at 50 cm depth varies between 0.00032 and 0.11 cm s?1, and at 90 cm, it varies between 0.00027 and 0.057 cm s?1. Measurements of K taken from different areas of Quistococha showed that spatial heterogeneity accounts for ~20% of the within‐site variance and that depth is a good predictor of K. However, K did not vary significantly with depth at Buena Vista and San Jorge. Statistical analysis showed that ~18% of the variance in the K data can be explained by between‐site differences. Simulations using a simple hydrological model suggest that the relatively high K values could lead to lowering of the water table by >10 cm within ~48 m of the peatland edge for domed peatlands, if subjected to a drought lasting 30 days. However, under current climatic conditions, even with high K, peatlands would be unable to shed the large amount of water entering the system via rainfall through subsurface flow alone. We conclude that most of the water leaves these peatlands via overland flow and/or evapotranspiration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Streamflow response in Boreal Plains catchments depends on hydrological connectivity between forested uplands, lakes, and peatlands, and their hydrogeomorphic setting. Expected future drying of the Boreal Plains ecozone is expected to reduce hydrological connectivity of landscape units. To better understand run‐off generation during dry periods, we determined whether peatland and groundwater connectivity can dampen expected future water deficits in forests and lakes. We studied Pine Fen Creek catchment in the Boreal Plains ecozone of central Saskatchewan, Canada, which has a large, valley‐bottom, terminally positioned peatland, two lakes, and forested uplands. A shorter intensive study permitted a more detailed partitioning of water inputs and outputs within the catchment during the low flow period, and an assessment of a 10‐year data set provided insight into the function of the peatland over a range of climate conditions. Using a water balance approach, we learned that two key processes regulate flow of Pine Fen Creek. The cumulative impact of landscape unit hydrological connectivity and the peatland's hydrological functional state were needed to understand catchment response. There was evidence of a run‐off threshold which, when crossed, changed the peatland's hydrological function from transmission to run‐off generation. Results also suggest the peatland should behave more often as a transmitter of groundwater than as a generator of run‐off under a drier climate future, owing to a reduced water supply.  相似文献   

6.
7.
Over the last century, afforestation in Ireland has increased from 1% of the land area to 10%, with most plantations on upland drained blanket peatlands. This land use change is considered to have altered the hydrological response and water balance of upland catchments with implications for water resources. Because of the difficulty of observing these long‐term changes in the field, the aim of this study was to utilize a hydrological model to simulate the rainfall runoff processes of an existing pristine blanket peatland and then to simulate the hydrology of the peatland if it were drained and afforested. The hydrological rainfall runoff model (GEOtop) was calibrated and validated for an existing small (76 ha) pristine blanket peatland in the southwest of Ireland for the 2‐year period, 2007–2008. The current hydrological response of the pristine blanket peatland catchment with regard to streamflow and water table (WT) levels was captured well in the simulations. Two land use change scenarios of afforestation were also examined, (A) a young 10‐year‐old and (B) a semi‐mature 15‐year‐old Sitka Spruce forest. Scenario A produced similar streamflow dynamics to the pristine peatland, whereas total annual streamflow from Scenario B was 20% lower. For Scenarios A and B, on an annual average basis, the WT was drawn down by 16 and 20 cm below that observed in the pristine peatland, respectively. The maximum WT draw down in Scenario B was 61 cm and occurred in the summer months, resulting in a significant decrease in summer streamflow. Occasionally in the winter (following rainfall), the WT for Scenario B was just 2 cm lower than the pristine peatland, which when coupled with the drainage networks associated with afforestation led to higher peak streamflows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The natural carbon storage function of peatland ecosystems can be severely affected by the abandonment of peat extraction, influencing peatland drainage, leading to large and persistent sources of atmospheric CO2. Moreover, these cutover peatlands have a low and variable water table position and high tension at the surface, creating harsh ecohydrological conditions for vegetation re‐establishment, particularly peat forming Sphagnum moss. Standard restoration techniques aim to restore the peatland to a carbon accumulating system through various water management techniques to improve hydrological conditions and by reintroducing Sphagnum at the surface. However, restoring the hydrology of peatlands can be expensive due to the cost of implementing the various restoration techniques. This study examines a peat extraction‐restoration technique where the acrotelm is preserved and replaced directly on the cutover peat surface. An experimental peatland adopting this acrotelm transplant technique had both a high water table and peat moisture conditions providing sufficient water at the surface for Sphagnum moss. Average water table conditions were higher at the experimental site (?8·4 ± 4·2 cm) compared to an adjacent natural site (?12·7 ± 6·0 cm) suggesting adequate moisture conditions at the restored surface. However, the experimental site experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction‐restoration process. However, soil–water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and experimental sites. Any structural changes within the peat matrix were therefore minimal. Moreover, low soil‐water tensions were maintained well above the laboratory measured critical Sphagnum threshold of 33% (?100 mb) VMC, further indicating favourable conditions for Sphagnum moss survival and growth. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Forested boreal peatlands represent a precipitation‐dependent ecosystem that is prone to wildfire disturbance. Solar radiation exchange in forested peatlands is modified by the growth of a heterogeneous, open‐crown tree canopy, as well as by likely disturbance from wildfire. Radiation exchange at the peat surface is important in peatlands, as evaporation from the peat surface is the dominant pathway of water loss in peatlands of continental western North America. We examined shortwave and longwave radiation exchange in two forested ombrotrophic peatlands of central Alberta, Canada: one with (>75 years since wildfire; unburned) and another without a living spruce canopy (1–4 years since wildfire; burned) between the autumn of 2007 and 2010. Above‐canopy winter albedo was nearly two times greater in the recently burned peatland than the unburned peatland. Incoming shortwave radiation at the peat surface was much higher at the burned peatland, which increases the amount of energy available for evaporation. This is especially true for hollow microforms that are generally shaded by the tree canopy in unburned peatlands. Snow‐free albedo was similar between peatlands, although an increase in longwave losses at the burned site resulted in slightly greater net radiation at the unburned site. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Interactions between headwater aquifers and peatlands have received limited scientific attention. Hydrological stresses, including those related to climate change, may adversely impact these interactions. In this study, the dynamics of a southern Québec headwater system where a peatland is present is simulated under current conditions and with climate change. The model is calibrated in steady state on field‐measured data and provides satisfactory results for transient‐state conditions. Under current conditions, simulations confirm that the peatland is fed by the fractured bedrock aquifer year‐round and provides continuous baseflow to its outlets. Climate change is simulated through its impact on groundwater recharge. Predicted precipitation and temperature data from a suite of regional climate model scenarios provide a net precipitation variation range from +10% to ?30% for the 2041–2070 horizon. Calibrated recharge is modified within this range to perform a sensitivity analysis of the headwater model to recharge variations (+10%, ?15% and ?30%). Total contribution from the aquifer to rivers and streams varies from +14% to ?44% of the baseline for +10% to ?30% recharge changes from spring 2010 data, for example. With higher recharge, the peatland receives more groundwater, which could significantly change its vegetation pattern and eventually ecosystem functions. For a ?30% recharge, the peatland becomes perched above the aquifer during the summer, fall and winter. Recharge reductions also induce sharp declines in groundwater levels and drying streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A hydrological investigation was conducted in a small headwater peatland located in the Experimental Lakes Area, north-western Ontario, Canada, to determine the subsurface and surface flow paths within the peatland, and between the peatland and an adjacent forested upland during baseflow and storm flow conditions. Distinct zones of groundwater recharge and discharge were observed within the peatland. These zones are similar to those found in much larger flow systems even though the peatland was only influenced by local groundwater flow. Groundwater emerging in seeps and flowing beneath the peatland sustained the surface wetness of the peatland and maintained a constant baseflow. The response of the peatland stream to summer rain events was controlled by peatland water table position when the basin was dry and antecedent moisture storage on the uplands when the basin was wet. The magnitude and timing of peak runoff during wet conditions were controlled by the degree of hydrological connectivity between the surrounding upland terrain and the peatland. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
The frequency and intensity of drought is projected to increase within the boreal region under future climatic conditions. Peatlands are widely considered to regulate water loss under drought conditions, increasing surface resistance (rs) and reducing evaporative losses. This maintains peat moisture content, increasing the resilience of these globally important carbon stores. However, the magnitude and form of this important negative feedback response remains uncertain. To address this, we monitored the response of rs to drought within four peat cores under controlled meteorological conditions. When the water‐table was dropped to a depth of 0.30 m and the humidity reduced to ≤40%, a step shift in rs from ~50 s m‐1 up to 1000 s m‐1 was observed within burned and unburned peat, which virtually shuts down evaporation, limiting water loss. We show that measured near‐surface tension cannot be used to directly calculate this transition in peat surface resistance. However, empirical relationships that account for strong vertical variations in tension through the near‐surface and/or disequilibrium between pore air and near‐surface pore water pressure provide the potential to incorporate this negative feedback response into peatland ecohydrological models. Further observations are necessary to examine this response under dynamic atmospheric conditions. We suggest that the link between surface temperature and evaporation provides potential to further examine this feedback in either burned peatlands or peatlands with a low vascular vegetation cover. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.  相似文献   

14.
Piezometric head data from various depths were examined at two peatlands in Ontario, Canada and one peatland in Sweden influenced by small-scale, shallow groundwater systems. Data from different hydrogeological settings show reversals in groundwater flow leading to discharge in topographically high regions of peatlands in isolation from large-scale groundwater flow. It is suggested that subsurface flow within peat can reverse in direction in response to water deficit and water-table drawdown. The data presented here refute the assumption that local groundwater flow in peatlands is unidirectional and further illustrate the fact that measurable subsurface water flow can occur at depth in peat isolated from large-scale groundwater flow systems. In the light of implicit assumptions made by many workers on water movement in peatlands, especially when connected to small-scale groundwater systems, the consequences of such reversals are paramount in understanding the hydrology and biogeochemistry of peatlands. © 1997 by John Wiley & Sons, Ltd.  相似文献   

15.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   

16.
Perennial pools are common natural features of peatlands, and their hydrological functioning and turnover may be important for carbon fluxes, aquatic ecology, and downstream water quality. Peatland restoration methods such as ditch blocking result in many new pools. However, little is known about the hydrological function of either pool type. We monitored six natural and six artificial pools on a Scottish blanket peatland. Pool water levels were more variable in all seasons in artificial pools having greater water level increases and faster recession responses to storms than natural pools. Pools overflowed by a median of 9 and 54 times pool volume per year for natural and artificial pools, respectively, but this varied widely because some large pools had small upslope catchments and vice versa. Mean peat water‐table depths were similar between natural and artificial pool sites but much more variable over time at the artificial pool site, possibly due to a lower bulk specific yield across this site. Pool levels and pool‐level fluctuations were not the same as those of local water tables in the adjacent peat. Pool‐level time series were much smoother, with more damped rainfall or recession responses than those for peat water tables. There were strong hydraulic gradients between the peat and pools, with absolute water tables often being 20–30 cm higher or lower than water levels in pools only 1–4 m away. However, as peat hydraulic conductivity was very low (median of 1.5 × 10?5 and 1.4 × 10?6 cm s?1 at 30 and 50 cm depths at the natural pool site), there was little deep subsurface flow interaction. We conclude that (a) for peat restoration projects, a larger total pool surface area is likely to result in smaller flood peaks downstream, at least during summer months, because peatland bulk specific yield will be greater; and (b) surface and near‐surface connectivity during storm events and topographic context, rather than pool size alone, must be taken into account in future peatland pool and stream chemistry studies.  相似文献   

17.
The hydrology of Quebec, Canada, boreal fens is poorly documented. Many peatlands are located in watersheds with impounded rivers. In such cases, their presence influences reservoir inflows. In recent years, some fens have been subjected to an increase of their wet area, a sign that they may be evolving towards an aquatic ecosystem. This dynamic process is called aqualysis. This article presents the seasonal and monthly hydrological budgets of a small watershed including a highly aqualysed fen (James Bay region). The monitoring of precipitation (P), runoff (Q) and groundwater levels (WL) was conducted during the ice‐free season. Three semiempirical equations (Thornthwaite, Priestley–Taylor and Penman–Monteith) were used and compared to calculate potential evapotranspiration. The first two equations, having fewer parameters, estimate higher potential evapotranspiration values than the third equation. The use of pressure‐level gauges installed in wells, for the calculation of peatland water storage, is inconclusive. Swelling of peat, peat decomposition and plant composition could be responsible for nonnegligible amounts of absorbed water, which are not entirely accounted for by well levels. The estimation of peat matrix water storage is potentially the largest source of error and the limiting factor to calculate water balances in this environment. The results show that the groundwater level and the water storage vary depending on the season and especially after a heavy rainfall. Finally, the results illustrate the complexity of water routing through the site and thus raise several questions to be resolved in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Cushion plant dominated peatlands are key ecosystems in tropical alpine regions of the Andes in South America. The cushion plants have formed peat bodies over thousands of years that fill many valley bottoms, and the forage produced by the plants is critical for native and nonnative domesticated mammals. The sources and flow paths of water supporting these peatlands remain largely unknown. Some studies have suggested that glacier meltwater streams support some peatlands, and that the ongoing loss of glaciers and their meltwaters could lead to the loss or diminishment of peatlands. We analysed the hydrologic regime of 10 peatlands in four mountain regions of Bolivia and Peru using groundwater monitoring. Groundwater levels in peatlands were relatively stable and within 20 cm of the ground surface during the rainy season, and many sites had water tables 40–90 cm below the ground surface in the dry season. Topographic and groundwater elevations in the peatlands demonstrated that the water source of all 10 peatlands was hillslope groundwater flowing from lateral moraines, talus, colluvium, or bedrock aquifers into the peatlands. There was little to no input from streams, whether derived from glacier melt or other sources, and glacier melt could not have recharged the hillslope aquifers supporting peatlands. We measured the stable water isotopes in water samples taken during different seasons, distributed throughout the catchments, and the values are consistent with this interpretation. Our findings indicate that peatlands in the study region are recharged by hillslope groundwater discharge rather than stream water and may not be as vulnerable to glacial decline as other studies have indicated. However, both glaciers and peatlands are susceptible to changing thermal and precipitation regimes that could affect the persistence of peatlands.  相似文献   

19.
泥炭地是一种水-陆过渡型的湿地生态系统。水体沼泽化过程中,植被等生物群落也随之改变,进而影响泥炭地碳埋藏和发育过程。作为泥炭地生态系统重要的次级生产者,摇蚊群落结构变迁可以为追溯泥炭地环境演变和发育历史提供关键线索。泥炭地在发育过程中将经历各种不同阶段,然而,现有的泥炭地摇蚊群落调查仅限于泥炭生境或泥炭地中开阔水域,较短的生境梯度不足以提供更为全面的摇蚊群落变化信息。神农架大九湖湿地包含泥炭地、湖泊、临时性水体等多种生境,本研究选择该湿地公园作为研究区域,通过采集不同生境的表层沉积物及水体样品,提取底泥亚化石摇蚊头壳,分析大九湖湿地中不同生境下的摇蚊群落结构差异,并对其与环境因子间的关系进行探讨。结果表明:1)大九湖湿地不同生境中摇蚊优势种迥异,泥炭藓藓丘生境中Limnophyes、Psilometriocnemus、Pseudosmittia等半陆生种类为主要优势种,湖泊生境中则以典型静水种Polypedilum nubeculosum-type为主要优势种,而过渡性水域(泥炭地洼地、沟渠及水洼生境)中,静水种与半陆生种共存;2)烧失量、水位埋深和pH是塑造不同生境类型下摇蚊群落结构的显著环境因子,水文条件主要通过改变碳积累过程等其他环境条件间接影响生物群落组成;3)沿水生-半陆生生境梯度,有机质含量和类型均发生显著变化,而摇蚊群落也由静水种、静水/半陆生共存转变为以半陆生种为主,摇蚊群落对生境变化表现出良好的响应过程。本研究揭示了不同生境条件下摇蚊群落的结构差异及影响摇蚊群落结构的潜在因子,为未来基于摇蚊的长时间尺度上泥炭地发育过程分析提供参考依据。  相似文献   

20.
The present study makes use of a detailed water balance to investigate the hydrological status of a peatland with a basal clay‐rich layer overlying an aquifer exploited for drinking water. The aim is to determine the influence of climate and groundwater extraction on the water balance and water levels in the peatland. During the two‐year period of monitoring, the hydrological functioning of the wetland showed a hydric deficit, associated with a permanent unsaturated layer and a deep water table. At the same time, a stream was observed serving as a recharge inflow instead of draining the peatland, as usually described in natural systems. Such conditions are not favourable for peat accumulation. Field investigations show that the clay layer has a high hydraulic conductivity (from 1·10?7 to 3·10?9 m.s?1) and does not form a hydraulic barrier. Moreover, the vertical hydraulic gradients are downward between the peat and the sand aquifer, leading to high flows of groundwater through the clay layer (20–48% of the precipitation). The observed hydric deficit of the peatland results from a combination of dry climatic conditions during the study period and groundwater extraction. The climatic effect is mainly expressed through drying out of the peatland, while the anthropogenic effect leads to an enhancement of the climatic effect on a global scale, and a modification of fluxes at a local scale. The drying out of the peatland can lead to its mineralisation, which thus gives rise to environmental impacts. The protection of such wetlands in the context of climate change should take account of anthropogenic pressures by considering the wetland‐aquifer interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号