首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
介绍L波段雷达探测系统建站、仪器准备、仪器施放以及处理记录时要注意的事项,还有特殊资料的处理方法;简单介绍了雷达的日常维护和维修窍门。  相似文献   

2.
对L波段雷达探测系统在小场地风速过大时、施放气球困难、探空仪容易撞到建筑物或过顶,导致雷达无法自动跟踪、易抓旁瓣、容易造成记录缺测以致重放球等问题进行分析.  相似文献   

3.
L波段雷达探测系统是我国高空气象观测的重要组成部分,随着地面高空气象观测业务一体化工作的展开,许多地面气象观测业务人员开始从事高空气象观测业务工作,出现了不少问题,结合多年来的台站工作经验,就L波段雷达探测系统在使用中的一些技巧经验进行总结,将发现的一些问题提出解决建议。  相似文献   

4.
L波段二次测风雷达-电子探空仪高空气象探测系统是新一代高空气象探测系统,其性能、操作方法、业务流程等与59-701探测系统有所不同。文章介绍了杭州高空站2002~2004年3年中使用新一代高空气象探测系统的一些使用技巧和故障处理方法。内容包括雷达检查、探空仪基测、电池浸泡、仪器装配、瞬间观测及数据输入、气球施放、旁瓣抓球判断、探测中途丢球、放球软件出现非正常现象等。  相似文献   

5.
通过研究分析在使用L波段雷达探测系统的过程中所遇到的问题,探讨问题的成因和解决的方法.  相似文献   

6.
与701雷达-59型探空仪探测系统相比,L波段雷达-GTS1数字探空仪探测系统对雷达频率的要求更为严格。经过半年多的使用,现将桂林L波段雷达有关频率调整的一些体会整理如下:首先,在放球前的仪器准备过程中GTS1探空仪一般有两个载波中心频率(每部雷达和每批仪器可能有所不同,工作中应随时总结)即在两个不同的频点下四条亮线和回波都较好。高一些的在1677MHZ附近,低一些的在1671MHz附近,通常以高的为首选。在基测过程中,频率要求不高,调到1675MHZ左右都行。但当仪器拿出室外后,特别是气球升起来后要注意调整频率了,这时除了观察四条亮…  相似文献   

7.
对河池高空站在使用L波段雷达探测系统的过程中,探测操作及雷达设备等方面遇到的典型问题进行总结、分析,并结合实际经验提出解决方法.  相似文献   

8.
L波段雷达探测系统几种特殊故障的处理   总被引:2,自引:0,他引:2  
为确保L波段雷达能准确、可靠、安全连续的正常运行,并在大气监测现代化建设中发挥应有的作用,雷达探测系统的保障将起到关键作用。文章针对东胜L波段雷达探测系统运行中出现的个例故障进行原因分析,并找出相应的解决办法,保证系统的正常运行。  相似文献   

9.
呼和浩特观象台自2008年9月1日使用L波段雷达─GTS1型数字式探空仪气象探测系统,综合探测已2个多月了,在工作期间积累了一些经验,与各位同行交流。1  相似文献   

10.
我国自主研制的新一代探测系统—L波段雷达气象探测系统现在已在80个探空站投入使用。由于雷达性能原因,气球过顶常常会造成丢球,致使记录不完整,尽管可以补放小球,但有时也会因为天气原因而无法补回,造成记录缺测。可见,避免气球过顶丢球在高空观测中是非常重要的,该文通过对L波段雷达基本原理及性能分析,总结实际工作经验,有效的解决了气球过顶技术,可供同类型台站借鉴。  相似文献   

11.
利用GPS定位资料分析L波段雷达测风性能   总被引:3,自引:3,他引:0       下载免费PDF全文
新研制的GPS探空仪是在我国高空站网上普遍使用的L波段雷达-数字探空仪系统中增加GPS定位模块,高空风数据不但可以通过GPS定位数据计算获得,同时还可以通过L波段雷达单测风方式进行计算,这样使其自身获得了多方面的动态比对试验。通过对23份对比施放记录分析发现:在一般情况下,经过同等的适当滑动平滑后,从L波段雷达和GPS定位两个独立系统得出的高空风廓线基本一致,说明L波段雷达的测风精度基本可以达到GPS测风水平。但在探空仪上升到高空小风速区且远离测站时,雷达测风精度明显较GPS测风精度低,需要对原始数据进行更大范围的平滑。对照分析表明:目前高空站的L波段雷达观测业务还有较大发展潜力。  相似文献   

12.
目前我国120个高空站的探测系统为自主研制的L波段雷达探测系统,该系统不仅提高了我国高空气象观测业务质量和观测精度,还提高了观测信息的空间和时间密度~([1])。该文根据2009—2017年宜宾L波段雷达探测数据,统计分析高空探测丢球资料,总结其规律,并探究本地化的应对措施。  相似文献   

13.
L波段测风雷达是集信号跟踪与微波通讯于一体的综合探测系统,目前已成为常规高空探测的主要手段。为了保证雷达系统稳定可靠运行,必须做好其日常维护及维修工作。本文对L波段雷达系统运行中的常见故障进行了分析、判断,并归纳总结了故障排除方法,同时对维修过程中的注意事项作了说明。  相似文献   

14.
用GPS定位数据研究L波段雷达数字探空仪系统的测高误差   总被引:2,自引:2,他引:0  
姚雯  马颖 《气象》2009,35(2):88-93
我国高空站网已普遍推广L波段雷达-数字探空仪系统,但业务上作为测风使用的L波段雷达设备的探测精度只经过了近距离静态目标的标定,缺乏相关的动态检验.为了解该系统的动态探测性能,作者在数字探空仪上增加了GPS定位模块,以获得的GPS高度数据作标准,分析了2006年5月至6月上海和南京探空站23份施放记录,结果表明: L波段雷达设备由于水平标定精度不够,造成测高误差较大,100hPa高度以下最大系统误差达到几百米,而且每个站的误差带有系统性,但利用GPS高度数据与雷达测得高度的对比分析结果,来修正雷达仰角参数后,大幅度提高了L波段雷达的测高准确度,系统误差在100hPa高度以下不超过40m.因此在高空探测业务上以GPS定位资料作为L波段雷达定标的参考标准具有可行性.  相似文献   

15.
1引言 GFE(L)型雷达-GTS1型数字式电子探空仪高空气象探测系统,简称L波段高空气象探测系统。此系统与59—701雷达探测系统相比较。具有基值测定方便快捷、操作系统自动化、数据准确率高、记录审对.多样等多方面的特点和优势,提高了人员的效率,减少了探测数据的出错率。但在实际运用中还会出现一些情况和问题,为进一步提高L波段高空气象探测资料的数据质量。为气象防灾减灾及社会各部门提供更好的气象信息保障,为此进行探讨和分析。  相似文献   

16.
L波段高空气象探测系统特殊问题处理方法   总被引:3,自引:1,他引:2  
L波段雷达-电子探空仪高空气象探测系统为我国高空探测系统换型的主要设备.本文对雷达操作过程中容易出现的天线抖动、无法自动跟踪、丢球后寻找等一些问题,以及软件处理中的一些特殊情况进行分析,列出现象、查找原因、提出解决办法.  相似文献   

17.
浅谈L波段测风雷达-GTS1型数字探空仪频率的调整   总被引:1,自引:0,他引:1  
与701雷达—59型探空仪探测系统相比,L波段雷达—GTS1型数字探空仪探测系统对雷达频率的要求更为严格,频率调整是否合适,直接影响到雷达天线自动跟踪、距离自动跟踪和探测数据的接收。经过一段时间的使用,积累了一些雷达频率调整的经验。1放球前的频率调整GTS1型数字探空仪的载波中心频率f。为1675MHz±3MHz,即载波中心频率范围为1672 ̄1678MHz,通常以接近1675MHz为最好。在放球前需要调整雷达接收机的频率,使之与探空仪的载波中心频率最接近。调整雷达接收机频率的方法有两种:第一是增益控制按钮置于自动状态,然后手动调整频率,使监…  相似文献   

18.
通过对L波段雷达-GTS1数字探空仪探测系统在实际操作中容易出现的一些差错进行分析,找出差错易出现的原因和应对措施。  相似文献   

19.
GFE(L)1型二次测风雷达-GTS1型数字式探空仪系统软件包括两大部分,即放球软件和数据处理软件。L波段(1型)高空气象探测系统软件是与L波段(1型)高空气象探测系统配套使用  相似文献   

20.
随着气象业务现代化进程和电子技术的发展,L波段二次测风雷达—电子探空仪等新型高空气象观测系统投入使用。在提高探空资料的准确性、连续性、时效性的同时也伴随着一些故障的出现,主要有施放前故障和施放后故障。现就格尔木探空站实际工作中出现的施放前常见故障及防止措施进行统计和总结,以供工作中参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号