首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
Levels of formate and acetate in dew were measured at Dayalbagh, India, usingsurrogate surfaces. The dew formed per night ranged between 0.06 lm–2 and 1.38 l m–2, with an average of 0.59l m–2. pH ranged between 6.7 and 7.4. Mean concentrations offormate and acetate in dew were 10.2 ± 10.2 eql–1 and 7.5 ± 4.5 eq l–1,respectively. The correlation coefficient between the two ions was 0.80 (p =0.001), which suggested that concentrations of these species in dew are linkedtogether. They have either common or different sources with fairly constantstrengths or products of same reaction. Good correlation of formate andacetate with Ca (r = 0.82 and r = 0.70, respectively) and Mg (r = 0.74 and r= 0.71, respectively) suggested that these ions may be associated with Ca andMg after the neutralization process. Deposition rates for formate and acetatein dew per night were 10.2 ± 7.22 mol m–2 pernight and 4.6 ± 2.2 mol m–2 per night,respectively. The theoretical Henry's law constant (K* H)and the field-observed Henry's law coefficient (K* H) ascalculated from concurrent measurements of gas phase and dew for both acidsshowed large discrepancies of three orders of magnitude.  相似文献   

2.
Extensive ambient concentration and flux measurements have been performed in the heavily polluted region of Cubatão/Brazil. Substantial contribution of anthropogenic sources to the local reduced sulfur burden has been observed. As a result of this atmospheric sulfur burden average gas exchange between vegetated soils and the atmosphere shows net deposition. Based mainly on own field measurements a local budget for H2S, COS, and CS2 has been made up in order to calculate anthropogenic emissions. All major sources and sinks in the chosen atmospheric reservoir (24×20×1 km) have been taken into account. Due to the small reservoir size fluxes across its boundaries are dominant sources and sinks. The differences between outflux and influx therefore account for the unknown anthropogenic emissions which have been determined to be 80±10 (H2S), 66±15 (COS), and 29±6 Mmol year-1 (CS2). Other sources and sinks like natural emissions, chemical conversion, and dry deposition turned out to be of minor importance on a local scale. In fact, inside the investigated reservoir natural emissions were below 0.5% of anthropogenic emissions. Anthropogenic emissions of H2S, COS, and CS2 quantified in this work have been compared with global emission estimates for these compounds made by other authors. We conclude that global anthropogenic emissions of reduced sulfur compounds especially of COS and CS2 are currently under-estimated.  相似文献   

3.
PM10 samples were collected to characterize the seasonal and annual trends of carbonaceous content in PM10 at an urban site of megacity Delhi, India from January 2010 to December 2017. Organic carbon (OC) and elemental carbon (EC) concentrations were quantified by thermal-optical transmission (TOT) method of PM10 samples collected at Delhi. The average concentrations of PM10, OC, EC and TCA (total carbonaceous aerosol) were 222?±?87 (range: 48.2–583.8 μg m?3), 25.6?±?14.0 (range: 4.2–82.5 μg m?3), 8.7?±?5.8 (range: 0.8–35.6 μg m?3) and 54.7?±?30.6 μg m?3 (range: 8.4–175.2 μg m?3), respectively during entire sampling period. The average secondary organic carbon (SOC) concentration ranged from 2.5–9.1 μg m?3 in PM10, accounting from 14 to 28% of total OC mass concentration of PM10. Significant seasonal variations were recorded in concentrations of PM10, OC, EC and TCA with maxima during winter and minima during monsoon seasons. In the present study, the positive linear trend between OC and EC were recorded during winter (R2?=?0.53), summer (R2?=?0.59) and monsoon (R2?=?0.78) seasons. This behaviour suggests the contribution of similar sources and common atmospheric processes in both the fractions. OC/EC weight ratio suggested that vehicular emissions, fossil fuel combustion and biomass burning could be the major sources of carbonaceous aerosols of PM10 at the megacity Delhi, India. Trajectory analysis indicates that the air mass approches to the sampling site is mainly from Indo Gangetic plain (IGP) region (Uttar Pradesh, Haryana and Punjab etc.), Thar desert, Afghanistan, Pakistan and surrounding areas.  相似文献   

4.
Selected applications of baseline aerosol, SO2 and deposition chemistry observations in Canada are reviewed to illustrate how new insight can be gained into features of the atmospheric pathway of trace substances such as sources, transformation and removal. A strong annual variation in Arctic aerosol concentration is a manifestation of particle residence times that are much longer in winter than in summer. Differences in the variation of SO4 = and V concentrations in the Arctic winter are due to SO2 oxidation. The mean rate of oxidation between November and April ranges from 0.04 to 0.25%/h and is a minimum in December, January and February. Br measured on filters in the Arctic peaks in concentration later (March and April) than anthropogenic particulate matter suggesting photochemical production. Acidity in Arctic aerosol and in glacial ice are correlated. The relationship yields a best estimate of acidity in the absence of anthropogenic influences of 5.8 mole/l. Coincident air and precipitation measurements of sulphur oxides indicate that on average in eastern Canada 60% of SO4 = in rain originates from SO2 oxidation in the storm. Trends in Arctic ice core acidity and SO2 emissions in Europe are similar, that is, little variation in the first half of the century and a marked increase since the mid 1950's. This is consistent with meteorological and chemical evidence linking Arctic air pollution with Eurasian sources.  相似文献   

5.
Within the framework of IDAF (IGAC DEBITS AFRICA: International GlobalAtmospheric Chemistry/DEposition of Biogeochemically Important TraceSpecies/Africa) network, data analysis is realised on precipitation chemical composition collected in Zoétélé, in Southern Cameroon. This station, located atabout 200 km from the Atlantic Ocean, is representative of a so-called `Evergreen Equatorial Forest' ecosystem. An automatic wet-only precipitation collector was operated at the station from 1996 to 2000. The rainfall regime, associated with eastward advection of moist and cool monsoon air masses, amounts to an average of 1700 mm/year. Inorganic and organic content of the precipitation were determined by IC in 234 rainfall events, representing a total 4,583 mm of rainfall from an overall of 7,100 mm.The mean annual precipitation chemistry and wet deposition fluxes characteristic of an African equatorial forest are quantified. Typical atmospheric gases and particles sources influence the precipitation chemical content and the associated deposition of chemical species. Indeed, hydrogen concentration is the highest (12.0 eq.L–1) of the IDAF measurements, leading to acid rains with a low mean pH 4.92. The mineral species are dominated by nitrogenous compounds (NH4 +:10.5 and NO3 : 6.9 eq.L–1), Ca2+ (8.9 eq.L–1) and SO4 2 – 5.1 eq.L–1. Relationship between Ca2 + and SO4 2 – indicated aterrigeneous particulate source and an additional SO4 2 – contributionprobably due to swamps and volcano emissions. Na+ and Clconcentrations, around 4.0 eq.L–1, seem very low for this site,accounting for the marine source. Besides, strong correlations between NH4 +/K+/Cl indicate the biomass burning originof these species. Accordingly, precipitation chemistry in Zoétéléis influenced by three major sources: biogenic emissions from soil and forest ecosystems, biomass burning from savannah, and terrigenous signature from particles emissions of arid zones; and three minor sources: marine, volcano and anthropogenic. In spite of the relatively low concentration of all these elements, the wet deposition is quite significant due to the high precipitation levels, with for example a nitrogenous compounds deposition of 34 mmol.m–2.yr–1.  相似文献   

6.
Particulate content of savanna fire emissions   总被引:9,自引:0,他引:9  
As part of the FOS-DECAFE experiment at Lamto (Ivory Coast) in January 1991, various aerosol samples were collected at ground level near prescribed fires or under local background conditions, to characterize the emissions of particulate matter from the burning of savanna vegetation. This paper deals with total aerosol (TPM) and carbon measurements. Detailed trace element and polycyclic hydrocarbon data are discussed in other papers presented in this issue.Near the fire plumes, the aerosols from biomass burning are primarily of a carbonaceous nature (C%70% of the aerosol mass) and consist predominantly of submicron particles (more than 90% in mass.) They are characterized by their organic nature (black to total carbon ratio Cb/Ct in the range 3–20%) and their high potassium content (K/Cb0.6). These aerosols undergo aging during their first minutes in the atmosphere causing slight alterations in their size distribution and chemical composition. However, they remain enriched in potassium (K/Cb=0.21) and pyrene, a polycyclic aromatic hydrocarbon, such that both of these species may be used as tracers of savanna burning aerosols. We show that during this period of the year, the background atmosphere experiences severe pollution from both terrigenous sources and regional biomass burning (44% of the aerosol). Daynight variations of the background carbon concentrations suggest that fire ignition and spreading occur primarily during the day. Simultaneous TPM and CO2 real-time measurements point to a temporal and spatial heterogeneity of the burning so that the ratio of the above background concentrations (TPM/CO2) varies from 2 to 400 g/kg C. Smoldering processes are intense sources of particles but particulate emissions may also be important during the rapidly spreading heading fires in connection with the generation of heavy brown smoke. We propose emission factor values (EF) for aerosols from the savanna biomass burning aerosols: EF (TPM)=11.4±4.6 and 69±25 g/kg Cdry plant and EF(Ct)=7.4±3.4 and 56±16 g C/kg Cdry plant for flaming and smoldering processes respectively. In these estimates, the range of uncertainty is mostly due to the intra-fire variability. These values are significantly lower than those reported in the literature for the combustion of other types of vegetation. But due to the large amounts of vegetation biomass being burnt in African savannas, the annual flux of particulate carbon into the atmosphere is estimated to be of the order of 8 Tg C, which rivals particulate carbon emissions from anthropogenic activities in temperate regions.  相似文献   

7.
Seven carboxylic acids in rainwater were simultaneously determined using ion chromatography for 13 months in two different sites, Guiyang and Shangzhong, southwest of China. Results showed formic, acetic and oxalic acids were the three predominant carboxylic acids. Their volume-weighted average concentrations were 14.24, 9.35, 2.79 μmol/L in Guiyang and 4.95, 1.35, 2.31 μmol/L in Shangzhong, respectively. A distinctive diurnal pattern in carboxylic acid concentrations (daytime>nighttime, t test, p < 0.05) was observed during the growing season in Guiyang. Shangzhong witnessed higher concentration of these acids during the growing season than that during the non-growing season. Direct emissions from growing vegetation or soils probably account for the main provenance of the acids in the rural area. However, the opposite trend were found in Guiyang and the anthropogenic sources during the non-growing season were the main reason. By comparison of our result with the previous data about 20 years ago, we calculated that at least 42% of acetic acids and 69% of formic acid originated from the anthropogenic sources in Guiyang. Furthermore, the ratio of formate/acetate in gas phase larger than 1 suggest the oxidation of unsaturated hydrocarbons from the human activity and/or natural sources were the main origin of carboxylic acids in Guiyang. While The F/A ratio in gas phase was less than 1 in Shangzhong which indicate the direct emissions from biogenic sources. Oxalic acid was in similar amounts in both sites, indicating the common source of the acid.  相似文献   

8.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   

9.
In an effort to investigate both large-scale (spatial) and short/long-term (temporal) distribution characteristics of atmospheric mercury, we have combined and analyzed the Hg concentration data sets collected continuously by four different scientific groups for the areas and periods covering (1) America (three sites near the Canadian Great Lakes (CGL): 1997–2000), (2) Asia (Seoul, Korea (SEL): 1997–2002), (3) Arctic (Alert, Canada (ALT): 1995–2001), and (4) Europe (Mace Head, Ireland (MH): 1996–2002). The mean concentrations of Hg data from those widely dispersed monitoring stations were computed to be (1) 1.58 ± 0.23, 1.69 ± 0.32, and 1.93 ± 0.44 (three sites in CGL), (2) 5.06 ± 2.46 ng m–3 (SEL), (3) 1.55 ± 0.41 (ALT), and (4) 1.76 ± 0.31 (MH). Intersite relationships were investigated among all different stations using the data groups divided into different temporal intervals. The analysis of diurnal variation patterns of Hg indicated differences in regional source/sink characteristics, with increasing amplitudes of variability toward areas under the strong influence of anthropogenic sources. When the analysis was made over different seasons, the patterns contrasted greatly between the Arctic and the other areas. It was found that the relative enhancement of Hg concentrations was dominant during winter/spring in most areas due to direct or indirect influences of anthropogenic emissions. However, the pattern for the Arctic area was distinguished pronouncedly from others with the spring minimum and summer maximum both of which reflect the potent effects of mercury depletion phenomenon (MDP). By contrast, no long-term trend, either being an increase or decrease, was evident from any of the stations during each respective study period. Although our initial attempts to examine the distribution characteristics of Hg analyzed by different scientific groups were successful, we feel that these efforts should be continued further to extend the compatibility of the global database of Hg.  相似文献   

10.
Methyl Chloride (CH3Cl) is a chlorine-containing trace gas in the atmosphere contributing significantly to stratospheric ozone depletion (Carpenter et al. 2014). In the global CH3Cl budget, the atmospheric CH3Cl emissions is predominantly maintained by natural sources, of which magnitudes have been relatively well-constrained. However, significant uncertainties still remain in the CH3Cl emission strengths from anthropogenic sources. High-frequency and high-precision in situ measurements of atmospheric CH3Cl concentrations obtained since 2008 at Gosan station (a remote background site in the East Asia) reveal significant pollution events superimposed on the seasonally varying regional background levels. Back trajectory statistics showed that air masses corresponding to the observed CH3Cl enhancement largely originated from regions of intensive industrial activities in China. Based on an inter-species correlation method, estimates of CH3Cl emissions from manufacturing industries including coal combustion, use of feedstocks, or process agents in chemical production for China (2008–2012) are 297 ± 71 Gg yr.?1 in 2008 to 480 ± 99 Gg yr.?1 in 2009, followed by a gradual decrease of about 25% between 2009 and 2012 (398 ± 92 Gg yr.?1 for 2010; 286 ± 68 Gg yr.?1 for 2011; 358 ± 92 Gg yr.?1 for 2012). The annual average of industrial CH3Cl emissions for 2008–2012 (363 ± 85 Gg yr.?1) in China is comparable to the known total global anthropogenic CH3Cl emissions accounting only for coal combustion and indoor biofuel use. This may suggest that unless emissions from the chemical industry are accounted for, global anthropogenic emissions of CH3Cl have been substantially underestimated. In particular, since industrial production and use of CH3Cl have not been regulated under the Montreal Protocol (MP) or its successor amendments, continuous monitoring of Chinese CH3Cl outflow is important to properly evaluate its anthropogenic emissions.  相似文献   

11.
Samples of rain water were collected during monsoon season (June to September) of 2006 and 2007 at Hudegadde, a rural site located in an ecological sensitive area of Western Ghats. The collected samples were analyzed for pH, conductivity and major ions. At this site, rainwater pH varied from 4.20 to 7.39 with 5.65 as volume weighed mean. The observed mean was slightly lower than the average pH reported at most of the Indian continental sites. Monthly variation showed that average pH of rain water was the lowest during September (end of monsoon) and the highest during July (peak of monsoon). Overall, marine sources had dominating influence at this site. However, significant influence of anthropogenic and crustal sources from local as well as inter-continental regions was also noticed. As compared to NO3, higher concentration of SO42− was noticed which might be due to contribution from industrial activities responsible for SO2 emission. At this site, influence of five types of airmass trajectories was noticed i.e. i) C.I.O. (Central part of Indian Ocean)-when air masses blown from Maldives and nearby region of central Indian ocean. These airmasses had higher concentrations of nss Ca2+ which did not show any adverse impact on the pH; ii) N.W.I.O.(North-West Indian Ocean)-when airmasses travelled from oceanic region close to north-east Africa. These airmassses had higher concentrations of nss sulphate and nitrate and gave rise to acid rain; iii) S.W.I.O. (South -West Indian Ocean)- when airmasses came from southern part of Indian ocean (close to Mauritius). During these airmasses, rain water samples had almost equal ratio of nss SO42− and nss Ca2+ similar to N.W.I.O but very low NO3 ; iv) Gulf-when airmasses were observed coming from Gulf region. Although these airmasses contributed only 2% of the total number of samples but carried high amount of nss SO42− which gave rise to acid rain. The second lowest pH was observed during these airmasses which might be due to very high nssSO42−/nssCa2+ ratios; v) N.W.I.O. + S.W.I.C. (North-West Indian Ocean+South-West Indian Continental)- when airmasses originated from north-west Indian Ocean travelling towards south continental part of India and then arriving to the site. During these airmasses, samples showed typical influence of urban activities having high concentrations of nss SO42− and NO3 leading to the lowest pH of rain water.  相似文献   

12.
The Petryanov air filters combined into half-year sets were analyzed for the presence of 40K, 137Cs and 22Na by means of low-background gamma rays spectrometry. Each sample contains aerosols from more than 1 Mm3 of air. Samples were collected in ground level air at Kraków (Southern Poland) from 1996 to 2002. Activity concentrations of 40K are almost constant with the mean of 14.7± 4.5 Bq m–3. Activity concentrations of 137Cs, which are on the level of single Bq m– 3 show exponential decrease with effective half-life time of 7.07± 0.77 years. The cosmogenic 22Na shows a strong seasonal variation with significant different mean values activity concentration between 0.333± 0.095 Bq m–3 and 0.137± 0.045 Bq m–3, for summer and winter, respectively. Moreover, the activity ratio for two cosmogenic radionuclides: 22Na and measured previously 7Be show also changes with statistically significant seasonal differences. The lower values were found during winters. The mechanisms which might govern this ratio are discussed. The conclusion is that transport of 22Na during summer seems to be so much effective, that results in kind of relative depletion of stratosphere of this nuclide.  相似文献   

13.
Precipitation samples collected during 2005–2009 from a rural forest station of Bhubaneswar were analyzed for their chemical composition. The samples were collected through a wet-only (WO) collector and two bulk (B1 and B2) collectors. The ions were evenly balanced indicating good data quality. The overall pH of rainwater was slightly acidic and ~47% of all rain events during the period were acidic (pH?<?5.6). Multilinear regression analysis showed relation between the free acidity (H+) and other components in rainwater. Enrichment factors (EF) of the major components with respect to their sources such as marine and crustal were calculated. Maximum EF was observed for NO 3 ? for both marine and crustal sources for all the three collectors. Source apportionments were also carried for the ions. Trend analysis showed continuous increase in most of the ions over years during the study period driven by anthropogenic emissions. Statistical/factorial analysis established correlation among different ions.  相似文献   

14.
Methanesulfonate (MS) and non-sea-salt sulfate (nss-SO 4 2– ), two of the major oxidation products of atmospheric dimethylsulfide (DMS), have been continuously measured in rainwater at three remote islands in the Southern Indian Ocean: Amsterdam since 1991, Crozet since 1992, and Kerguelen since 1993. The annual volume weighted mean (VWM) concentrations of nss-SO 4 2– in rainwater were 3.19, 3.04 and 4.57 eq l–1 at Amsterdam, Crozet, and Kerguelen, respectively while the VWM of MS were 0.24, 0.15 and 0.30 eq l–1, respectively. At all three islands, MS presented a well-distinguished seasonal variation with a maximum during summer whereas the seasonal variation of nss-SO 4 2– was less pronounced, possibly due to the increased anthropogenic influence during the winter period. Furthermore, MS presented significant interannual variations, in particular at Amsterdam and Crozet, which is closely related to the sea-surface temperature (SST) anomalies). Finally, the nss-SO 4 2– deposition at Crozet Island presented a decreasing interannual trend, reflecting probably reductions in sulfur emissions from Southern Africa. On the contrary no interannual tendency was observed in the nss-SO 4 2– concentrations at Amsterdam Island, indicating that the biogeochemical sulfur cycle at this area is mainly influenced by biogenic emissions.  相似文献   

15.
Emissions of marine biogenic sulfur to the atmosphere of northern Europe   总被引:1,自引:0,他引:1  
Measurements of DMS and other reduced sulfur compounds in surface waters have been carried out from a helicopter in the seas surrounding Scandinavia. Average summer time concentrations of DMS ranged from 70 to 150 ngS L-1. Simultaneous measurements of biological and physical parameters revealed no correlation between DMS and phytoplankton species, species assemblages, total phytoplankton biomass, chlorophyll a, temperature, and salinity. The only exception was a correlation between DMS concentration, Chrysochromulina spp. belonging to the Prymnesiophyceae, and salinity over a narrow range of salinity in the Baltic Sea.The flux of reduced sulfur to the atmosphere in July in this region is estimated to be 120–170 gS m-2 d-1 from the Baltic, 240–810 in the Kattegat/Skagerrak, and 120–690 in the North Sea. Annual fluxes are roughly 100 times higher than these daily fluxes. On an annual basis, biogenic sulfur emissions from the coastal seas are negligible (<1%) compared to the anthropogenic emissions in northern Europe. However, during the summer months, the biogenic sulfur emissions from the seas surrounding the Scandinavian peninsula are estimated to be as high as 20–70% of the anthropogenic emissions in Scandinavia. This makes it of interest to incorporate the biogenic emissions in calculations of long-range transport and deposition of sulfur within the region.Other volatile sulfur species, mainly methyl mercaptan, contribute about 10% of the total flux of reduced sulfur. Estimated fluxes of CS2 to the atmosphere ranged from 1 gS m-2 d-1 in the Baltic Sea to 6 gS m-2 d-1 in the North Sea. No emissions for H2S or COS were detected.  相似文献   

16.
于2016年7月-2017年6月在武汉市典型居民区对大气中101种挥发性有机物(VOCs)进行了监测,以便研究武汉市典型居民区周边VOCs的组成特征和变化规律,并探讨了其主要来源.结果表明,武汉市空气中VOCs的体积分数为(46.24±24.57)×10-9,表现为烷烃>含氧有机物>烯烃>卤代烃>芳香烃.受交通排放影响烷烃的比例上午高于下午,1月机动车尾气为武汉市主要的VOCs排放源,夏季含氧类化合物浓度高于冬季,可能更多地受本地喷涂等溶剂使用行业和光化学反应生成的影响,5-9月表现出明显的生物源排放特征.利用正交矩阵因子分析(PMF)得到武汉市居民区大气VOCs主要有6个来源,分别为燃烧源、机动车尾气、工业排放、溶剂使用、汽油挥发和植物排放.其中,燃烧源、机动车尾气贡献比例最高,是该区域VOCs控制的重要排放源.  相似文献   

17.
Precipitation Chemistry in the Sahelian Savanna of Niger, Africa   总被引:1,自引:0,他引:1  
Within the framework of the IDAF (IGAC DEBITS AFRICA) network, we present in this paper data on precipitation and aerosol chemistry in the semiarid savanna of the Sahelian region of Niger. An automatic wet-only precipitation collector was operated at the Banizoumbou station during the entire 1996 rainy season (June to September 1996). Inorganic (Na+, NH 4 + , K+, Mg2+, Ca2+, Cl-, NO 3 - , SO 4 2- ) and organic contents of the precipitation (HCOOH, CH3COOH, C2H5COOH) were determined by Ion Chromatography (IC) in 29 rainfall events. Once per week, bulk particle samples were collected on the same site, and soluble water material was determined by IC. We examined the influence of atmospheric gas and particle sources on the precipitation and aerosol chemical contents. We established the influence of marine, terrigenous, and biogenic sources in the Sahelian region. The terrigenous signature is dominant and related to Sahelian soil erosion, with a high calcium content in precipitation (31.2 eq L-1) and in aerosols (1.8 g m-3). Two other signatures of atmospheric sources are highlighted by the relatively high nitrogenous (ammonium and nitrate) and organic contents (formate, acetate) in the precipitation. Ammonium (12.9 eq L-1) and nitrate (12.3 eq L-1) contents confirm respectively the biogenic source of ammonia released by domestic animal excreta in Niger and the natural emissions from semiarid savannas soils, perturbed by wild or domestic animal grazing. In spite of a high potential acidity given by nitrate, formate and acetate; a weak acidity (H+ (2.1 eq L-1) is calculated from the mean pH of 5.67 measured. A statistical analysis of the aerosol chemical composition clearly indicates that nitrates are strongly correlated at the 1% level with terrigenous ions, i.e., Ca2+ and Mg2+ (0.95 < r < 1). We observed a similar relationship between all the terrigenous ions and nitrate in the precipitation. In the Sahelian region, alkaline soil dust representative of the terrigenous contribution interact, with gaseous nitrogenous and carbonaceous compounds, leading to the neutralization of acid gases and subsequent weak acidity in precipitation. Finally, taking into account the main chemical characteristics of Banizoumbou precipitations and aerosols, which demonstrate the importance of heterogeneous and multiphase chemical processes, we propose a conceptual model of the atmospheric chemistry in the Sahelian region.  相似文献   

18.
The temporal variation of ambient SO2 and the chemical composition of particulate matters (PM2.5 and PM10) were studied at National Physical Laboratory (NPL), New Delhi (28°38′N, 77°10′E). Spatial variation of SO2 at seven air quality monitoring stations over Delhi was also studied simultaneously. Wide range of ambient SO2 was recorded during winter (2.55 to 17.43 ppb) compare to other seasons. SO2 mixing ratio was recorded significantly high at industrial sites during winter and summer; however, no significant spatial difference in SO2 mixing ratio was recorded during monsoon. SO 4 2? /(SO2+SO 4 2? ) ratio was recorded high (0.74) during winter and low (0.69) during summer. Monthly variation of PSCF was analyzed using HYSPLIT seven days backward trajectories and daily average SO2 data. PSCF analysis suggests that, during winter (December, January, February) ambient SO2 at the study site might have contributed from long distance sources, located towards west and southwest directions; during monsoon (July, August, September) marine contribution was noticed; whereas, during summer (April, May and June) it was from regional sources (located within few 100 km of study site). During winter there was significant contribution from the long distance sources located in western Asia, northwestern Pakistan, Rajasthan and Punjab provinces of India. Coal used in thermal power plants at Panipat (in the northwestern side) and Faridabad (in the southeastern side), local industries, soil erosion and biomass burning may be major contributing factors for SO2 during summer. The study establishes that the transport sector may not be the major source of ambient SO2 in Delhi.  相似文献   

19.
Summary In this paper, the relationship between seasonal mean (June, July, August and September) monsoon circulation features and the midlatitude circulations in winter and spring seasons have been examined during contrasting years of more (less) number of snow days in winter/spring followed by deficient (excess) Indian Summer Monsoon Rainfall (ISMR) using NCEP/NCAR reanalyzed data for the period 1966–1994. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used to calculate the number of days of snow over west and east Eurasia separately under three classes: class 1 for SD>5cm, class 2 for SD>10cm and class 3 for SD>50cm where SD stands for snow depth. Correlation coefficients are computed between the anomaly in the number of days of snow depth under the above three classes during winter/spring over west and east Eurasia and the subsequent ISMR. HSDSD data show that difference in the number of days of SD>10cm in two extreme years is most prominent in the west Eurasia in the months of January and April. Also the anomaly in the number of days of snow in January and April over west Eurasia has correlation coefficients of –0.69 and –0.56 with the following ISMR, respectively at 0.1% significance level when the SD is more than 10cm at all the stations. Results also show that low-level atmospheric temperature difference between two extreme years of snow days in winter is up to 10°C and the cooling persists up to spring season with a difference of 2°C. This cooling persistence may give rise to anomalous cyclonic circulations over the midlatitudes and tropics which may be responsible for weakening the monsoon circulation over India during the year of more snow days over west Eurasia.  相似文献   

20.
Relatively large quantities (1 mg) of formic acid have been collected from the atmosphere and subjected to carbon-isotopic analysis, as a means of source discrimination. Ambient formic acid was captured on Ca(OH)2-treated filters using a high-volume sampler. The collection method was not only efficient (>96%), but also appears to have low artifact production.Most of the samples (36 out of 52) were collected over a two-year period at the summit of Mount Lemmon, Arizona, where a strong seasonality in HCOOH mixing ratio was observed (0.2 ppb during winter months to 1.5 ppb in the summer). Other collection sites included the Oregon coast, Colorado Rockies, urban Tucson, and the North Dakota prairie. The carbon-13 content of atmospheric HCOOH was found to be have little variation (–18 to –25), regardless of location or season. This is consistent with a single dominant source of formic acid. The carbon-14 measurements of 6 Mount Lemmon samples showed high levels of modern carbon (93–113% modern).The emissions from formicine ants and automobile combustion were selected as two other potential sources for isotopic analysis. The HCOOH collected from auto exhaust was much more depleted in13C than the atmospheric samples, with a 13C of –28.0 and –48.6 from a leaded and unleaded automobile, respectively. Formicine ants, on the other hand, ranged from –17.2 to –20.6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号