首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
利用气相色谱-质谱仪/火焰离子检测器(Online-GC-MS/FID)对2017年冬季山东德州大气中99种挥发性有机物(VOCs)进行连续测量,研究了VOCs浓度和组分特征、日变化趋势、来源及其对臭氧(O3)、二次有机气溶胶(SOA)生成的贡献.结果表明,德州大气VOCs平均体积分数为(47.74±33.11)×10-9,烷烃占比最大,为40.66%.总VOCs及其组分表现出早晚体积分数高、中午体积分数低的日变化规律.德州大气中丙烷、丙烯、苯及甲苯和二氯甲烷分别受到液化石油气挥发、生物质燃烧、机动车排放和溶剂使用等人为源的影响.反向轨迹模型分析发现,北方内陆气团对德州VOCs体积分数具有一定贡献.烷烃、烯烃、芳香烃的臭氧生成潜势分别为(34.87±33.60)、(120.48±118.76)和(59.77±94.14)μg/m3,乙烯、丙烯、甲苯和间/对二甲苯的贡献较大.芳香烃氧化主导了SOA生成,其贡献率为93.7%,甲苯、间/对二甲苯、苯对SOA生成的贡献最大.为解决大气复合污染问题、实现臭氧和PM2.5协同控制,德州应重点控制甲苯、间/对二甲苯等芳香烃的排放.  相似文献   

2.
近年来近地面臭氧问题日益凸显,成为影响空气质量持续改善的瓶颈.本研究基于2017年8—9月在湖州市城区开展的为期1个月的臭氧及其前体物挥发性有机物(VOCs)和氮氧化物(NOx)在线观测数据,分析了臭氧及其前体物污染特征,利用正矩阵因子分析(PMF)解析了VOCs来源,并采用基于观测的模型(OBM)对臭氧生成机制进行研究.研究结果表明:1)观测期间湖州市VOCs平均体积分数为(24.78±9.10)×10-9,其中占比最高的组成为烷烃、含氧VOCs (OVOCs)和卤代烃;2)在臭氧非超标时段,湖州市臭氧生成处于VOCs控制区,而在臭氧重污染期间湖州市处于以VOCs控制为主的过渡区;3)在臭氧超标时段,对臭氧生成潜势(OFP)贡献最大的是芳香烃(39.6%),其次是烯烃(21.5%)和OVOCs (19.4%),排名前三的关键组分为甲苯、乙烯和间/对二甲苯;4)源解析结果显示观测期间湖州市VOCs的主要来源是溶剂使用(27.0%)、交通排放(22.7%)、背景+传输(19.3%)、工业排放(16.9%)、汽油挥发(7.7%)和植物排放(6.4%),重污染过程期间对OFP贡献最大的两类源是交通排放源和溶剂使用源,贡献百分比分别为35.1%和30.5%.因此,对交通排放和溶剂使用方面进行控制管理对湖州市大气臭氧污染防控有重要意义.  相似文献   

3.
近年来武汉市臭氧污染日益严峻,成为影响空气质量达标的瓶颈,弄清臭氧及其前体物非线性关系是臭氧防控的关键和基础.本研究基于武汉中心城区2018年4—9月臭氧及其前体物在线观测数据,分析出武汉市臭氧浓度受前体物和气象条件等因素的共同影响,呈较为明显的季节变化和日变化特征.观测期间武汉市大气挥发性有机物(VOCs)平均体积分数为32.5×10-9,烷烃是武汉市VOCs的主要组分,其次是含氧VOCs (OVOCs)和卤代烃.利用基于观测的模型定量分析臭氧与前体物之间的关系,发现削减VOCs会引起臭氧生成潜势的显著下降,而削减氮氧化物则会使臭氧生成潜势升高,说明武汉市臭氧生成处于VOCs控制区.在人为源VOCs中,间/对二甲苯和邻二甲苯的相对增量反应活性(RIR)最高,是影响臭氧生成的关键组分.  相似文献   

4.
挥发性有机物(VOCs)是臭氧和大气颗粒物的重要前体物,本研究利用在线气相色谱-质谱仪(Online-GC-MS)于2018年5—6月对江苏省泰州市大气中98种VOCs进行监测,依据监测结果对泰州市大气VOCs的组成特征、日变化趋势进行分析,对醛酮类VOCs数据进行参数化拟合探究其一次二次贡献,并采用正矩阵因子分解模型(PMF)对VOCs数据进行来源分析,用最大增量反应活性(MIR)计算臭氧生成潜势(OFP).研究结果表明:泰州市大气VOCs中烷烃占比最高,其次为醛酮;烷烃、烯烃、卤代烃和芳香烃浓度日变化趋势明显,特征相近;参数化方法表明醛类物质主要来自于二次生成,而酮类物质主要来自一次排放;PMF模型结果表明泰州市VOCs的主要贡献源分别为机动车排放、油气溶剂挥发、生物质燃烧、其他工业和天然源;OFP的主要贡献物种为烯烃类,占比34.18%.研究结果表明,控制工业排放和溶剂使用是泰州市大气污染物控制的重点.  相似文献   

5.
餐饮排放是城市地区挥发性有机物(VOCs)重要的无组织来源,由于其排放特征复杂,是大气环境研究和管理的薄弱环节.本研究采用了现场和实验模拟两种采样方式,利用2,4-二硝基苯肼(DNPH)采样柱和不锈钢罐分别采集羰基化合物和全空气样品,然后利用高效液相色谱(HPLC)和气相色谱-质谱联用仪(GC-MS/FID)对116种组分进行定性定量分析.在此基础上,分析了餐饮源VOCs的排放特征及其影响因素.总体来看,含氧有机物(OVOCs)和烷烃是VOCs浓度的主要贡献者,但不同餐饮源的源谱特征差异较大.另外,通过比较发现食用油的种类、油的使用次数、加热方式、烹饪方式和调味料等因素会对餐饮源VOCs排放特征造成显著影响.进一步分析了不同菜系所排放VOCs的臭氧生成潜势(OFP),关键组分主要是甲醛、乙醛、丁烯醛、乙烯和丙烯等.本研究成果能够补充我国餐饮源VOCs控制所需的基础数据.  相似文献   

6.
利用2019年8月13日—9月30日江苏省13个设区市离线监测的VOCs数据,对江苏省城区VOCs污染特征及其关键活性组分进行分析研究.结果表明,江苏省逐日VOCs的体积分数范围为8.83×10-9~45.11×10-9,表现为烷烃 > 芳香烃 > 烯烃 > 炔烃.江苏省13个设区市VOCs的体积分数为7.85×10-9~30.52×10-9,徐州市VOCs最高,这与徐州市监测点位置分布及其工业结构相关.全省13个设区市臭氧浓度处于优、良、轻度污染和中度污染时,VOCs总体积分数分别为14.96×10-9、17.96×10-9、25.85×10-9和25.11×10-9,臭氧浓度处于污染状态时的VOCs高于优、良状态,且炔烃占比随着臭氧污染程度的加重呈升高趋势,表明现阶段臭氧生成与人类活动关系密切.通过加权的方式筛选出间/对二甲苯、乙烯、甲苯、丙烯、异戊二烯、邻二甲苯等物种,它们是目前对江苏省城区影响程度较大且影响范围较广的关键活性物种.  相似文献   

7.
制药行业因在提取等过程中使用有机溶剂排放大量挥发性有机物(VOCs)而备受关注.本研究在山东省选择化学合成、生物发酵、中药共三家制药企业开展了107种VOCs组分的监测和分析,并建立制药企业的VOCs源成分谱.研究结果表明:化学合成类和生物发酵类制药企业排放总质量浓度均超过20 mg/m3,中药制药企业的样品的平均质量浓度相对较小,为902.66 μg/m3.本研究所分析的107种组分中,以含氧挥发性有机物(OVOCs)为主,三家企业均超过75%,其中,化学合成制药类卤代烃物种的占比较高.企业类型、生产环节、收集排放措施等是影响VOCs成分的重要因素.  相似文献   

8.
以武汉市为研究区域,基于实地调查获得典型行业污染源活动水平,以大气污染物排放清单编制技术指南为参考,利用排放因子法建立2014年武汉市大气污染源排放清单,并结合经纬度、人口密度分布、土地利用类型、道路长度等数据将排放清单进行了3 km×3 km网格化处理.结果表明,2014年武汉市SO2、NOx、PM10、PM2.5、CO、BC、OC、VOCs和NH3排放量分别为10.3、17.0、16.3、7.1、63.1、0.6、0.4、19.8和1.6万t.固定燃烧源为SO2排放的主要来源,其贡献率约64%;移动源为NOx的主要来源,其贡献率约51%;颗粒物排放主要来源于扬尘源和工艺过程源;CO和VOCs主要来源于工艺过程源,BC和OC排放均以移动源和生物质燃烧源为主,NH3排放主要来自农业源.污染物排放主要集中在青山区至新洲区一带.  相似文献   

9.
了解涂装行业挥发性有机物(VOCs)的排放特征是制定山东地区臭氧(O3)和PM2.5防控策略的重要环节.本研究在山东地区测定了两家典型食品金属包装企业喷涂过程中VOCs的排放组成,企业产品以饮料罐和罐头为主.结果表明:两家企业排放的总VOCs质量浓度水平相当,质量浓度变化范围在50~1 500 μg/m3;但两家企业喷涂过程中VOCs的排放组成具有一定的差异,以生产铝罐和马口铁罐为主的企业中的含氧挥发性有机物(OVOCs)含量最多,占比89.71%(质量分数,下同);而生产铝罐的企业芳香烃(56.15%)是首要的排放种类,其次是OVOCs (32.32%).通过分析两家企业内外喷涂工艺的VOCs源成分谱,发现同一企业不同工艺之间有一定差异,多种罐生产企业的内、外喷涂中乙醇占比最高,分别为94.28%、84.46%;单铝罐生产企业的内喷涂2-丁酮(24.33%)是重要组分,外喷涂中甲苯(36.40%)含量较高.  相似文献   

10.
华北平原是我国主要农作物产区,田间秸秆焚烧现象普遍存在,选取秋收季节(2014年10月)分析了秸秆燃烧的排放特征,利用区域化学传输模型WRF-Chem模拟研究了燃烧排放对气态前体物及其氧化产物的影响,以及最终导致的PM2.5中硫酸盐、硝酸盐和铵盐的变化。研究表明:2014年秋收季节,河南和山东等省份的秸秆燃烧排放会在东南风的输送作用下影响京津冀地区;秸秆燃烧排放大量挥发性有机物(VOCs),导致火点源及周边地区大气中主要氧化剂浓度上升,提升了区域大气氧化能力;当携带大量VOCs的秸秆燃烧烟羽与以化石燃料排放为主的城市气团相混合时,大气氧化性增强会加速城市地区人为源排放的NOx和SO2等气态前体物的氧化过程,提高硫酸盐和硝酸盐的形成速率、促进二次无机气溶胶的生成。  相似文献   

11.
The reaction mechanisms of products, along with their rates of reaction with hydroxyl radicals and their rates of photolysis, have been used to obtain carbon monoxide, CO, yields from the products of the homogenous atmospheric photooxidation from emissions of hydrocarbons and other volatile organic compounds, VOCs. Seasonally averaged CO yields are estimated for a number of types of VOCs. The annual production of CO is estimated for the contiguous United States from combustion sources of CO and from the atmospheric photooxidation of anthropogenic and biogenic emissions of volatile organic compounds. Limitations on estimates of CO yields and of CO production from various heterogeneous processes are discussed.  相似文献   

12.
The vertical observation of volatile organic compounds(VOCs) is an important means to clarify the mechanisms of ozone formation. To explore the vertical evolution of VOCs in summer, a field campaign using a tethered balloon during summer photochemical pollution was conducted in Shijiazhuang from 8 June to 3 July 2019. A total of 192 samples were collected, 23 vertical profiles were obtained, and the concentrations of 87 VOCs were measured. The range of the total VOC concentration was 41–48 ppbv below 600 m. It then slightly increased above 600 m, and rose to 58 ± 52 ppbv at 1000 m.The proportion of alkanes increased with height, while the proportions of alkenes, halohydrocarbons and acetylene decreased. The proportion of aromatics remained almost unchanged. A comparison with the results of a winter field campaign during 8–16 January 2019 showed that the concentrations of all VOCs in winter except for halohydrocarbons were more than twice those in summer. Alkanes accounted for the same proportion in winter and summer. Alkenes,aromatics, and acetylene accounted for higher proportions in winter, while halohydrocarbons accounted for a higher proportion in summer. There were five VOC sources in the vertical direction. The proportions of gasoline vehicular emissions + industrial sources and coal burning were higher in winter. The proportions of biogenic sources + long-range transport, solvent usage, and diesel vehicular emissions were higher in summer. From the surface to 1000 m, the proportion of gasoline vehicular emissions + industrial sources gradually increased.  相似文献   

13.
Fine aerosol samples were collected throughout spring, summer, and winter in 2004∼2005 at a major urban traffic junction (BNU) and a suburban location (MY) in Beijing and at a downtown site (SH) in Shanghai, China. Ten of the 16 EPA priority polycyclic aromatic hydrocarbons (PAHs), seven fatty acids, levoglucosan, and cholesterol were identified and quantified. PAHs detected in Beijing and Shanghai were up to one order of magnitude higher than those reported in the developed countries either in urban or suburban areas, while levoglucosan was one order of magnitude lower than that in other countries for no biomass combustion in domestic heating in the mega-cities in China. PAHs showed the same seasonal trend in all sampling sites as the highest in winter and the lowest in summer, while fatty acids no pronounced seasonal variation. A significant fraction of levoglucosan from cooking with higher concentrations in urban than in suburban area contributed to the ambient atmosphere, indicating that the main source of levoglucosan in urban environment would be cooking rather than biomass burning. The relative contributions of coal combustion and vehicle exhaust sources to PAHs in fine aerosols were preliminarily estimated to be 1:2 in Beijing and 1:1 in Shanghai, revealing that the air pollution in these mega-cities in China was mainly the mixing of coal combustion with vehicle exhaust. Cooking was one of the major sources of organic aerosols in both Beijing and Shanghai.  相似文献   

14.
Volatile Organic Compounds in the Po Basin. Part A: Anthropogenic VOCs   总被引:1,自引:0,他引:1  
Measurements of volatile organic compounds (VOCs) were performed in the Po Basin, northern Italy in early summer 1998 within the PIPAPO project as well as in summer 2002 and autumn 2003 within the FORMAT project. During the three campaigns, trace gases and meteorological parameters were measured at a semi-rural station, around 35 km north of the city center of Milan. Low toluene and benzene concentrations and lower toluene to benzene ratios on weekends, on Sundays, and in August enabled the identification of a ‘weekend’ and a ‘vacation’ effect when anthropogenic emissions were lower due to less traffic and reduced industrial activities, respectively. Recurrent nighttime cyclohexane peaks suggested a periodical short-term release of cyclohexane close to the semi-rural sampling site. A multivariate receptor model analysis resulted in the distinction of different characteristic concentration profiles attributed to natural gas, biogenic impact, vehicle exhaust, industrial activities, and a single cyclohexane source.  相似文献   

15.
Atmospheric concentrations of polycyclic aromatic hydrocarbons (PAHs) in Santiago de Chile city were evaluated to study particulate PAHs profiles during cold and spring weather periods. Urban atmospheric particulate matter PM10 was collected using High Volume PM10 samplers. Fifteen samples of 24 h during austral winter and 20 samples of 24 h during spring, 2000 were collected at two sampling sites (North–East and Central areas of the city) whose characteristics were representative of the prevailing conditions. Seventeen PAHs were quantified and total PAHs concentration ranged from 1.39 to 59.98 ng m−3, with a seasonal variation (winter vs. spring ratio) from 0.5 to 12.6 ng m−3. Molecular diagnostic ratios were used to characterize and identify PAHs emission sources such as combustion and biogenic emissions. Results showed that the major sources of respirable organic aerosol PM10 in Santiago are mobile and stationary ones.  相似文献   

16.
本文利用气体组分及大气气溶胶在线监测系统(MARGA ADI 2080)观测武汉市2018年1月9—26日大气气溶胶中的8种水溶性离子(NH+4、NO-3、SO2-4、Cl-、K+、Ca2+、Na+和Mg2+),结合气象要素数据,使用主成分分析(PCA)、正定矩阵因子分析法(PMF)、HYSPLIT后向轨迹模式、潜在源区贡献(PSCF)和浓度权重轨迹(CWT),对霾污染过程中水溶性离子进行了全面的来源解析,探究了霾不同阶段下来源差异和空间分布特征。结果表明:(1)本次霾污染中的8种水溶性离子和4种污染气体,PCA解析出的源和占比分别为二次源和燃煤源的混合源(41.28%)、工业排放和土壤扬尘混合源(27.73%)和机动车排放源(9.63%),PMF解析出的源和占比分别为燃煤与土壤扬尘混合源(18.57%)、机动车排放源(20.74%)、二次源(18.30%)、光化学污染源(22.24%)和燃煤源(20.15%)。(2)霾在不同阶段下水溶性离子和4种污染气体的来源存在差异,在清洁天和霾消散阶段,光化学的贡献最高,占比分别为31.42%和36.07%;在霾发生阶段燃煤与土壤扬尘源的贡献最高,其贡献为40.94%;在霾发展阶段,最大的控制源为二次源,贡献占比为37.51%。(3)此次武汉市霾污染中PM2.5浓度和NH+4、NO-3和SO2-4的潜在源区为皖豫鄂三省和赣湘鄂三省交界处。霾污染中PM2.5的主要影响范围是武汉市南部和北部省份,NO-3、NH+4和SO2-4的主要影响区域为武汉市东北方向的城市、湖南省和江西省。  相似文献   

17.
Airborne particulate matter in Saxony (Germany) was investigated at three different sites (central urban, urban outskirts, rural) during a winter (1999/2000) and a summer (2000) campaign. PM was collected simultaneously at all three sites using five-stage Berner impactors. Besides size-segregated chemical particle characterisation and mass closure source apportionment of the particle components, especially of the carbonaceous fraction was an aim of the study. Source apportionment was performed exclusively on the basis of experimental data without support of models considering a set of basic assumptions and logical deductions. The derived simple equations permit to differentiate the carbonaceous fraction in traffic, domestic heating (winter) and biogenic (summer) contributions.The total carbon (TC) in the smallest particle size range (Dpaer = 0.05-0.14μm) at the urban site, contributing 88% to the mass in that class, was completely attributed to traffic emissions. For the particle size range Dpaer = 0.42-1.2 μm (50-60% of the total mass) TC was attributed to traffic (67%) and domestic heating (33%) in winter and to traffic (82%) and biogenic origin (18%) in summer.Size-segregated determination of alkanes revealed that these compounds were mainly of biogenic origin in summer and of anthropogenic origin in winter considering the carbon preference index (CPIodd). Particulate PAHs found in winter samples originated mainly from domestic heating and not from traffic emissions.The method described cannot provide complete results, but the demonstrated source apportionment can be helpful to assess a given situation with regard to possible steps against the exceeding of the EU limit of the PM10 mass concentration of 50 μg m−3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号