首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 km and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°–60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5–3.0 m along the Yingxiu-Beichuan co-seismic fault, and 1.5–1.1 m along the Doujiangyan-Hanwang fault. Movement of the co-seismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0–20 km from co-seismic fault.  相似文献   

2.
Abstract: Dextral-slip thrust movement of the Songpan-Garzê terrain over the Sichuan block caused the Ms 8.0 Wenchuan earthquake of May 12, 2008 and offset the Central Longmenshan Fault (CLF) along a distance of ~250 km. Displacement along the CLF changes from Yingxiu to Qingchuan. The total oblique slip of up to 7.6 m in Yingxiu near the epicenter of the earthquake, decreases northeastward to 5.3 m, 6.6 m, 4.4 m, 2.5 m and 1.1 m in Hongkou, Beichuan, Pingtong, Nanba and Qingchuan, respectively. This offset apparently occurred during a sequence of four reported seismic events, EQ1–EQ4, which were identified by seismic inversion of the source mechanism. These events occurred in rapid succession as the fault break propagated northeastward during the earthquake. Variations in the plunge of slickensides along the CLF appear to match these events. The Mw 7.5 EQ1 event occurred during the first 0–10 s along the Yingxiu-Hongkou section of the CLF and is characterized by 1.7 m vertical slip and vertical slickensides. The Mw 8.0 EQ2 event, which occurred during the next 10–42 s along the Yingxiu-Yanziyan section of the CLF, is marked by major dextral-slip with minor thrust and slickensides plunging 25°–35° southwestward. The Mw 7.5 EQ3 event occurred during the following 42–60 s and resulted in dextral-slip and slickensides plunging 10° southwestward in Beichuan and plunging 73° southwestward in Hongkou. The Mw 7.7 EQ4 event, which occurred during the final 60–95 s along the Beichuan-Qingchuan section of the CLF, is characterized by nearly equal values of dextral and vertical slips with slickensides plunging 45°–50° southwestward. These seismic events match and evidently controlled the concentrations of landslide dams caused by the Wenchuan earthquake in Longmenshan Mountains.  相似文献   

3.
The Garzê–Yushu strike-slip fault in central Tibet is the locus of strong earthquakes(M 7). The deformation and geometry of the co-seismic surface ruptures are reflected in the surface morphology of the fault and depend on the structure of the upper crust as well as the pre-existing tectonics. Therefore, the most recent co-seismic surface ruptures along the Garzê–Yushu fault zone(Dangjiang segment) reveal the surface deformation of the central Tibetan Plateau. Remote sensing images and field investigations suggest a 85 km long surface rupture zone(striking NW-NWW), less than 50 m wide, defined by discontinuous fault scarps, right-stepping en echelon tensional cracks and left-stepping mole tracks that point to a left-lateral strike-slip fault. The gullies that cross fault scarps record systematic left-lateral offsets of 1.8 m to 5.0 m owing to the most recent earthquake, with moment magnitude of about M 7.5, in the Dangjiang segment. Geological and geomorphological features suggest that the spatial distribution of the 1738 co-seismic surface rupture zone was controlled by the pre-existing active Garzê–Yushu fault zone(Dangjiang segment). We confirm that the Garzê–Yushu fault zone, a boundary between the Bayan Har Block to the north and the Qiangtang Block to the south, accommodates the eastward extrusion of the Tibetan Plateau and generates strong earthquakes that release the strain energy owing to the relative motion between the Bayan Har and Qiangtang Blocks.  相似文献   

4.
Three magnitude >6 earthquakes struck Qaidam, Qinghai province, China, in November 10th 2008, August 28th and 31st 2009 respectively. The Zongwulongshan fault has often been designated as the active seismogenic structure, although it is at odd with the data. Our continuous GPS station (CGPS), the Xiao Qaidam station, located in the north of the Qaidam basin, is less than 30 km to the southwest of the 2008 earthquake. This CGPS station recorded the near field co-seismic deformation. Here we analyzed the co-seismic dislocation based on the GPS time series and the rupture processes from focal mechanism for the three earthquakes. The aftershocks were relocated to constrain the spatial characteristics of the 2008 and 2009 Qaidam earthquakes. Field geological and geomorphological investigation and interpretation of satellite images show that the Xitieshan fault and Zongwulongshan fault were activated as left lateral thrust during the late Quaternary. Evidence of folding can also be identified. Integrated analyses based on our data and the regional tectonic environment show that the Xitieshan fault is the fault responsible for the 2008 Qaidam earthquake, which is a low dip angle thrust with left lateral strike slip. The Zongwulongshan fault is the seismogenic fault of the 2009 earthquakes, which is a south dipping back thrust of the northern marginal thrust system of the Qaidam basin. Folding takes a significant part of the deformation in the northern marginal thrust system of the Qaidam basin, dominating the contemporary structure style of the northern margin of the Qaidam basin and Qilianshan tectonic system. In this region, this fault and fold system dominates the earthquake activities with frequent small magnitude earthquakes.  相似文献   

5.
Abstract: There were huge life and property losses during the Ms8.0 Wenchuan earthquake on May 12, 2008. Strain fluctuation curves were completely recorded at stress observatory stations in the Qinghai-Tibet plateau and its surroundings in the process of the earthquake. This paper introduces the geological background of the Wenchuan earthquake and the profile of in-situ stress monitoring stations. In particular, data of 174 earthquakes (Ms4.0-Ms8.5) were processed and analyzed with various methods, which were recorded at the Shandan station from August 2007 to December 2008. The results were compared with other seismic data, and further analyses were done for the recoded strain seismic waves, co-seismic strain stepovers, pre-earthquake strain valleys, Earth’s free oscillations before and after the earthquake and their physical implications. During the Wenchuan earthquake, the strainmeter recorded a huge extensional strain of 70 seconds, which shows that the Wenchuan earthquake is a rupture process predominated by thrusting. Significant precursory strain anomalies were detected 48 hours, 30 hours, 8 hours and 37 minutes before the earthquake. The anomalies are very high and their forms are very similar to that of the main shock. Similar anomalies can also be found in strain curves of other shocks greater than Ms7.0, indicating that such anomalies are prevalent before a great earthquake. In this paper, it is shown that medium aftershocks (Ms5.5-6.0) can also cause Earth’s free oscillations. Study of free oscillations is of great significance to understand the internal structure of the Earth and focal mechanisms of earthquakes and to recognize slow shocks, thus providing a scientific basis for the prevention and treatment of geological disasters and the prediction of future earthquakes.  相似文献   

6.
The tectonic evolution of South Qinling,which is a main part of the Qinling orogenic belt,is still in dispute and deformation history of South Qinling is poorly studied.In this paper,detailed structural,microstructural,quartz c-axis fabric analysis,and geochronology results for the Madao gneiss in South Qinling are presented to characterize the deformation history.Results show that rocks in the northern part(Tiefodian-Laozhanggou) experience general shearing and deform at relative low temperature.The shear sense generally is south to north.In contrast,rocks in the southern part(Laozhanggou-Panjiahe) are weakly sheared with pure shear features and evidence of hightemperature deformation.Based on the analyses,we conclude that there exist two distinct deformation geometries in the Madao gneiss and accordingly we can divide the deformation into two stages.The early stage is represented by regional shortening,while the late stage features northward thrust shearing and evidence shows that it was a progressive process between them.LA-ICP MS U-Pb dating of zircons from pre-deformational migmatite veins yields age of 198.5 ± 2.0 Ma.This result,in combination with the age of post-deformational granite,indicates that the northward thrust shearing of the Madao gneiss occurred in the Late Triassic.In view of these results and other reported data in South Qinling,we propose that deformation in Madao gneiss may result from the initial collision and subsequent northward accretion in Late Triassic.  相似文献   

7.
Field investigations allow to constrain the co-seismic surface rupture zone of ~400km with a strike-slip up to 16.3 m associated with the 2001Mw 7.8 Central Kunlun earthquake that occurred along the western segment of the Kunlun fault,northern Tibet.The co-seismic rupture structures are almost duplicated on the pre-existing fault traces of the Kunlun fault.The deformational characteristics of the co-seismic surface ruptures reveal that the earthquake had a nearly pure strike-slip mechanism.Theg eologic and topographice vidence clearly shows that spatial distributions of the co-seismic surface ruptures are re-stricted by the pre-existing geological structures of the Kunlun fault.  相似文献   

8.
Dextral-slip thrust movement of the Songpan-Garze terrain over the Sichuan block caused the Ms 8.0 Wenchuan earthquake of May 12, 2008 and offset the Central Longmenshan Fault (CLF) along a distance of-250 km. Displacement along the CLF changes from Yingxiu to Qingchuan. The total oblique slip of up to 7.6 m in Yingxiu near the epicenter of the earthquake, decreases northeastward to 5.3 m, 6.6 m, 4.4 m, 2.5 m and 1.1 m in Hongkou, Beichuan, Pingtong, Nanba and Qingchuan, respectively. This offset apparently occurred during a sequence of four reported seismic events, EQ1-EQ4, which were identified by seismic inversion of the source mechanism. These events occurred in rapid succession as the fault break propagated northeastward during the earthquake. Variations in the plunge of slickensides along the CLF appear to match these events. The Mw 7.5 EQ1 event occurred during the first 0-10 s along the Yingxiu-Hongkou section of the CLF and is characterized by 1.7 m vertical slip and vertical slickensides. The Mw 8.0 EQ2 event, which occurred during the next 10-42 s along the Yingxiu-Yanziyan section of the CLF, is marked by major dextral-slip with minor thrust and slickensides plunging 25°-35° southwestward. The Mw 7.5 EQ3 event occurred during the following 42-60 s and resulted in dextral-slip and slickensides plunging 10° southwestward in Beichuan and plunging 73° southwestward in Hongkou. The Mw 7.7 EQ4 event, which occurred during the final 60-95 s along the Beichuan-Qingchuan section of the CLF, is characterized by nearly equal values of dextral and vertical slips with slickensides plunging 45°-50° southwestward. These seismic events match and evidently controlled the concentrations of landslide dams caused by the Wenchuan earthquake in Longmenshan Mountains.  相似文献   

9.
Dextral-slip in the Nyainqentangiha region of Tibet resulted in oblique underthrusting and granite generation in the Early to Middle Miocene, but by the end of the epoch uplift and extensional faulting dominated. The east-west dextral-slip Gangdise fault system merges eastward into the northeast-trending, southeast-dipping Nyainqentangiha thrust system that swings eastward farther north into the dextral-slip North Damxung shear zone and Jiali faults. These faults were took shape by the Early Miocene, and the large Nyainqentangiha granitic batholith formed along the thrust system in 18.3-11.0 Ma as the western block drove under the eastern one. The dextral-slip movement ended at -11 Ma and the batholith rose, as marked by gravitational shearing at 8.6-8.3 Ma, and a new fault system developed. Northwest-trending dextral-slip faults formed to the northwest of the raisen batholith, whereas the northeast-trending South Damxung thrust faults with some sinistral-slip formed to the southeast. The latter are replaced farther to the east by the west-northwest-trending Lhunzhub thrust faults with dextral-slip. This relatively local uplift that left adjacent Eocene and Miocene deposits preserved was followed by a regional uplift and the initiation of a system of generally north-south grabens in the Late Miocene at -6.5 Ma. The regional uplift of the southern Tibetan Plateau thus appears to have occurred between 8.3 Ma and 6.5 Ma. The Gulu, Damxung-Yangbajain and Angan graben systems that pass east of the Nyainqentangiha Mountains are locally controlled by the earlier northeast-trending faults. These grabens dominate the subsequent tectonic movement and are still very active as northwest-trending dextral-slip faults northwest of the mountains. The Miocene is a time of great tectonic change that ushered in the modern tectonic regime.  相似文献   

10.
The variation of in situ stress before and after earthquakes is an issue studied by geologists. In this paper, on the basis of the fault slip dislocation model of Wenchuan Ms8.0 earthquake, the changes of co-seismic displacement and the distribution functions of stress tensor around the Longmen Shan fault zone are calculated. The results show that the co-seismic maximum surface displacement is 4.9 m in the horizontal direction and 6.5 m in the vertical direction, which is almost consistent with the on-site survey and GPS observations. The co-seismic maximum horizontal stress in the hanging wall and footwall decreased sharply as the distance from the Longmen Shan fault zone increased. However, the vertical stress and minimum horizontal stress increased in the footwall and in some areas of the hanging wall. The study of the co-seismic displacement and stress was mainly focused on the long and narrow region along the Longmen Shan fault zone, which coincides with the distribution of the earthquake aftershocks. Therefore, the co-seismic stress only affects the aftershocks, and does not affect distant faults and seismic activities. The results are almost consistent with in situ stress measurements at the two sites before and after Wenchuan Ms8.0 earthquake. Along the fault plane, the co-seismic shear stress in the dip direction is larger than that in the strike direction, which indicates that the faulting mechanism of the Longmen Shan fault zone is a dominant thrust with minor strike-slipping. The results can be used as a reference value for future studies of earthquake mechanisms.  相似文献   

11.
By using the D-InSAR technique,we have acquired the temporal-spatial evolution images of preseismic-cosesimci-postseismic interferometric deformation fields associated with the M 7.9 earthquake of Mani,Tibet on 8 November 1997.The analysis of these images reveals the relationships between the temporal-spatial evolution features of the interferometric deformation fields and locking, rupturing,and elastic restoring of the source rupture plane,which represent the processes of strain accumulation,strain release,and postseismic restoration.The result shows that 10 months prior to the Mani event,a left-lateral shear trend appeared in the seismic area,which was in accordance with the earthquake fault in nature.The quantity of local deformation on the north wall was slightly larger than that on the south wall,and the deformation distribution area of the north wall was relatively large.With the event impending,the deformation of the south wall varied increasingly,and the deformation center shifted eastward.Two and half monthd before the event,the west side of the fault was still locked while the east side began to slide,implying that the whole fault would rupture at any moment.These features can be regarded as short-term precursors to this earthquake.Within the period from 16 April 1996 to two and half months before the earthquake,the most remarkable deformation zones appeared in the north and south walls,which were parallel to and about 40 km apart from the fault,with accumulated local displacements of 344 mm and 251 mm on the north and south walls,respectively.The south wall was the active one with larger displacements.Five months after the earthquake,the distribution feature of interferometric fringes was just opposite to that prior to the event,expressing evident right-lateral shear.The recovered displacements are~179 mm on the north wall and~79 mm on the south wall,close to the east side of the fault.However,in the area of the south wall far from the fault there still existed a trend of sinistral motion.The deformation of the north wall was small but recovered fast in a larger area,while the active south wall began to recover from the east section of the fault toward the WSW.  相似文献   

12.
In January 2010, the Suining Ms5.0 earthquake occurred in central Sichuan Basin, with the epicenter in Moxi-Longnvsi structural belt and a focal depth of 10 km. Based on structural interpretations of seismic profiles in this area, we recognized a regional detachment fault located at a depth of 9–10 km in the Presinian basement of the Suining area, transferring its slipping from NW to SE orientation. This detachment fault slipped from NW to SE, and underwent several shears and bends, which caused the basement to be rolled in and the overlaying strata fold deformation. It formed a fault-bend fold in the Moxi area with an approximate slip of 4 km. Correspondingly, the formation of the Moxi anticline is related to the detachment fault. With the earthquake’s epicenter on the ramp of the detachment fault, there is a new point of view that the Suining earthquake was caused by re-activation of this basement detachment fault. Since the Late Jurassic period, under the influence of regional tectonic stress, the detachment fault transfered its slip from the Longmen Mountains (LMS) thrust belt to the hinterland of the Sichuan Basin, and finally to the piedmont zone of southwest Huayingshan (HYS), which indicates that HYS might be the final front area of the LMS thrust belt.  相似文献   

13.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

14.
Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, which directly resulted from the collision between the Cathaysia Old Land and the Chencai Arc (?) during the Late Neoproterozoic, and the Jiangnan Orogenic Belt that formed as the ocean closed between the Yangtze Plate and the jointed Cathaysia Old Land and the Chencai Arc due to continuous compression. The second is the ductile left-lateral strike-slipping that occurred in the latest Early Paleozoic. Since the Jinning period, all deformation events represent the reactivation or inversion of intraplate structures due to the collisions between the North China and Yangtze plates during the Triassic and between the Philippine Sea and Eurasian plates during the Cenozoic. In the Triassic, brittle right-lateral strike-slipping and subsequent top-to-the south thrusting occurred along the whole northeastern Jiangshao Fault Zone because of the collision between the North China and Yangtze plates. In the Late Mesozoic, regional extension took place across southeastern China. In the Cenozoic, the collision between the Philippine Sea and Eurasian plates resulted in brittle thrusts along the whole Jiangnan Old land in the Miocene. The Jiangshao Fault Belt is a weak zone in the crust with long history, and its reactivation is one of important characteristics of the deformation in South China; however, late-stage deformation events did not occur beyond the Jiangnan Old Land and most of them are parallel to the strike of the Old Land, which is similar to the Cenozoic deformation in Central Asia. In addition, the Jiangnan old Land is not a collisional boundary between the Yangtze Plate and Cathaysia Old Land in the Triassic.  相似文献   

15.
Decomposing co-seismic deformation is an immediate need for researchers who are interested in earthquake inversion analysis and geo-hazard mapping. However, conventional InSAR or digital elevation models (DEMs) imagery analyses only provide the displacement in the Line-of-Sight (LOS) direction or elevation changes. The 2004 Mid-Niigata earthquake in Japan provides lessons on how to decompose co-seismic deformation from two sets of DEMs. If three adjacent points undergo a rigid-body-translation movement, their co-seismic deformation can be decomposed by solving simultaneous equations. Although this method has been successfully used to discuss tectonic deformations, the algorithm needed improvement and a more rigorous algorithm, including a new definition of nominal plane, DEMs comparability improvement and matrix condition check is provided. Even with these procedures, the obtained decomposed displacement often showed remarkable scatter prompting the use of the moving average method, which was used to determine both tectonic and localized displacement characteristics. A cut-off window and a pair of band-pass windows were selected according to the regional geology and construction activities to ease the tectonic and localized displacement calculations, respectively. The displacement field of the tectonic scale shows two major clusters of large lateral components, and coincidently major visible landslides were found mostly within them. The localized displacement helps to reveal hidden landslides in the target area. As far as the Kizawa hamlet is concerned, the obtained vectors show down-slope movements, which are consistent with the observed traces of dislocations that were found in the Kizawa tunnel and irrigation wells. The method proposed has great potential to be applied to understanding post-earthquake rehabilitation in other areas.  相似文献   

16.
Determining the spatio-temporal distribution of the deformation tied to the India-Eurasian convergence and the impact of pre-existing weaknesses on the Cenozoic crustal deformation is significant for understanding how the convergence between India and Eurasia contributed to the development of the Tibetan Plateau. The exhumation history of the northeastern Tibetan Plateau was addressed in this research using a new apatite fission track (AFT) study in the North Qaidam thrust belt (NQTB). Three granite samples collected from the Qaidam Shan pluton in the north tied to the Qaidam Shan thrust, with AFT ages clustering in the Eocene to Miocene. The other thirteen samples obtained from the Luliang Shan and Yuka plutons in the south related to the Luliang Shan thrust and they have showed predominantly the Cretaceous AFT ages. Related thermal history modeling based on grain ages and track lengths indicates rapid cooling events during the Eocene-early Oligocene and since late Miocene within the Qaidam Shan, in contrast to those in the Cretaceous and since the Oligocene-Miocene in the Luliang Shan and Yuka region. The results, combined with published the Cretaceous thermochronological ages in the Qaidam Shan region, suggest that the NQTB had undergo rapid exhumation during the accretions along the southern Asian Andean-type margin prior to the India-Eurasian collision. The Cenozoic deformation initially took place in the North Qaidam thrust belt by the Eocene, which is consistent with the recent claim that the deformation of the northeastern Tibetan Plateau initiated in the Eocene as a response to continental collision between India and Eurasia. The immediate deformation responding to the collision is tentatively attributed to the pre-existing weaknesses of the lithosphere, and therefore the deformation of the northeastern Tibetan Plateau should be regarded as a boundary-condition-dependent process.  相似文献   

17.
Transpressional deformation has played an important role in the late Neoproterozoic evolution of the ArabianNubian Shield including the Central Eastern Desert of Egypt. The Ghadir Shear Belt is a 35 km-long, NW-oriented brittleductile shear zone that underwent overall sinistral transpression during the Late Neoproterozoic. Within this shear belt, strain is highly partitioned into shortening, oblique, extensional and strike-slip structures at multiple scales. Moreover, strain partitioning is heterogeneous along-strike giving rise to three distinct structural domains. In the East Ghadir and Ambaut shear belts, the strain is pure-shear dominated whereas the narrow sectors parallel to the shear walls in the West Ghadir Shear Zone are simple-shear dominated. These domains are comparable to splay-dominated and thrust-dominated strike-slip shear zones. The kinematic transition along the Ghadir shear belt is consistent with separate strike-slip and thrustsense shear zones. The earlier fabric(S1), is locally recognized in low strain areas and SW-ward thrusts. S2 is associated with a shallowly plunging stretching lineation(L2), and defines ~NW-SE major upright macroscopic folds in the East Ghadir shear belt. F2 folds are superimposed by ~NNW–SSE tight-minor and major F3 folds that are kinematically compatible with sinistral transpressional deformation along the West Ghadir Shear Zone and may represent strain partitioning during deformation. F2 and F3 folds are superimposed by ENE–WSW gentle F4 folds in the Ambaut shear belt. The sub-parallelism of F3 and F4 fold axes with the shear zones may have resulted from strain partitioning associated with simple shear deformation along narrow mylonite zones and pure shear-dominant deformation in fold zones. Dextral ENEstriking shear zones were subsequently active at ca. 595 Ma, coeval with sinistral shearing along NW-to NNW-striking shear zones. The occurrence of upright folds and folds with vertical axes suggests that transpression plays a significant role in the tectonic evolution of the Ghadir shear belt. Oblique convergence may have been provoked by the buckling of the Hafafit gneiss-cored domes and relative rotations between its segments. Upright folds, fold with vertical axes and sinistral strike-slip shear zones developed in response to strain partitioning. The West Ghadir Shear Zone contains thrusts and strikeslip shear zones that resulted from lateral escape tectonics associated with lateral imbrication and transpression in response to oblique squeezing of the Arabian-Nubian Shield during agglutination of East and West Gondwana.  相似文献   

18.
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts.and the other in the front of Longmen Mts.The length of which is more than 270 km and about 80 km respectively.The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground,which caused uplift at its northwest side and subsidence at the southeast.The fault face dips to the northwest with a dip angle ranging from 50°to 60°.The...  相似文献   

19.
Recent mapping and seismic survey reveal that intensive compression during the Early Cenozoic in the Qiangtang block of the central Tibetan Plateau formed an extensive complex of thrust sheets that moved relatively southward along several generally north-dipping great thrust systems. Those at the borders of the ~450 km wide block show it overrides the Lhasa block to the south and is overridden by the Hohxil-Bayanhar block to the north. The systems are mostly thin-skinned imbricate thrusts with associated folding. The thrust sheets are chiefly floored by Jurassic limestone that apparently slid over Triassic sandstone and shale, which is locally included, and ramped upward and over Paleocene-Eocene red-beds. Some central thrusts scooped deeper and carried up Paleozoic metamorphic rock, Permian carbonate and granite to form a central uplift that divides the Qiangtang block into two parts. These systems and their associated structures are unconformably overlain by little deformed Late Eocene-Oligocene volcanic rock or capped by Miocene lake beds. A thrust system in the northern part of the block, as well as one in the northern part of the adjacent Lhasa block, dip to the south and appear to be due to secondary adjustments within the thrust sheets. The relative southward displacement across this Early Cenozoic mega thrust system is in excess of 150 km in the Qiangtang block, and the average southward slip-rate of the southern Qiangtang thrusts ranged from 5.6 mm to 7.4 mm/a during the Late Eocene-Oligocene. This Early Cenozoic thrusting ended before the Early Miocene and was followed by Late Cenozoic crustal extension and strike-slip faulting within the Qiangtang block. The revelation and understanding of these thrust systems are very important for the evaluation of the petroleum resources of the region.  相似文献   

20.
The Sierra de San Miguelito is a relatively uplifted area and is constituted by a large amount of silicic volcanic rocks with ages from middle to late Cenozoic. The normal faults of the Sierra de San Miguelito are Domino-style and nearly parallel. The cumulative length and displacement of the faults obey power-law distribution. The fractal dimension of the fault traces is -1.49. Using the multi-line one-dimensional sampling, the calculated exponent of cumulative fault displacements is -0.66. A cumulative curve combining measurements of all four sections yielded a slope of -0.63. The displacement-length plot shows a non-linear relationship and large dispersion of data. The large dispersion in the plot is mainly due to the fault linkage during faulting. An estimation of extensional strain due to the normal faults is ca. 0.1830.The bed extension strain is always less than or equal to the horizontal extension strain. The deformation in the Sierra de San Miguelito occurred near the surface, producing pervasive faults and many faults are too small to appear in maps and sections at common scales. The stretching produced by small faults reach ca. 33% of the total horizontal elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号