首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 657 毫秒
1.
鲁中地区分类强对流天气环境参量特征分析   总被引:13,自引:3,他引:10  
将山东中部地区16 a暖季(4-9月)106次伴随瞬时风力不低于8级的强对流个例划分为雷暴大风、冰雹雷暴大风和强降水混合型等3种类型,利用常规探空资料和地面观测资料,通过箱须图的形式分别讨论3种类型对应的一系列关键环境参数的分布特征和预报阈值。进一步,又将上述106次个例中的特强对流个例,包括产生25 m/s以上瞬时大风的特强雷暴大风个例、产生不小于20 mm直径冰雹的特强冰雹个例以及50 mm/h或以上强度的特强短时强降水个例提取出来构成一个子集,讨论其关键环境参数分布特征和预报阈值,并与全部对流个例的相应关键环境参数进行比较。最后,对鲁中地区强对流系统的触发机制进行了简要阐述和讨论。结果表明:(1)雷暴大风型、冰雹雷暴大风型和强降水混合型对应的850和500 hPa温差的最低阈值为25℃; 3种类型对应的地面露点最低阈值分别为13、16和24℃; 相应的大气可降水量最低阈值分别为20、24和32 mm; 相应对流有效位能的最低阈值分别为300、900和1300 J/kg; 相应的0-6 km风垂直切变最低阈值分别为12.0、12.5和8.0 m/s。(2)通过地面露点、大气可降水量以及暖云层厚度等关键参数的分布特征可以将上述3种类型的前两种与第3种类型即强降水混合型进行一定程度的区分,但要通过各个关键参数的分布特征区分前两种强对流天气是困难的。(3)对于伴随冰雹的强对流天气,适宜的融化层高度为3.0-3.9 km; (4)特强雷暴大风、特强冰雹和特强短时强降水等3种特强对流类型与全部强对流个例的3种类型相比,其条件不稳定度明显增大,体现为850和500 hPa温差的增大、水汽条件有所加强、对流有效位能明显增大,3种类型特强对流天气对应的对流有效位能最低阈值分别为1000、1100和2000 J/kg; 相应的0-6 km风垂直切变最低阈值分别为16、12和11 m/s,即特强雷暴大风型和特强短时强降水型的风垂直切变阈值明显增大。上述工作构成了山东中部伴随雷暴大风的强对流天气短时预报的一个基础,结合各类强对流天气发生的气候概率,可以通过决策树或模糊逻辑方法制作成适合于地、市气象台的分类强对流天气短时预报系统。   相似文献   

2.
中国短时强对流天气的若干环境参数特征分析   总被引:18,自引:0,他引:18  
樊李苗  俞小鼎 《高原气象》2013,32(1):156-165
利用中国2005-2009年2 000多个国家级气象观测站雨量资料和2002-2011年部分探空站探空资料,研究了中国短时强降水、强冰雹、雷暴大风以及混合型强对流天气的环境参数特征,通过环境参数特征的对比分析,将上述四种强对流天气加以区分,并对所选取的探空数据和环境参数进行了分类和对比分析,结果表明:(1)通过T-logp图温湿曲线形态、500~700 hPa和850~500 hPa温差、0℃、20℃层和平衡层高度、地面和1.5 km高度的露点温度、1.5 km高度温度露点差、对流有效位能和0~6 km垂直风切变等区分上述四种类型强对流天气的环境背景;(2)纯粹短时强降水天气(包括1、II型)与强冰雹天气、雷暴大风天气环境参数的区别比较显著,前者与后两者相比主要表现在较小的700~500 hPa和850~500 hPa温差,弱的垂直风切变,较高的0℃层、-20℃层和平衡层高度,较大的地面和地面以上1.5 km处的露点温度,其中短时强降水I型(占了纯粹短时强降水的大多数)以其整层较高的相对湿度与其他类型强对流的环境背景差异最为明显;(3)混合型强天气与强冰雹天气、雷暴大风天气在T-logp图温湿曲线形态、对流有效位能及0~6 km垂直风切变诸方面特征相似,表现为对流层中层存在明显干层、较大的对流有效位能和0~6 km垂直风切变,但在相对较高的平衡层高度、较高地面和地面以上1.5 km处露点温度及较小的850~500hPa温差等方面与纯粹短时强降水更为接近.  相似文献   

3.
极端雷暴大风的环境参量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。  相似文献   

4.
利用海南岛区域加密自动站资料和海口站探空资料,结合ERA-Interim再分析资料对2014-2018年海南岛雷暴大风的强度、时空分布、环流形势和物理量参数特征进行分析研究。结果表明:(1)海南岛雷暴大风主要出现在5-8月的午后到傍晚时段,最大阵风风速大部分在8级及以上。(2)雷暴大风的环流形势可以分为三类,即西南热低压型、季风槽型和冷锋型,其中季风槽型根据槽线位置可以分为华南沿海槽型和南海低压槽型。(3)西南热低压型雷暴大风的大气不稳定能量最大,上干下湿,垂直风切变较小;冷锋型的大气不稳定能量最小,上干下湿,垂直风切变最大;季风槽型的大气不稳定能量较大,整层较湿,垂直风切变最小。(4)季风槽天气形势下发生雷暴大风时,较容易伴随短时强降水天气,西南热低压型的雷暴大风风力比其他类型更大。  相似文献   

5.
使用MICAPS天气资料和探空资料,对哈尔滨市2016-2020年5-9月产生的雷暴大风天气以500 hPa天气系统为主进行分型,并统计低层影响系统和地面天气系统出现的比率。然后利用NCEP资料计算各个雷暴大风天气发生前的环境参量,并采用百分位数法统计各型发生时的物理量,以25%分位数为阈值给出临界值。结果表明:(1)哈尔滨市雷暴大风天气分为冷涡型、槽前型和西北气流型。(2)850 hPa与500 hPa温度差≥24℃,CAPE值≥310 J/kg,0-6 km垂直风切变≥10 m/s,地面露点温度≥12℃对于哈尔滨市雷暴大风天气有良好的指示意义。(3)槽前型雷暴大风天气的850 hPa与500 hPa温度差最小,西北气流型个例中高CAPE值并不多;水汽条件并不是制约冷涡型雷暴大风天气发生的重要因素。  相似文献   

6.
中国强雷暴大风的气候特征和环境参数分析   总被引:6,自引:3,他引:3  
费海燕  王秀明  周小刚  俞小鼎 《气象》2016,42(12):1513-1521
对2004—2013年中国强雷暴大风记录(风速≥25 m·s~(-1))的气候特征和环境参数进行统计分析研究。结果表明:强雷暴大风主要发生在中国中东部地区,从3月开始在西南、华南地区出现,4月北进入华中、华东地区,5月北进到华北、东北和西北地区。不同地区强雷暴大风发生峰值时间不同,其中华中和华南有两个峰值。中国强雷暴大风环境参数中低层垂直风切变中等(地面至700hPa和地面至500 hPa平均值分别为10.2和14.3 m·s~(-1)),明显低于美国大范围雷暴大风的均值;存在明显的干层,一般表现为500 hPa附近的中层温度露点差大于10℃C以上,其中华北、西北地区表现为整层3~7 km均较干。根据红外卫星云图的观测特征,强雷暴大风发生时云型最多的是团状,其次是线状,还有一些不规则形状的云型,不同地区主导云型不同。分析我国强雷暴大风多发地华东地区三种云型的环境参数表明:团状云型强雷暴大风的CAPE值大,低层高湿,中层干且环境温度直减率大;线状云型其热力参数值均较团状云型小,但低层和深层垂直风切变大,整层均较干;不规则云型低层高温高湿,环境风垂直切变较小。  相似文献   

7.
利用探空资料对2016—2020年咸阳市暖季(4—9月)雷暴大风、短时强降水和冰雹三类强对流天气发生的环境物理量特征进行分析,提炼强对流天气的关键物理量参数及预报指标。结果表明:(1)咸阳雷暴大风的高发期在4—5月,短时强降水和冰雹的高发期在6—8月,三类天气均主要出现在14—20时。(2)K指数、CAPE值、垂直风切变、0 ℃层高度和-20 ℃层高度均有明显的季节变化,相对高的0 ℃层高度、较厚的暖云层厚度以及相对小的中高层温度露点差可以区别短时强降水和其他两种强对流天气类型。(3)雷暴大风和冰雹发生时中低层一般表现出“上干下湿”的层结特征,雷暴大风的下沉对流有效位能相对较大,应超过120 J/kg。冰雹形成除了考虑较大的对流有效位能和深层垂直风切变外,还需要适宜的0 ℃层高度(39~51 km)。短时强降水要求“整层湿”,即500 hPa和850 hPa的温度露点差均较小,同时暖云层厚度应超过35 km。  相似文献   

8.
一次冷涡横槽型强对流天气过程分析   总被引:2,自引:0,他引:2  
利用加密探测资料和新一代天气雷达产品资料,对2012年7月12日夜到13日凌晨发生在河南省东北部的一次局地强对流天气过程进行分析可知:此次过程为典型的东北低涡后部横槽转竖携带冷空气下摆造成,发生在弱垂直风切变和大CAPE的环境条件下,具有干对流特征,850-500 hPa的温差在25~30℃之间,高空冷槽叠加低层暖脊,使得CAPE从当日08时的≤1000 J/kg增大到20时的1000~3500 J/kg;郑州0-6 km和0-2 km的垂直风切变分别是6.06 m/s和2.89 m/s,属弱垂直风切变.地面中分析表明,强对流天气发生在地面高温高湿及等温、等露点线密集区和辐合相叠加区.雷达资料分析表明:此次强对流回波自山东南部生成并向西传播影响开封地区,随后与西北和北部东南移的对流回波在新乡地区东部汇合加强,然后西移影响郑州地区;径向速度图上具有明显的辐散系统和大风区,在大风发生时段有中气旋产品出现,中气旋直径为4.50~5.00 km,大风发生前后中气旋的切变值由10×10-3s-1增大到16×10-3 s-1,最大值52×10-3 s-1出现在00:37,即延津大风发生时和兰考大风发生前19~ 44 min,为强对流天气的临近预报预警提供了参考依据.SWAN产品虽有偏差,但具有一定参考价值.  相似文献   

9.
利用福州长乐机场1998—2015年雷暴观测资料、2010—2015年自动站观测资料及美国国家环境预报中心(NCEP)逐日再分析资料,对机场雷暴及其伴随的风切变天气特征进行统计分析。结果表明:长乐机场雷暴天气一年四季均有发生,夏季最为频繁,且持续时间较长;雷暴具有明显的日变化特征,主要出现在午后至傍晚,持续时间一般在2 h内,l h以内居多;长乐机场偏西方向是雷暴生成最多的方位。54%的雷暴发生前3 h至结束后3 h内伴有风切变,且偏西方向的雷暴伴有风切变的概率较大。长乐机场弱风切变出现的次数远高于中等强度风切变,而强风切变出现次数最少,且出现在偏西方向的概率较高。伴有风切变的雷暴天气主要有4种环流类型:南支槽型、华北槽型、副高控制型及热带气旋型。  相似文献   

10.
北京地区雷暴大风的天气—气候学特征研究   总被引:13,自引:2,他引:11  
依据北京近郊地区沙河、南苑和西郊3个测站15年(1990~2004年)的观测资料和常规探空资料,对北京地区局地雷暴大风发生的天气、气候特征和日变化特征进行了统计分析。研究从环流形势、探空结构和环境参数特征入手,分析了有利于北京地区产生雷暴大风的不稳定度指数和能量特征,得出在此期间最有利于雷暴大风产生的探空结构为:低层暖湿,中高层有干冷空气,不稳定度较大,风垂直切变较大。还探讨了一些对流参数,如最佳对流有效位能BCAPE、下沉对流有效位能DCAPE、风暴相对螺旋度SREH、大风指数WINDEX、风暴强度指数SSI、深厚对流指数DCI等对北京地区强对流天气发展潜势的指示意义。  相似文献   

11.
强对流天气形势聚类分析中SOM方法应用   总被引:2,自引:0,他引:2  
利用2001—2008年5—9月京津冀地区175个气象站危险天气报、灾情报告及NCEP 1°×1°再分析资料,采用自组织特征映射方法(SOM)对该地区5—9月的天气形势进行客观聚类分型,并对各型的环流特征及其主要造成的强对流天气类型进行分析。结果表明:①天气形势主要有4类:以短时强降水为主的暖湿切变型,主要出现在7、8月;以冰雹天气为主伴随短时强降水和雷暴大风的冷涡型,主要出现在6、7月;以雷暴大风为主的西北气流型,主要出现在5月;以雷暴大风和短时强降水为主的西风槽型,主要是出现在6、9月。②暖湿切变型主要特征是低层为暖湿气流和充足的水汽输送、中层为西风气流;冷涡型中高层有较强偏北气流的干冷空气侵入和低层有较好的水汽条件;西北气流型中高层有强烈的干冷空气侵入和强垂直风切变;西风槽型的动力、热力条件都较弱。③西北气流型和冷涡型出现强对流天气的频率最高,达65%以上,暖湿切变型次之,西风槽型最低。  相似文献   

12.
雷暴大风落区的天气学模型和物理量参数研究   总被引:2,自引:0,他引:2  
对1971 2008年山东雷暴大风的气候特征、天气系统配置模型和物理量参数特征进行分析研究。结果表明,雷暴大风的天气系统分为四种类型:槽前型、槽后型、副热带高压(下称副高)边缘型和横槽型。春季和秋季以槽前型为主,6月和8月槽后型较多,副高边缘型只出现在7月。副高边缘型的对流不稳定能量最高,0~6 km风垂直切变最小;槽后型风垂直切变最大,对流不稳定能量也较大;槽前型的风垂直切变和对流不稳定能量都较大;横槽型的风垂直切变和对流不稳定能量都较小。在鲁西北和鲁中地区槽前型最多,鲁南地区槽后型最多,横槽型主要影响山东北部和半岛地区,副高边缘型主要影响鲁西北和鲁中地区。在内陆地区,春季大气湿度小,不稳定能量低、上下层温差大、0~6km风垂直切变大,大风指数大;夏季低层大气暖湿,对流不稳定能量高、风垂直切变小,大风指数小。鲁南地区产生雷暴大风的温湿条件比鲁西北和鲁中地区高。在山东半岛的沿海地区,低层大气湿度大、温度低,对流不稳定能量小,大风指数较小,但是K指数、θse上下层之差和0~6 km风垂直切变较大,低层大气温度和湿度的月变化较小。  相似文献   

13.
利用鲁中地区2001—2016年伴随瞬时风力不低于8级的所有强对流天气个例共106次进行分析,总结其气候特征,并通过箱须图的形式研究了分类强对流天气相关环境参数的分布特征和预报阈值。结果表明:2001—2016年强对流天气分布呈山区多、平原少、中部多、北部和西南部少的特点;6月和6月中旬是主要月份和旬份;地面辐合线是最主要触发机制类型;雷暴大风型、冰雹雷暴大风型和强降水混合型对应的地面和850 hPa的平均温度露点差,0~1 km和0~3 km垂直风切变,SWEAT指数、LI指数、K指数、风暴相对螺旋度、高度指数等环境参数各有不同的最低阈值;鲁中地区易发生强对流天气的0 ℃层高度为4.1 km左右;对于伴随冰雹的强对流天气,其融化层高度比0 ℃层高度低0.6 km左右。根据以上环境参数的分布特征、高低空垂直风切变的强弱变化可对3类强对流天气进行一定程度的区分。  相似文献   

14.
利用贵州省2012—2016年重要天气报、雷暴观测资料等,统计了雷暴大风时空分布特征,结果表明:贵州雷暴大风发生在3—10月,5月和8月发生次数最多,一天当中雷暴大风发生的高频时段在午后到前半夜,峰值出现在15—18时(北京时,下同)。贵州发生雷暴大风高频地带总体呈东北—西南向分布,西南部为高发区。利用NCEP再分析资料统计雷暴大风过程物理量场的特征,选取对流有效位能、对流抑制能量、下沉对流有效位能、大气可降水量、垂直风切变等8个动力和热力指标,分别给出其春季和夏季的阈值。基于指标阈值的统计结果,建立多指标叠套雷暴大风落区预报方法,结果表明预报落区与雷暴大风实际发生区域有较好的一致性,但仍然需要预报员根据环境条件做出订正。  相似文献   

15.
基于常规观测资料、NCEP再分析资料、闪电定位资料和雷达资料,对湖北省2007-2015年雷暴大风的天气类型、时空分布和环境条件进行了分析,并根据箱线图展示的结果分区域分季节讨论了各型雷暴大风的环境参数特征。结果表明:(1)湖北雷暴大风分为高空冷平流强迫型、低层暖平流强迫型、斜压锋生型、准正压型,其发生在3-8月,其中夏季(6-8月)雷暴大风占其全年总数的78%;一天中,其主要发生在15-19时,峰值在16时;雷暴大风空间分布不均,其高频中心位于鄂西南的宜昌和鄂东的黄石。(2)各型雷暴大风存在季节和区域差异,斜压锋生型主要出现在春季,高空冷平流强迫型、低层暖平流强迫型、准正压型主要出现在夏季;高空冷平流强迫型在鄂西北发生最多,低层暖平流强迫型在宜昌地区、江汉平原、鄂东均出现较多,准正压型和斜压锋生型在鄂东发生最多。(3)高空冷平流强迫型雷暴大风的850 hPa与500 hPa温差(ΔT85)和中低层(925-500 hPa)风垂直切变(SL95)较大,850 hPa露点温度(Td85)偏低;低层暖平流强迫型的SL95、K指数均较大;准正压型的对流有效位能(CAPE)较大、SL95、低层(925-700 hPa)风垂直切变(SL97)较小;斜压锋生型的SL95和SL97均较大。(4)湖北雷暴大风的对流参数K指数、ΔT85、CAPE的阈值分别为35℃、25℃和925 J·kg-1,鄂西北、鄂东的对流参数离散度较大,按区域归纳各型雷暴大风的对流参数阈值,对当地雷暴大风预报预警更有指导意义。  相似文献   

16.
利用2016—2021年ECWMF集合预报资料、浙江自动站实况资料等,计算浙江短时强降水、雷暴大风和冰雹等强对流天气相关物理量的极端天气预报指数(EFI:Extreme Forecast Index),分析EFI分布特征,并构建了分类强对流预报模型。结果表明:强对流天气与物理量的EFI有密切联系,发生短时强降水时,对流有效位能、整层可降水量、850 hPa与500 hPa温差和位温差的EFI较大,而垂直风切变的EFI为负值,因而较小的垂直风切变更有利于出现极端降水;发生雷暴大风和冰雹时,对流有效位能、850 hPa与500 hPa温差和位温差以及850 hPa温度露点差的EFI较大,700 hPa露点温度的EFI为负值,与上层干冷下层暖湿的有利层结条件有关。利用支持向量机多分类方法,将强对流天气相关物理量的EFI作为特征值开展训练,构建的预报模型对于非局地强对流天气有较好的预报效果,其中短时强降水的误判率明显低于雷暴大风。  相似文献   

17.
利用2010—2017年中国气象局重要天气报、地面观测和探空资料以及欧洲中期天气预报中心ERA-Interim再分析资料,对川藏地区雷暴大风的活动特征、环境因子和环流形势进行统计分析,并对其中高原(海拔高度不低于1 km)和盆地(海拔高度低于1 km)区域雷暴大风活动进行对比。结果表明:川藏高原区域雷暴大风频次呈5—6月和9月双峰型分布,主要发生在午后;盆地区域主要发生在夏季,午后和夜间均较活跃。高原站雷暴大风年平均频次约为2次/站,在雷暴和大风中分别约占4.5%和8%。盆地站年平均频次仅为0.4次/站,雷暴中仅占1.5%,但在大风中约占60%。高原站雷暴大风的中低层环境温度递减率较大,一般呈上湿下干的逆湿垂直结构;而盆地站雷暴大风通常具有上干下湿的垂直结构。分别对5—6月和9月高原站雷暴大风两个峰值时段的环流形势进行合成分析,发现5—6月受高空西风槽影响,中层有弱冷平流侵入,高层位于高空急流入口区右侧,环境垂直风切变较大;而9月受副热带高压边缘影响,中高层较干,低层暖湿气流明显。这些均有利于雷暴大风发生。  相似文献   

18.
魏晓雯  陈亮  赵蕾  陈明 《气象科技》2021,49(5):754-761
本文以海南洋浦港为例,利用2015—2019年大风资料,通过合成分析等方法深入探讨了不同类型大风过程的环流特征、发生机制及其预报指标。结果表明:(1)洋浦港大风过程按照影响系统可分为冷空气型、切变线型、热带气旋型和热低压型4种。(2)冷空气型大风主要是由强冷平流引发的;当925hPa关键区24h降温超过6℃且北风分量大于11.5m/s时,洋浦港6h后易发生冷空气型大风;切变线型大风主要产生于强对流引发的雷暴大风、飑线等;当925hPa低空切变线、500hPa南支槽等天气尺度系统出现有利配置,对流有效位能CAPE≥1500J·kg~(-1),且具有较合适的对流抑制能量CIN值时,易发生切变线型大风;热低压型大风与海陆热力差异引起的海风锋密切相关;当海南岛西北部陆地与近海海面的6h变温之差≥3.5℃,CAPE≥1500J·kg~(-1),CIN≤20J·kg~(-1)时,海风锋极易触发雷暴大风等强对流天气;热带气旋型大风主要发生在TC中心附近的等压线密集带以及外围螺旋雨带的中小尺度对流系统中。业务预报时可在数值预报基础上结合统计规律以及卫星、雷达等实况资料综合判定风力等级。  相似文献   

19.
吴福浪  杨琦堡  沈欣  蒋迪 《山东气象》2020,40(4):133-140
利用区域自动气象站资料、天气雷达资料、宁波机场AWOS(automated weather observation system)资料和NCEP再分析资料等对2017年7月22日发生在宁波机场附近的一次孤立强雷暴大风环境条件和雷达回波特征进行分析。结果表明:1)雷暴大风发生在较强的对流有效位能、弱的垂直风切变和上层干燥近地面暖湿的大气层结配置下,海风锋是主要触发系统。2)雷暴大风发生时,地面出现明显冷池和中尺度雷暴高压。3)强反射率因子顶部高度快速下降,中层径向辐合达到18 m·s-1,低层速度辐散超过25 m·s-1等指标,对雷暴大风预警具有较好的指示意义。  相似文献   

20.
宁夏雷暴天气过程划分及环流分型和环境场特征   总被引:5,自引:1,他引:4       下载免费PDF全文
利用1961—2005年宁夏25个气象站雷暴观测资料,根据雷暴发生特点对雷暴天气过程进行划分,得到全区(大部)性、区域性Ⅰ、区域性Ⅱ、持续性、局部性、分散性6类雷暴天气过程;并利用1996—2005年NCEP/NCAR逐日全球再分析资料,对10年来5—9月263例区域性雷暴天气过程进行分析,总结得到有利于宁夏雷暴天气发生的主要环流分型有4类:蒙古冷涡(槽)型、东北冷涡后部横槽型、河套低涡型、西风槽型。其中,前3种类型下易出现持续性雷暴天气过程。易于发生雷暴的环境场特征为宁夏处于500 hPa"西高东低"环流形势下的(弱)西北气流中,地面一般为气旋或热倒槽所控制,蒙古国至我国新疆一带或河西一带有冷锋、切变东移南下,中低层有一定的水汽和辐合抬升条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号