首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2016—2021年ECWMF集合预报资料、浙江自动站实况资料等,计算浙江短时强降水、雷暴大风和冰雹等强对流天气相关物理量的极端天气预报指数(EFI:Extreme Forecast Index),分析EFI分布特征,并构建了分类强对流预报模型。结果表明:强对流天气与物理量的EFI有密切联系,发生短时强降水时,对流有效位能、整层可降水量、850 hPa与500 hPa温差和位温差的EFI较大,而垂直风切变的EFI为负值,因而较小的垂直风切变更有利于出现极端降水;发生雷暴大风和冰雹时,对流有效位能、850 hPa与500 hPa温差和位温差以及850 hPa温度露点差的EFI较大,700 hPa露点温度的EFI为负值,与上层干冷下层暖湿的有利层结条件有关。利用支持向量机多分类方法,将强对流天气相关物理量的EFI作为特征值开展训练,构建的预报模型对于非局地强对流天气有较好的预报效果,其中短时强降水的误判率明显低于雷暴大风。  相似文献   

2.
中国短时强对流天气的若干环境参数特征分析   总被引:18,自引:0,他引:18  
樊李苗  俞小鼎 《高原气象》2013,32(1):156-165
利用中国2005-2009年2 000多个国家级气象观测站雨量资料和2002-2011年部分探空站探空资料,研究了中国短时强降水、强冰雹、雷暴大风以及混合型强对流天气的环境参数特征,通过环境参数特征的对比分析,将上述四种强对流天气加以区分,并对所选取的探空数据和环境参数进行了分类和对比分析,结果表明:(1)通过T-logp图温湿曲线形态、500~700 hPa和850~500 hPa温差、0℃、20℃层和平衡层高度、地面和1.5 km高度的露点温度、1.5 km高度温度露点差、对流有效位能和0~6 km垂直风切变等区分上述四种类型强对流天气的环境背景;(2)纯粹短时强降水天气(包括1、II型)与强冰雹天气、雷暴大风天气环境参数的区别比较显著,前者与后两者相比主要表现在较小的700~500 hPa和850~500 hPa温差,弱的垂直风切变,较高的0℃层、-20℃层和平衡层高度,较大的地面和地面以上1.5 km处的露点温度,其中短时强降水I型(占了纯粹短时强降水的大多数)以其整层较高的相对湿度与其他类型强对流的环境背景差异最为明显;(3)混合型强天气与强冰雹天气、雷暴大风天气在T-logp图温湿曲线形态、对流有效位能及0~6 km垂直风切变诸方面特征相似,表现为对流层中层存在明显干层、较大的对流有效位能和0~6 km垂直风切变,但在相对较高的平衡层高度、较高地面和地面以上1.5 km处露点温度及较小的850~500hPa温差等方面与纯粹短时强降水更为接近.  相似文献   

3.
袁慧敏 《气象科技》2019,47(3):476-485
利用呼和浩特探空站计算的16个物理量,分析了2012—2016年6—8月呼和浩特地区的冰雹、雷暴大风及短时强降水天气过程中各物理量差异,结果表明:①订正后的(对流有效位能)CAPE大于等于1000J·kg-1、0℃层高度约4200m左右,-20℃层约在7200m左右,500hPa和850hPa温差达-25℃,逆温层高度在2km以上基本可以判定为冰雹天气;②短时强降水对水汽的依赖度更高,且具有更强的热力不稳定性,低层的温度露点差、500hPa与850hPa的假相当位温差Δθse(500-850)、大气可降水量PW也是短时强降水天气的重要判据;③订正后的(下沿对流有效位能)DCAPE值雷暴大风明显大于冰雹和短时强降水,约为其他2类强对流天气的2倍,订正后的CAPE略小于其他2类强对流天气。根据四分位数法、所占比例≥70%以及均值法界定各类预报因子阈值大小,进而确立了呼和浩特地区强对流天气预警指标。经检验均值法确定的阈值指标命中率均达到50%以上,可参考价值较高。  相似文献   

4.
利用南疆西部近20 年暖季(5-9 月)多源气象资料,通过箱线图的形式对冰雹(102 次)和短时强降水(159次),以及上述个例中的特强强对流个例的关键环境参数分布特征和预报阈值进行讨论。结果表明:(1) 850 hPa和500 hPa之间的温差、地面至700 hPa露点温度、大气可降水量和暖云层厚度等关键参数的分布特征可以区分短时强降水和冰雹。短时强降水和冰雹对应参数的最低阈值:850 hPa 和500 hPa 间温差分别为29 ℃、31 ℃、地面至700 hPa露点温度分别为4 ℃和-3 ℃、对流有效位能分别为1152 J·kg-1和1470 J·kg-1、0-6 km垂直风切变分别为4.0 m·s-1和7.0 m·s-1。(2) 强降水暖云层厚度最低阈值为1.2 km。冰雹适宜的融化层高度在3.5~4.3 km;(3) 特强强对流天气主要体现在水汽条件有所加大、对流有效位能的增大、有效抑制的减小和0-6 km垂直风切变的增强。同时,对南疆西部强对流天气短临预报的潜势进行初探,为本地分类强对流天气智能网格预报奠定基础  相似文献   

5.
利用探空资料判别北京地区夏季强对流的天气类别   总被引:20,自引:8,他引:12       下载免费PDF全文
雷蕾  孙继松  魏东 《气象》2011,37(2):136-141
利用北京南郊观象台探空资料计算出的18种物理参量及其时间变量,详细分析了2007年和2008年5-9月冰雹、雷暴大风以及暴雨强对流天气过程下物理量的差异.结果表明:0℃层高度、-20℃层高度、500 hPa和850 hPa温差、逆温层高度、低空风切变能比较显著地区分冰雹和暴雨天气,其σ也比较小;此外850 hPa的温度露点差、500 hPa和850 hPa的θse 差、大气可降水屠PW也足判断强对流类别的重要条件.而对于时间变量来说,CAPE、DCAPE、K指数、500 hPa和850 hPa的θse差、PW、低层的垂直风切变这儿种物理量的6小时变量也能比较好地甄别出冰雹(雷暴大风)和暴雨天气.上述研究结果表明,合理利用探空资料甄别夏季强对流天气的类别是可能的.  相似文献   

6.
利用常规探空观测和WRF分析场等资料,分析了2005—2014年沈阳地区强对流天气的气候背景特征、演变规律及日变化特征等,将强对流天气划分为冰雹、雷暴大风(≥17.2 m·s-1)、短时强降水(≥20 mm·h-1)和混合型4种类型;并分析探空资料在强对流天气潜势预报中的作用,着重探讨14时(02时)探空资料对沈阳地区强对流天气短时临近潜势预报的作用。结果表明:2005—2014年沈阳地区4种强对流天气中,以短时强降水天气发生次数最多,其次为雷暴大风天气,冰雹天气的发生次数最少,多数强对流天气发生在午后至傍晚。由合成T-Log P图的温湿廓线可知,沈阳地区短时强降水天气发生时中低层存在显著湿区,与雷暴大风和冰雹为主的强对流天气温湿廓线明显不同,多数合成T-Log P图的显著特点为中层大气干燥。冰雹型强对流天气的0℃层和-20℃层高度明显低于其他强对流天气类型的高度;冰雹型强对流天气T700-T500和T850-T500显著大于短时强降水型及雷暴大风型强对流天气,且T850-T500的指示意义更好;4种强对流天气类型平均SI均出现了正值,说明SI失去了不稳定性的指示意义;短时强降水天气的K指数明显高于冰雹天气;雷暴大风天气发生时对流有效位能明显小于其他强对流天气类型。可见,WRF中尺度模式中的T-Log P预报图对沈阳地区强对流天气的预报具有一定的指导意义。  相似文献   

7.
鲁中地区分类强对流天气环境参量特征分析   总被引:13,自引:3,他引:10  
将山东中部地区16 a暖季(4-9月)106次伴随瞬时风力不低于8级的强对流个例划分为雷暴大风、冰雹雷暴大风和强降水混合型等3种类型,利用常规探空资料和地面观测资料,通过箱须图的形式分别讨论3种类型对应的一系列关键环境参数的分布特征和预报阈值。进一步,又将上述106次个例中的特强对流个例,包括产生25 m/s以上瞬时大风的特强雷暴大风个例、产生不小于20 mm直径冰雹的特强冰雹个例以及50 mm/h或以上强度的特强短时强降水个例提取出来构成一个子集,讨论其关键环境参数分布特征和预报阈值,并与全部对流个例的相应关键环境参数进行比较。最后,对鲁中地区强对流系统的触发机制进行了简要阐述和讨论。结果表明:(1)雷暴大风型、冰雹雷暴大风型和强降水混合型对应的850和500 hPa温差的最低阈值为25℃; 3种类型对应的地面露点最低阈值分别为13、16和24℃; 相应的大气可降水量最低阈值分别为20、24和32 mm; 相应对流有效位能的最低阈值分别为300、900和1300 J/kg; 相应的0-6 km风垂直切变最低阈值分别为12.0、12.5和8.0 m/s。(2)通过地面露点、大气可降水量以及暖云层厚度等关键参数的分布特征可以将上述3种类型的前两种与第3种类型即强降水混合型进行一定程度的区分,但要通过各个关键参数的分布特征区分前两种强对流天气是困难的。(3)对于伴随冰雹的强对流天气,适宜的融化层高度为3.0-3.9 km; (4)特强雷暴大风、特强冰雹和特强短时强降水等3种特强对流类型与全部强对流个例的3种类型相比,其条件不稳定度明显增大,体现为850和500 hPa温差的增大、水汽条件有所加强、对流有效位能明显增大,3种类型特强对流天气对应的对流有效位能最低阈值分别为1000、1100和2000 J/kg; 相应的0-6 km风垂直切变最低阈值分别为16、12和11 m/s,即特强雷暴大风型和特强短时强降水型的风垂直切变阈值明显增大。上述工作构成了山东中部伴随雷暴大风的强对流天气短时预报的一个基础,结合各类强对流天气发生的气候概率,可以通过决策树或模糊逻辑方法制作成适合于地、市气象台的分类强对流天气短时预报系统。   相似文献   

8.
利用呼伦贝尔市CIMISS系统实况资料,统计分析了2010—2021年5—9月东北冷涡背景下的强对流天气时空分布及物理量参数特征。结果表明:(1)5月雷暴大风次数最多,6月冰雹次数最多,6—8月是短时强降水集中发生期,尤以8月次数最多。(2)强对流天气主要出现在12:00—20:00,其中短时强降水每个时次均有发生,但雷暴大风与冰雹天气在21:00—次日08:00基本没有发生过。(3)大兴安岭西部雷暴大风站次较多;大兴安岭东北部、岭上及岭西北的冰雹站次较多;短时强降水与强对流天气空间分布特征较为一致,均是大兴安岭岭上南段与岭东的站次较多。(4)雷暴大风天气的风速多以17.2~20.7 m·s-1为主;短时强降水量级为20.0~29.9 mm的站次占总站次的74.3%;持续时间小于5 min冰雹居多,直径小于5 mm冰雹的站次占总站次的49.1%。(5)短时强降水850 hPa的比湿、水汽通量、水汽通量散度的物理量参数均值均大于冰雹、雷暴大风;短时强降水K指数均值大于冰雹、雷暴大风,T850-T500均值大于26℃,短时强...  相似文献   

9.
该文利用2005-2014年丰都县地面天气、探空数据、NCEP 1°×1°FNL再分析资料等,对丰都地区冰雹、雷暴大风、短时强降水这3类强对流天气特征进行统计分析,得出这3类强对流天气的时空分布特征,并从天气个例出发,利用实况资料对强对流天气的差异进行分析,为强对流天气的预警预报提供参考。得到如下结果:短时强降水通常出现在5-9月,大风通常出现在5—8月,冰雹通常出现南部的七跃山脉和北部的蒋家山和黄草山脉附近~([1]),2005—2014年间共出现了7次,3—8月均有发生。通过计算3种强对流天气环境场参量,归纳出3种物理量参数的差异:大气可降水量、AT500-T850,K指数、抬升指数(LI)、相对湿度、散度场分布等在冰雹、短时强降水和大风天气中有明显的差异,冰雹和短时强降水的AT500-T850相差了近5℃,大风天气的值介于冰雹和短时强降水之间。大气可降水量分布上,短时强降水的大气可降水量(PW)平均值为58 mm,比冰雹值大约多了10 mm,比大风值多了14 mm。短时强降水出现时几乎整层都是处于饱和的状态,冰雹和大风天气几乎只在中低层有较饱和的水汽,而高层的相对湿度平均值在40%~50%左右。对流指数方面,K指数和LI指数都很好的指示了强对流天气的发生,K指数在短时强降水发生时其平均值在39.8℃左右,较冰雹和大风分别高1.6℃和3℃。短时强降水出现环流位置大多位于600 hPa以下,而冰雹则在300 hPa左右,大风在400 hPa左右。  相似文献   

10.
利用常规观测资料、FY-2G/2E卫星黑体亮温(TBB)资料、多普勒天气雷达资料与ERA-Interim再分析资料,对2016年4月17—18日南岭山脉一次强对流天气过程进行了诊断分析。结果表明:(1)该过程前期,受地面倒槽与辐合线影响出现暖区降水,后期随着地面冷空气侵入配合低空切变线与高空槽东移南压迅速转变为锋面降水,强降水落区与南岭山脉走向一致,大暴雨由多个中尺度对流系统(MCS)移入和有利地形作用造成;大冰雹、雷暴大风主要出现在暖区降水时段,暖区短时强降水以高质心降水为主,锋面越山之后强天气主要为低质心短时强降水,雷暴大风和冰雹较少出现。(2)雷达回波图上中层径向辐合的出现,对雷暴大风具有预警参考意义;中气旋、高垂直累积液态水含量(VIL)、回波悬垂、有界弱回波等回波特征对提前预警大冰雹有一定的指示作用。(3)不同类型强天气发生的大气层结条件存在差异,上层干区深厚、低层湿度条件较好有利于产生大冰雹,大的0—6 km垂直风切变有利于冰雹增长;大的下沉对流有效位能(DCAPE)是预报雷暴大风的一个参考指标;整层温度露点差和DCAPE小是判断只出现短时强降水的参考依据。(4)南岭及其附近地区"喇叭口"地形和迎风坡地形有利于低层气流辐合触发对流,造成暴雨多发和降水时间延长,南岭背风坡的锋生作用使南岭山脉南麓出现雷暴大风、冰雹等天气的可能性增大。  相似文献   

11.
王迪  牛淑贞  曾明剑  张一平 《气象》2020,46(5):618-628
以冰雹、雷暴大风、短时强降水三类划分河南省2006—2015年暖季国家自动气象站的强对流个例,考虑到月际变化和气候背景差异对强对流发生环境的影响,采用ECMWF再分析资料计算表征大气动力、热力及水汽条件等特性的物理参数及其15 d滑动平均值,对比分析各月三类天气环境物理条件特征,并提炼分类强对流的关键物理参数。结果表明:河南省暖季短时强降水发生频率最高,冰雹最少,各类均主要出现在14—20时。三类强对流发生临近时刻大多数物理参数的月际差异非常明显,应用时有必要分月讨论。参数偏离滑动气候态的异常特征对于分类强对流同样有价值,且不同物理条件偏差特征差异明显。平均来说,短时强降水与冰雹的环境条件各月差异显著,主要体现在:整层可降水量、地面露点温度和K指数较大,0℃和-20℃层高度较高,低层垂直风切变较大,低层辐合和正涡旋特征较强,而850与500 hPa温差和对流有效位能较小。冰雹与雷暴大风的物理参数特征大多非常相似,不过冰雹的整层可降水量和地面露点温度更小、0℃和-20℃层高度更低、高层辐合和正涡旋特征更强,尤其在7月和8月。  相似文献   

12.
朱义青  褚涛  刘新磊 《气象科技》2023,51(4):541-550
基于地面和高空观测资料、NCEP 1°×1°再分析资料及多普勒雷达等资料,对发生在山东两次相似环流形势的华北冷涡背景下,造成不同类型的强对流天气进行对比分析。结果表明:(1)2016年6月14日发生的强对流天气(“6·14”过程)以雷暴大风和短时强降水为主,发生在低层弱的垂直风切变环境中,对流层中下层(400~900 hPa)存在较为深厚的暖湿平流,水汽输送充沛,同时造成0℃、-20℃层高度抬升,有利于短时强降水而不利于冰雹产生;2018年6月13日发生的强对流天气(“6·13”过程)以雷暴大风和冰雹为主,发生在较强的条件不稳定层结和强的低层垂直风切变环境中,400~500 hPa冷平流以及低层暖平流的同时增强,有利于对流层中层的温度垂直递减率进一步增大,造成-30~-20℃层进一步下降,促成了大冰雹的发生环境。(2)“6·14”过程是由地面辐合线触发,“6·13”过程是由锋面触发。(3)“6·14”过程强反射率因子高度低,无明显高悬强回波结构,利于出现短时强降水;“6·13”过程具有单体结构密实和明显高悬强回波结构特征,因此,6·13”过程对流强度更强,更容易出现冰雹。  相似文献   

13.
极端雷暴大风的环境参量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。  相似文献   

14.
利用高时空分辨率的ERA5再分析资料分析了吉林省东部山区近10a暖季(4—9月)出现的雷暴大风型、冰雹大风型、复合型等3种类型的分类强对流个例,通过绘制箱线图后进行不同类型环境对流参数分析,得到预报阈值.结果表明:基本对流参数中,3种类型的强对流天气对应的850hPa与500hPa温差阈值为25.3℃;广义位温阈值分别为297K、301K、308K;K指数分别为26℃、29℃、33℃.与各个类型强对流相关的参数中,当平均温度露点差≥5.2℃时,需要警惕雷暴大风的产生;当融化层高度位于2.8~3.4km时,需要警惕冰雹大风的产生;当暖云层厚度≥3.5km时,需要注意复合型强对流的产生.  相似文献   

15.
近6年陕甘宁三省5—9月短时强降水统计特征   总被引:5,自引:1,他引:4       下载免费PDF全文
利用2005—2010年5—9月加密自动气象站1 h降水资料对陕甘宁三省不同强度短时强降水时空分布特征、天气学概念模型以及物理量特征进行研究,结果表明:短时强降水在陕甘宁三省存在4个活跃区和3个不活跃区;7—8月是短时强降水的多发期,两大峰值出现在7月下旬和8月中旬,日变化呈双峰分布,1 h降水量≥30 mm的短时强降水具有夜间多发性;通过典型个例的综合分析,建立了低槽-副高型、低涡-远距离台风型、两高切变型3类短时强降水概念模型;从物理量场来看,3类短时强降水均具有丰富的水汽和不稳定层结 (能量)、高于发生冰雹的0℃层高度、较厚的暖云厚度,且均发生在弱风切变环境中;低槽-副高型最为典型,其抬升凝结高度最高,500 hPa与850 hPa假相当位温差Δθse、抬升指数,K指数,对流有效位能量值最低,短时强降水发生频次高,1 h降水量大多在25 mm以内。低涡-远距离台风型水汽条件最好,深厚湿区、次天气尺度Ω系统和较低的抬升凝结高度使短时强降水发生范围最广,强度更强。两高切变型降水强度最大、持续时间最短并具有突发性, 其Δθse、抬升指数、K指数、对流有效位能最高,0~3 km垂直风切变最强,对流性特征明显,特别是强天气威胁指数接近300,强降水发生的同时往往伴有雷暴。  相似文献   

16.
利用2018—2020近三年青海河湟谷地低涡切变影响下强降水天气个例地面观测、NCEP 1°×1°再分析、FY-2G云图相当黑体亮温温度、模式及雷达拼图等资料,对比分析相同环流背景影响下不同类型强降水环境条件和成因差异,以及初步评估模式预报能力。结果表明:伴有雷暴、冰雹、雷暴大风等混合性强降水天气称为强降水Ⅰ型,以纯短时强降水为主的强降水天气称为强降水Ⅱ型。低涡切变是两种类型强降水的影响系统,强降水Ⅰ型400~300 hPa高空冷平流入侵促使低涡切变系统加强东移,地面冷锋发展在河湟谷地形成锢囚锋。强降水Ⅱ型受副热带高压西进阻挡,低涡切变系统和地面冷锋减弱消失;强降水Ⅰ型主要具有较强的高空干冷急流、高的下沉对流有效位能,较高的700 hPa和400 hPa温差以及强的垂直风切变均为强对流发生提供动力条件,产生的强天气以风雹类为主,而强降水Ⅱ型具有较高的0℃层和-20℃层高度、较高的抬升凝结高度,产生的强天气以短时强降水为主;强降水Ⅰ型云图特征主要表现为午后发展起来组织化程度高的冷涡云系,相当黑体亮温(TBB)初始中心数值在-45~- 35℃,发展阶段TBB下降至-75~-40℃,强降水Ⅱ...  相似文献   

17.
利用鲁中地区2001—2016年伴随瞬时风力不低于8级的所有强对流天气个例共106次进行分析,总结其气候特征,并通过箱须图的形式研究了分类强对流天气相关环境参数的分布特征和预报阈值。结果表明:2001—2016年强对流天气分布呈山区多、平原少、中部多、北部和西南部少的特点;6月和6月中旬是主要月份和旬份;地面辐合线是最主要触发机制类型;雷暴大风型、冰雹雷暴大风型和强降水混合型对应的地面和850 hPa的平均温度露点差,0~1 km和0~3 km垂直风切变,SWEAT指数、LI指数、K指数、风暴相对螺旋度、高度指数等环境参数各有不同的最低阈值;鲁中地区易发生强对流天气的0 ℃层高度为4.1 km左右;对于伴随冰雹的强对流天气,其融化层高度比0 ℃层高度低0.6 km左右。根据以上环境参数的分布特征、高低空垂直风切变的强弱变化可对3类强对流天气进行一定程度的区分。  相似文献   

18.
应冬梅  许爱华  黄祖辉 《气象》2007,33(3):48-53
为发挥多普勒天气雷达监测和预警冰雹、雷雨大风、短时强降水等强对流天气的作用,制作出精细化的临近和短时预报,选取了江西8次典型的强对流天气过程,从7个方面对冰雹大风和短时强降水两类强对流天气的多普勒天气雷达回波特征进行对比分析。结果表明:江西省冰雹、雷雨大风过程45~55dBz强回波平均高度为12.4km,达到或超过-25℃层的高度,比短时强降水回波高5.6km。弱回波区(wER)或有界弱回波区(BwER)、三体散射长钉、持续高垂直积分液态水含量、中气旋、下湿上干或强风垂直切变特征等都是冰雹天气的典型特征。而相对平均径向速度图上“S”型暖平流及表现强低空急流的“牛眼”、深厚的湿度层等,则是短时强降水的主要特征,这些特征可为两类强对流天气短时临近预报提供预报参考。  相似文献   

19.
利用地面观测资料、天气雷达资料和ECMWF-ERA5逐小时0.25°×0.25°再分析资料,主要从环境条件和触发机制两个方面,对2019年6月8日(简称过程A)、9日(简称过程B)影响江苏省北部的两次冷涡型强对流天气过程进行了对比分析。结果表明: 过程A是由暖湿气流引起的短时强降水伴随雷暴大风的湿对流天气;过程B则是在高层西北气流下由干冷平流强迫引起的大风冰雹伴随短时强降水的混合对流天气。过程A,由暖湿气流形成强对流不稳定层结,垂直风切变强度一般,湿层深厚,有利于短时强降水的发生;过程B,中高层的较强干冷平流叠加在低层暖湿平流上而形成强对流不稳定层结,强的垂直风切变位于中低层,配合较强的动力抬升条件,有利于冰雹的发生。两次天气过程的触发机制都是地面辐合线。过程A的预报重点为水汽条件和来自上游的对流系统与当地地面辐合线的耦合;过程B的预报重点为大气的不稳定度和冷涡后部冷空气的干侵入与地面辐合线的耦合。  相似文献   

20.
基于业务观测、历史灾情及互联网媒体等多源数据整编形成强对流天气人工智能应用训练基础数据集(Severe Convective Weather DataSet for AI application,SCWDS)。SCWDS包括2012—2019年中国大陆区域的雷暴、雷暴大风、短时强降水、冰雹及龙卷5种强对流天气,共184865个个例(站次),9256405个样本,每个样本包含强对流天气过程标注及对应时空窗口范围内的地面观测数据、探空数据、闪电定位数据、雷达基数据、卫星多通道数据和再分析产品等。雷暴、短时强降水、冰雹主要出现在6—8月,雷暴大风主要出现在4—5月,龙卷主要出现在6—8月和4月。短时强降水发生时间呈03:00—04:00(北京时,下同)和15:00—16:00时段双峰分布,雷暴、雷暴大风、冰雹、龙卷主要发生在13:00—19:00时段。雷暴主要出现在华南、江南及青藏高原、云贵高原,雷暴大风主要出现在华北北部及江南沿海,短时强降水主要出现在西南、华南、江南及黄淮江淮地区,冰雹主要出现在青藏高原、云贵高原及华北北部。SCWDS作为机器学习模型训练的基础数据,为强对流天气智能识别和预报应用提供数据支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号