首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 722 毫秒
1.
《International Geology Review》2012,54(17):2118-2142
ABSTRACT

The Late Cretaceous-Paleogene Mexican foreland basin (MFB), defined herein, represents the southern continuation of the late Mesozoic Cordilleran foreland basin. Sandstone petrography, new detrital-zircon (DZ) U-Pb geochronology, and paleocurrent data indicate that much of the sedimentary fill of the basin was derived from an active Late Cretaceous-Paleogene magmatic arc, termed here the Mexican Cordilleran arc, on the western continental margin of Mexico. The oldest known strata of the proximal foreland basin in the Mesa Central consist of Cenomanian-Turonian turbidites. Sampled sandstones are compositional volcanic litharenites with abundant neovolcanic grains and a dominant, approximately syndepositional DZ age group ranging ~98–92 Ma that records a major magmatic event in the Mexican Cordilleran arc. Santonian-Campanian strata in the distal MFB consist of carbonate pelagites with abundant interbedded tuffs and tuffaceous sandstones. Represented by the Caracol and San Felipe formations deposited in the forebulge and back-bulge depozones, respectively, these strata form an arcuate outcrop belt ~700 km in length. DZ ages ranging ~85–74 Ma in the arc-derived tuffaceous strata record a second prominent magmatic event.

Two principal transport mechanisms delivered volcanogenic sediment to the MFB from multiple, simultaneously active arc sources during Late Cretaceous time: (1) Cenomanian-Turonian east-directed transverse fluvial systems transported volcanic-lithic sand rich in young zircon grains; and (2) airborne ash clouds transported Santonian-Campanian zircon grains to the distal foreland basin in prevailing Late Cretaceous northwesterly winds. Axial transport of sediment derived from active arc sources, Proterozoic basement and derivative sedimentary rocks in northwestern Mexico, in addition to transverse transport from the thrust orogen itself, represents a younger sediment-routing system, modified by advance of the foreland fold-thrust belt, to the Maastrichtian-Paleogene foreland of northeastern Mexico.  相似文献   

2.
The Cretaceous units exposed in the northwestern segment of the Colombian Andes preserve the record of extensional and compressional tectonics prior to the collision with Caribbean oceanic terranes. We integrated field, stratigraphic, sedimentary provenance, whole rock geochemistry, Nd isotopes and U-Pb zircon data to understand the Cretaceous tectonostratigraphic and magmatic record of the Colombian Andes. The results suggest that several sedimentary successions including the Abejorral Fm. were deposited on top of the continental basement in an Early Cretaceous backarc basin (150–100 Ma). Between 120 and 100 Ma, the appearance of basaltic and andesitic magmatism (~115–100 Ma), basin deepening, and seafloor spreading were the result of advanced stages of backarc extension. A change to compressional tectonics took place during the Late Cretaceous (100–80 Ma). During this compressional phase, the extended blocks were reincorporated into the margin, closing the former Early Cretaceous backarc basin. Subsequently, a Late Cretaceous volcanic arc was built on the continental margin; as a result, the volcanic rocks of the Quebradagrande Complex were unconformably deposited on top of the faulted and folded rocks of the Abejorral Fm. Between the Late Cretaceous and the Paleocene (80–60 Ma), an arc-continent collision between the Caribbean oceanic plateau and the South-American continental margin deformed the rocks of the Quebradagrande Complex and shut-down the active volcanic arc. Our results suggest an Early Cretaceous extensional event followed by compressional tectonics prior to the collision with the Caribbean oceanic plateau.  相似文献   

3.
冈底斯弧弧后早白垩世裂谷作用的沉积学证据   总被引:9,自引:0,他引:9  
冈底斯弧弧后地区早白垩世地层的一个显著特点是 ,由下而上普遍从陆相 -海陆交互相碎屑岩变化为海相碳酸盐岩。该地区在早白垩世中期开始了广泛的海侵 ,沉积范围由早期仅局限于班公湖 -怒江缝合带附近而扩展至羌塘地体南缘和拉萨地体 ,沉积了巨厚的台地相灰岩 ;与塔里木南部和思茅地区同期海平面变化非常不同 ,那里在晚白垩世才出现海侵。砂岩组分研究显示 ,早白垩世早期碎屑物源主要来自北侧的造山带 ,向上则逐步受到南侧火山弧的控制。在海侵层系的下部 ,发现了丰富的双峰型火山岩和双峰式火山岩碎屑。因而推断该区在早白垩世发生了强烈的裂谷沉降作用。与此同时的在印度和巴基斯坦境内的 L adakh- Kohistan弧后裂谷作用还形成了具有洋壳基底的Shyok边缘海。因此 ,在早中白垩世 ,欧亚大陆南缘为西太平洋型的活动大陆边缘 ,因强烈的弧后裂谷作用产生了一系列边缘海盆地 ;在包括青藏高原南部在内的欧亚大陆南缘 ,既没有构造动力、也没有古地理和古地形证据支持在早白垩世末 ( 99Ma± )即出现强烈的抬升。  相似文献   

4.
Geochronological, geochemical, and structural studies of magmatic and metamorphic complexes within the Kyrgyz North Tianshan (NTS) revealed an extensive area of early Palaeozoic magmatism with an age range of 540–475 Ma. During the first episode at 540–510 Ma, magmatism likely occurred in an intraplate setting within the NTS microcontinent and in an oceanic arc setting within the Kyrgyz-Terskey zone in the south. During the second episode at 500–475 Ma, the entire NTS represented an arc system. These two phases of magmatism were separated by an episode of accretionary tectonics of uncertain nature, which led to obduction of ophiolites from the Kyrgyz-Terskey zone onto the microcontinent. The occurrence of zircon xenocrysts and predominantly negative whole-rock ɛNd(t) values and ɛHf(t) values of magmatic zircons suggest a continental setting and melting of Precambrian continental sources with minor contributions of Palaeozoic juvenile melts in the generation of the magmatic rocks. The late Cambrian to Early Ordovician 500–475 Ma arc evolved mainly on Mesoproterozoic continental crust in the north and partly on oceanic crust in the south. Arc magmatism was accompanied by spreading in a back-arc basin in the south, where supra-subduction ophiolitic gabbros yielded ages of 496 to 479 Ma. The relative position of the arc and active back-arc basin implies that the subduction zone was located north of the arc, dipping to the south. Variably intense metamorphism and deformation in the NTS reflect an Early Ordovician orogenic event at 480–475 Ma, resulting from closure of the Djalair-Naiman ophiolite trough and collision of the Djel'tau microcontinent with the northern margin of NTS. Comparison of geological patterns and episodes of arc magmatism in the NTS and Chinese Central Tianshan indicate that these crustal units constituted a single early Palaeozoic arc and were separated from the Tarim Craton by an oceanic basin since the Neoproterozoic.  相似文献   

5.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   

6.
Diagenetically altered volcanic ash deposits (bentonites) found in Cretaceous terrestrial and marine foreland basin sediments have the potential to be used for chronostratigraphy and subsurface correlation across Alaska's North Slope. Detailed age and geochemical studies of these volcanogenic deposits may also shed light on the tectonic evolution of the Arctic. Though these bentonites have been previously studied, there are few published results for regional bentonite ages and geochemistry due to challenges of dating weathered volcanic ash. We analyzed mineral separates from cored bentonites recovered from wells in the National Petroleum Reserve Alaska. The analyses confirm that an intense period of volcanic ash deposition on Alaska's North Slope began by the late Albian and persisted throughout the Cenomanian, an interval of rapid progradation and aggradation in the Colville basin. These results also add to a sparse record of radioisotopic ages from the Nanushuk Formation. A bentonite preserved in delta plain sediments in the upper Nanushuk Formation dates to 102.6 ± 1.5 Ma (late Albian), while a bentonite near the base of the overlying Seabee Formation was deposited at 98.2 ± 0.8 Ma, in the early Cenomanian. The two ages bracket a major flooding surface at the base of the Seabee Formation near Umiat, Alaska, placing it near the Albian-Cenomanian boundary (100.5 Ma). Several hundred feet up-section, the non-marine Tuluvak Formation contains bentonites with 40Ar/39Ar ages of 96.7 ± 0.7 to 94.2 ± 0.9 Ma (Cenomanian), several million years older than previously published K–Ar ages and biostratigraphic constraints suggest.Major and trace element geochemistry of a sub-sample of six bentonites from petroleum exploration wells at Umiat show a range in composition from andesite to rhyolite, with a continental arc source. The bentonites become more felsic from the late Albian (∼102 Ma) to late Cenomanian (∼94 Ma). A likely source for the bentonites is the Okhotsk-Chukotka Volcanic Belt (OCVB) of eastern Siberia, a continental arc which became active in the Albian and experienced episodes of effusivity throughout the Late Cretaceous. Chronostratigraphically anomalous 40Ar/39Ar ages coincide with peaks of magmatic activity in the OCVB, suggesting that these anomalously old ages may be due to magmatic contribution of xenocrysts or recycling of detrital minerals from older volcanic events. An alternative explanation for the chronostratigraphically anomalous ages is mixing of bentonites with detrital sediment derived from unroofing and erosion of metamorphic rocks in the Brooks Range, Herald Arch, and Chukotka throughout the mid to Late Cretaceous.  相似文献   

7.
The geological inventory of the Variscan Bohemian Massif can be summarized as a result of Early Devonian subduction of the Saxothuringian ocean of unknown size underneath the eastern continental plate represented by the present-day Teplá-Barrandian and Moldanubian domains. During mid-Devonian, the Saxothuringian passive margin sequences and relics of Ordovician oceanic crust have been obducted over the Saxothuringian basement in conjunction with extrusion of the Teplá-Barrandian middle crust along the so-called Teplá suture zone. This event was connected with the development of the magmatic arc further east, together with a fore-arc basin on the Teplá-Barrandian crust. The back-arc region – the future Moldanubian zone – was affected by lithospheric thinning which marginally affected also the eastern Brunia continental crust. The subduction stage was followed by a collisional event caused by the arrival of the Saxothuringian continental crust that was associated with crustal thickening and the development of the orogenic root system in the magmatic arc and back-arc region of the orogen. The thickening was associated with depression of the Moho and the flux of the Saxothuringian felsic crust into the root area. Originally subhorizontal anisotropy in the root zone was subsequently folded by crustal-scale cusp folds in front of the Brunia backstop. During the Visean, the Brunia continent indented the thickened crustal root, resulting in the root's massive shortening causing vertical extrusion of the orogenic lower crust, which changed to a horizontal viscous channel flow of extruded lower crustal material in the mid- to supra-crustal levels. Hot orogenic lower crustal rocks were extruded: (1) in a narrow channel parallel to the former Teplá suture surface; (2) in the central part of the root zone in the form of large scale antiformal structure; and (3) in form of hot fold nappe over the Brunia promontory, where it produced Barrovian metamorphism and subsequent imbrications of its upper part. The extruded deeper parts of the orogenic root reached the surface, which soon thereafter resulted in the sedimentation of lower-crustal rocks pebbles in the thick foreland Culm basin on the stable part of the Brunia continent. Finally, during the Westfalian, the foreland Culm wedge was involved into imbricated nappe stack together with basement and orogenic channel flow nappes.  相似文献   

8.
奥陶纪是柴达木盆地北缘早古生代碰撞造山演化的重要时期,柴达木地块与滩间山岛弧碰撞起始时限以及欧龙布鲁克海盆盆地类型、构造-古地理格局一直存在争议。本文在对欧龙布鲁克地块早奥陶世碎屑岩沉积野外观测及室内分析的基础上,测试了30个砂泥岩样品的主量元素、微量元素及稀土元素含量。结果表明,石灰沟组碎屑岩建造具有快速堆积、低成分成熟度、低结构成熟度的特征;该套碎屑岩沉积于活动大陆边缘背景下的弧后前陆盆地,碎屑物质来自南部由大陆上地壳与岛弧物质组成的上隆基底;早奥陶世(488~472 Ma)柴达木地块与滩间山岛弧陆-弧碰撞已经开始,但陆-弧碰撞起始时间不会早于493Ma。在此基础上,结合前人研究成果,认为早古生代欧龙布鲁克地块处于滩间山岛弧北部,盆地沉降、沉积演化受柴达木盆地北缘洋盆俯冲及柴达木地块-滩间山岛弧碰撞控制,寒武纪发育弧后伸展盆地,奥陶纪初期转为弧后挤压前陆盆地,弧后伸展与弧后挤压、沉积体系转换发生在490~480Ma之间。该成果从沉积学角度为柴达木盆地北缘陆-弧碰撞起始时限提供了新的制约。  相似文献   

9.
大陆弧岩浆幕式作用与地壳加厚:以藏南冈底斯弧为例   总被引:1,自引:0,他引:1  
大陆弧岩浆带位于汇聚板块的前缘,记录了洋陆俯冲过程和大陆地壳生长过程,是研究壳幔相互作用的天然实验室。越来越多的研究发现,大陆弧岩浆的生长与侵位并不是均一的、连续的过程,而是呈现阶段性、峰期性特征,即幕式岩浆作用。弧岩浆峰期与岩浆平静期相比,岩浆增生速率显著增强,易于发生岩浆聚集,继而形成大的岩基,如北美西部科迪勒拉造山带内华达岩基、半岛岩基等。藏南冈底斯岩浆带位于拉萨地体南缘,属于印度-亚洲碰撞带的上盘,其南侧与喜马拉雅地体以雅鲁藏布蛇绿岩带为界。冈底斯弧岩浆形成时代集中在240~50 Ma期间,其形成与演化与新特提斯洋壳岩石圈板片俯冲到拉萨地体之下密切相关。因此,对冈底斯弧型岩浆作用的研究,将很好地揭示大陆型弧岩浆的演化过程,继而反演洋-陆俯冲过程,以及壳幔相互作用过程。通过对冈底斯岩浆带岩浆岩锆石U-Pb及Lu-Hf同位素,以及弧前和前陆盆地碎屑锆石U-Pb和Lu-Hf同位素的收集和整理,结合已经发表的区域地质资料的总结,我们发现冈底斯弧型岩浆演化具有如下特点:1幕式侵位,岩浆峰期为100~80 Ma和65~40 Ma,中间为岩浆平静期;2峰期阶段岩浆聚集,形成巨大岩基;岩石同位素非常亏损,预示着地幔物质的显著参与;3在弧岩浆的峰期阶段,冈底斯地壳厚度有显著增加,说明弧岩浆的峰期侵位对地壳加厚有重大贡献。  相似文献   

10.
《International Geology Review》2012,54(16):1957-1979
ABSTRACT

Palaeozoic granitoids and meta-granitoids dominate the metamorphic basement of the Sakar unit of the Sakar-Strandzha Zone (SASTZ) in southeast Bulgaria. In this article, we present new whole-rock geochemical data and U–Pb zircon geochronology for the Sakar unit granitoids. The igneous minerals and textures are preserved, except the meta-granitoids that experienced a weak amphibolite-facies overprint. Geochemistry reveals compositions of peraluminous high-K calc-alkaline I- to S-type granitoids of volcanic arc origin. A major group of LILE-LREE-enriched granitoids and meta-granitoids and a single HFSE-HREE-enriched meta-granitoid are distinguished. U–Pb geochronology has yielded crystallization ages between 305 and 295 Ma for the major group granitoids and a ca. 462 Ma crystallization age of HFSE-HREE-enriched meta-granitoid. Late Palaeozoic granitoids of the Sakar unit show similar compositions and a similar tectonic setting when compared to other granitoids of the SASTZ, confirming a uniform region-wide tectono-magmatic event. As the Late Carboniferous-Permian magmatic arc components extend across the SASTZ, they trace the time-correspondent active continental margin along the Eurasian plate during subduction of the Palaeotethys oceanic lithosphere. The late Palaeozoic Eurasian active continental margin magmatic arc evolution of the SASTZ can be extended into the Serbo-Macedonian-Rhodope zones to the west, where time equivalent meta-granitoids support the same geodynamic context.  相似文献   

11.
The Black Sea region comprises Gondwana-derived continental blocks and oceanic subduction complexes accreted to Laurasia. The core of Laurasia is made up of an Archaean–Palaeoproterozoic shield, whereas the Gondwana-derived blocks are characterized by a Neoproterozoic basement. In the early Palaeozoic, a Pontide terrane collided and amalgamated to the core of Laurasia, as part of the Avalonia–Laurasia collision. From the Silurian to Carboniferous, the southern margin of Laurasia was a passive margin. In the late Carboniferous, a magmatic arc, represented by part of the Pontides and the Caucasus, collided with this passive margin with the Carboniferous eclogites marking the zone of collision. This Variscan orogeny was followed by uplift and erosion during the Permian and subsequently by Early Triassic rifting. Northward subduction under Laurussia during the Late Triassic resulted in the accretion of an oceanic plateau, whose remnants are preserved in the Pontides and include Upper Triassic eclogites. The Cimmeride orogeny ended in the Early Jurassic, and in the Middle Jurassic the subduction jumped south of the accreted complexes, and a magmatic arc was established along the southern margin of Laurasia. There is little evidence for subduction during the latest Jurassic–Early Cretaceous in the eastern part of the Black Sea region, which was an area of carbonate sedimentation. In contrast, in the Balkans there was continental collision during this period. Subduction erosion in the Early Cretaceous removed a large crustal slice south of the Jurassic magmatic arc. Subduction in the second half of the Early Cretaceous is evidenced by eclogites and blueschists in the Central Pontides and by a now buried magmatic arc. A continuous extensional arc was established only in the Late Cretaceous, coeval with the opening of the Black Sea as a back-arc basin.  相似文献   

12.
During late Early to Late Cretaceous, the Peruvian coastal margin underwent fast and oblique subduction and was characterized by important arc plutonism (the Peruvian Coastal Batholith) and formation of volcanosedimentary basins known as the Western Peruvian Trough (WPT). We present high-precision U–Pb ages and initial Hf isotopic compositions of zircon from conformable volcanic and crosscutting intrusive rocks within submarine volcanosedimentary strata of the WPT hosting the Perubar massive sulfide deposit. Zircons extracted from both the volcanic and intrusive rocks yield concordant U–Pb ages ranging from 67.89±0.18 Ma to 69.71±0.18 Ma, indicating that basin subsidence, submarine volcanism and plutonic activity occurred in close spatial and temporal relationship within the Andean magmatic arc during the Late Cretaceous. Field observations, satellite image interpretation, and plate reconstructions, suggest that dextral wrenching movements along crustal lineaments were related to oblique subduction. Wrench tectonics is therefore considered to be the trigger for the formation of the WPT as a series of pull-apart basins and for the emplacement of the Coastal Batholith. The zircon initial Hf values of the dated magmatic rocks fall between 5.5 and 7.4, and indicate only very subordinate influence of a sedimentary or continental component. The absence of inherited cores in the zircons suggest a complete lack of old basement below the WPT, in agreement with previous U–Pb and Sr isotopic data for batholithic rocks emplaced in the WPT area. This is supported by the presence of a most likely continuous block of dense (~3.0 g/cm3) material observed beneath the WPT area on gravimetric crustal cross sections. We suggest that this gravimetric anomaly may correspond to a piece of lithospheric mantle and/or oceanic crust inherited from a possible Late Permian–Triassic rifting. Such young and mafic crust was the most probable source for arc magmatism in the WPT area.  相似文献   

13.
The Gangdese magmatic arc, southeastern Tibet, was built by mantle‐derived magma accretion and juvenile crustal growth during the Mesozoic to Early Cenozoic northward subduction of the Neo‐Tethyan oceanic slab beneath the Eurasian continent. The petrological and geochronological data reveal that the lower crust of the southeastern Gangdese arc experienced Oligocene reworking by metamorphism, anatexis and magmatism after the India and Asia collision. The post‐collisional metamorphic and migmatitic rocks formed at 34–26 Ma and 28–26 Ma respectively. Meta‐granitoids have protolith ages of 65–38 Ma. Inherited detrital zircon from metasedimentary rocks has highly variable ages ranging from 2708 to 37 Ma. These rocks underwent post‐collisional amphibolite facies metamorphism and coeval anatexis under P–T conditions of ~710–760 °C and ~12 kbar with geothermal gradients of 18–20 °C km ? 1, indicating a distinct crustal thickening process. Crustal shortening, thickening and possible subduction erosion due to the continental collision and ongoing convergence resulted in high‐P metamorphic and anatectic reworking of the magmatic and sedimentary rocks of the deep Gangdese arc. This study provides a typical example of the reworking of juvenile and ancient continental crust during active collisional orogeny.  相似文献   

14.
张诗启  戚学祥  韦诚  陈松永 《地球科学》2018,43(4):1085-1109
拉萨地体北部出露大面积早白垩世岩浆岩,对它们的成因和形成机制的研究,有助于揭示拉萨地块白垩纪时期的岩浆作用过程及动力学背景.通过岩石学、地球化学和同位素地质学方法对拉萨地体北带永珠地区早白垩世中-酸性岩浆岩进行了研究.结果显示黑云母二长花岗岩、流纹岩和安山岩的锆石LA-ICP-MS U-Pb年龄分别为118±1.0 Ma、121±0.8 Ma和115±0.8 Ma,代表了其侵入和喷出时代.黑云母二长花岗岩、花岗斑岩和流纹岩为高钾钙碱性过铝质-强过铝质岩浆岩(A/CNK=1.01~1.35),亏损高场强元素Nb、P、Ti和大离子亲石元素Ba、Sr,富集大离子亲石元素Rb、K和放射性元素U、Th;稀土配分图显示LREE富集,HREE近平坦,Eu明显负异常,为形成于大陆边缘的岛弧岩浆岩特征.黑云母二长花岗岩和流纹岩的锆石Hf初始比值εHf(t)分别为-1.21~3.01和-0.68~5.35,对应的两阶段模式年龄分别为0.99~1.26 Ga和0.84~1.22 Ga,为壳幔混源岩浆.安山岩为高钾钙碱性,亏损Nb、Ta、P、Ti、U和Sr,富集Rb、K和Th,稀土配分图显示LREE富集,HREE近平坦,Eu轻微负异常,为形成于大陆边缘弧的岩浆岩.结合前人研究成果,分析认为永珠地区早白垩世岩浆岩形成于班公湖-怒江特提斯洋壳南向俯冲作用下的大陆边缘弧环境,由俯冲的班公湖-怒江中特提斯洋板片在深部脱水熔融,进而诱发上覆地幔楔部分熔融形成基性岩浆上涌,导致下地壳物质发生部分熔融形成酸性岩浆,它们在上升过程中按不同比例混合,形成中性和酸性岩浆侵入到地下或喷出地表,形成侵入岩和火山岩.   相似文献   

15.
The U-Pb SHRIMP age determinations of zircons from the Habach terrane (Tauern Window, Austria) reveal a complex evolution of this basement unit, which is exposed in the Penninic domain of the Alpine orogen. The oldest components are found in zircons of a metamorphosed granitoid clast, of a migmatitic leucosome, and of a meta-rhyolitic (Variscan) tuff which bear cores of Archean age. The U-Pb ages of discordant zircon cores of the same rocks range between 540 and 520 Ma. It is assumed that the latter zircons were originally also of Archean origin and suffered severe lead loss, whilst being incorporated into Early-Cambrian volcanic arc magmas. The provenance region of the Archean (2.64-2.06 Ga) zircons is assumed to be a terrane of Gondwana affinity: i.e., the West African craton (Hoggar Shield, Reguibat Shield). The Caledonian metamorphism left a pervasive structural imprint in amphibolite facies on rocks of the Habach terrane; it is postdated by discordant zircons of a migmatitic leucosome at <440 Ma (presumably ca. 420 Ma). Alpine and Variscan upper greenschist- to amphibolite-facies conditions caused partial lead loss in zircons of a muscovite gneiss ('white schist') only, where extensive fluid flow and brittle deformation due to its position near a nappe-sole thrust enhanced the grains' susceptibility to isotopic disturbance. The Habach terrane - an active continental margin with ensialic back-arc development - showed subduction-induced magmatic activity approx. between 550 and 507 Ma. Back-arc diorites and arc basalts were intruded by ultramafic sills and subsequently by small patches of mantle-dominated unaltered and (in the vicinity of a major tungsten deposit) altered granitoids. Fore-arc (shales) and back-arc (greywackes, cherts) basin sediments as well as arc and back-arc magmatites were not only nappe-stacked by the Caledonian compressional regime closing the presumably narrow oceanic back-arc basin and squeezing mafic to ultramafic cumulates out of high-level magma chambers (496-482 Ma). It also induced uplift and erosion of deeply rooted crystalline complexes and triggered the development of a successor basin filled with predominantly clastic greywacke-arkosic sediments. The study demonstrates that the basement rocks exposed in the Habach terrane might be the 'missing link' between similar units of the more westerly positioned External domain (i.e., Aar, Aiguilles Rouges, Mont Blanc) and the Austroalpine domain to the east (Oetztal, Silvretta).  相似文献   

16.
台湾造山带是中新世晚期以来相邻菲律宾海板块往北西方向移动,导致北吕宋岛弧系统及弧前增生楔与欧亚大陆边缘斜碰撞形成的。目前该造山带仍在活动,虽然规模很小,但形成了多数大型碰撞造山带中的所有构造单元,是研究年轻造山系统的理想野外实验室,为理解西太平洋弧-陆碰撞过程和边缘海演化提供了一个独特的窗口。本文总结了二十一世纪以来对台湾造山带的诸多研究进展,讨论了其构造单元划分及演化过程。我们将台湾造山带重新划分为6个构造单元,由西至东分依次为:(1)西部前陆盆地;(2)中央山脉褶皱逆冲带;(3)太鲁阁带;(4)玉里-利吉蛇绿混杂岩带;(5)纵谷磨拉石盆地;(6)海岸山脉岛弧系统。其中,西部前陆盆地为6.5Ma以来伴随台湾造山带的隆升剥蚀形成沉积盆地。中央山脉褶皱逆冲带为新生代(57~5.3Ma)欧亚大陆东缘伸展盆地沉积物由于弧-陆碰撞受褶皱、逆冲及变质作用改造形成的。太鲁阁带是造山带中的古老陆块,主要记录中生代古太平洋俯冲在欧亚大陆活动边缘形成的岩浆、沉积和变质岩作用。玉里-利吉蛇绿混杂岩带和海岸山脉岛弧系统分别为中新世中期(~18Ma)以来南中国海板块向菲律宾海板块之下俯冲形成的岛弧和弧前增生楔,其中玉里混杂岩中有典型低温高压变质作用记录,变质年龄为11~9Ma;岛弧火山作用的主要时限为9.2~4.2Ma。纵谷磨拉石盆地记录1.1Ma以来的山间盆地沉积。台湾造山带的构造演化可划分为4个阶段:(a)古太平洋板块俯冲与欧亚大陆边缘增生阶段(200~60Ma);(b)欧亚大陆东缘伸展和南中国海扩张阶段(60~18Ma);(c)南中国海俯冲阶段(18~4Ma);(d)弧-陆碰撞阶段(<6Ma)。台湾弧-陆碰撞造山带是一个特殊案例,其弧-陆碰撞并不伴随着弧-陆之间的洋盆消亡,而是由于北吕宋岛弧及弧前增生楔伴随菲律宾海板块运动向西北方走滑,仰冲到欧亚大陆边缘,形成现今的台湾造山带。  相似文献   

17.
秦岭加里东晚期-华力西早期复式前陆盆地   总被引:10,自引:0,他引:10  
南秦岭西段的志留纪-早泥盆世及中秦岭北缘的志留纪-早石炭世的沉积特征表明,两区均存在有早期理里石相和晚期磨拉石相,构成完整的前陆盆地充填序列,并由冲断造山 -前渊-前隆3部分构成完整的前陆盆地体系,南秦岭前陆盆地是扬子北缘裂陷盆地闭合的产物,形成于430Ma,结束于390Ma,历时40Ma,属板内前陆盆地,中秦岭前陆盆地位于扬子北缘的边缘,是秦岭洋闭合后的产物,形成于440Ma,结束于323Ma,历时107Ma,属周缘前陆盆地,北秦岭二郎坪弧后陆盆地的上限是320Ma,是在另里东晚期-华力西早期于陆-弧-陆碰撞的背景下形成3种类型的前陆盆地,它们组成了秦岭复式前陆盆地,总历程达120Ma。  相似文献   

18.
The Pulan-Xiangquanhe ophiolite in the western Yarlung Tsangpo suture zone of Tibet is investigated for its geochemistry,geochronology,and tectonic implications in detail.Sensitive high resolution ion micro-probe zircon U-Pb dating reveals that diabases in the ophiolite from the three locations of Xugugab,Mapam Yum Co and La'nga Co are dated at 122.3±2.5 Ma,118.8±1.8 Ma and 120.5±1.9 Ma,respectively.These early Cretaceous mafic rocks have Na_2O+K_2O,rare earth element patterns,trace elemental spider diag...  相似文献   

19.
洪涛  游军  吴楚  徐兴旺 《岩石学报》2015,31(9):2583-2596
扬子板块西缘滇西地区是否存在古老基底一直存在争议。本文对滇西桃花地区花岗斑岩进行了岩石学、地球化学和锆石SHRIMP U-Pb年代学研究。形成于晚造山-后碰撞背景的桃花花岗斑岩具岛弧花岗岩地球化学特征,其成因可能与:1)俯冲拆离的洋壳俯冲拆离的洋壳或富集地幔重熔作用;2)加厚的地壳部分熔融。花岗斑岩中的继承锆石有两种类型:一类是发育具有密集振荡环带的岩浆锆石;另一类是次浑圆状锆石。测年结果显示,花岗斑岩的岩浆锆石年龄为36.35±0.35Ma,环带发育的继承锆石年龄介于167~891Ma之间;而次浑圆状继承锆石可以分为两组,其207Pb/206Pb加权平均年龄分别为1851±22Ma与2499±32Ma。新的锆石测年结果表明着滇西桃花地区不仅存在古金沙江洋东向俯冲形成的晚古生代弧岩浆记录,还发现新元古代岩浆活动信息,及早古元古代和新太古代的锆石记录。推测1.8Ga与2.5Ga锆石可能是捕获自地壳或围岩(石鼓片岩),表明滇西地区可能存在古老基底。  相似文献   

20.
A variety of pre-Variscan granitoids and two Variscan monzogranites occurring in the central and western parts of the Lusatian Granodiorite Complex (LGC), Saxonia were dated by the single zircon evaporation method, complemented by whole rock Nd isotopic data and Rb-Sr whole rock and mineral ages. The virtually undeformed pre-Variscan granitoids constitute a genetically related, mostly peraluminous magmatic suite, ranging in composition from two-mica granodiorite, muscovitebearing biotite quartz diorite (tonalite) and granodiorite to biotite granodiorite and monozogranite. 207Pb/206Pb isotopic ratios derived from the evaporation of single zircons separated from 13 samples representing the above rock types display complex spectra which document significant involvement of late Archaean to late Proterozoic continental crust in the generation of the granitoid melts. Mean 207/Pb/206Pb ages for zircons considered to reflect the time of igneous emplacement range between 542 ± 9 and 587 ± 17 Ma, typical of the Cadomian event elsewhere in Europe, whereas zircon xenocrysts yielded ages between 706 ± 13 and 2932 ± Ma. Detrital zircons from greywackes intruded by the granitoids and found as xenoliths in them provided ages between 1136 ± 22 and 2 574 ± Ma. Rb-Sr whole rock data display good to reasonable linear arrays that, with one exception, correspond to the emplacement ages established for the zircons. Two post-tectonic Variscan monzogranites yielded identical 207/Pb/206Pb single zircon ages of 304 ± 14 Ma and record the end of Variscan granitoid activity in the LGC.The variations in Nd and Sr isotopic data of the Cadomian granitoids are consistent with an origin through the melting and mixing of Archean to early Proterozoic crust with variable proportions of mantle-derived, juvenile magmas. Such mixing may have occurred at the base of an active continental margin or in an intraplate setting through plume-related magmatic underplating. The LGC is interpreted here as a Cadomian (Pan-African) terrane distinct from adjacent Variscan and pre-Variscan domains, the origin of which remains obscure and which probably became involved in Palaeozoic terrane accretion late in the Variscan event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号