首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用等温溶解平衡法研究了288K时Li+,Mg2+//SO42-,B4O72--H2O四元体系的固液相平衡关系,测定了该四元体系在288K时平衡液相的溶解度和密度。依据实验测定的平衡溶解度数据及对应的平衡固相,绘制了该四元体系的平衡相图及密度组成图。研究结果表明:交互四元体系Li+,Mg2+//SO42-,B4O27--H2O288K时平衡相图中有2个共饱点,5条单变量曲线,4个结晶区对应的平衡固相分别为Li2B4O7.3H2O,Li2SO4.H2O,MgB4O7.9H2O和MgSO4.7H2O。  相似文献   

2.
西藏扎北盐湖秋季卤水(硫酸钠亚型)5℃等温蒸发实验研究   总被引:2,自引:0,他引:2  
西藏扎北盐湖硫酸钠亚型卤水中富含元素Li、B、K和微量元素Rb、Cs等.为了更好地了解卤水在自然条件下的蒸发结晶规律,需对相应卤水进行低温室内等温蒸发实验研究.本文对该盐湖卤水进行了5℃等温蒸发试验,并利用Na+、K+、Mg2+//Cl-、SO42--H2O五元水盐体系0℃相图,构筑了从干基立体图Na2SO4角顶的放射...  相似文献   

3.
This paper presents the results of experiments on the physicochemical conditions for the formation of picromerite in the five-component brine system K-Na-Mg-Cl-SO4-H2O and the process of isothermal evaporation-crystallization of picromerite from brines. The metastable phase fields of picromerite at 15.10 and 5°C and its stable equilibrium phase field at -5°C have been established. In addition. the phase equilibrium relationships have also been established for other salt minerals. The lower limit of formation temperature of picromerite has been deduced on the basis of experimental results. The isothermal evaporation crystallization path of the invariant assemblage (point D) of picromerite, epsomite. sylvite and halite at 25, 15, 10 and 5°C has been revealed. Furthermore, some controversial problems are approached concerning the 25°C “solar” diagram and the 25°C metastable phase diagram of this system.  相似文献   

4.
According to the compositions of the underground gasfield brines in the west of Sichuan Basin,the phase equilibria in the ternary systems KBr-K2B4O7-H2O and KCl-K2B4O7-H2O at 373 K were studied using the isothermal dissolution equilibrium method.The solubilities of salts and the densities of saturated solutions in these ternary systems were determined.Using the experimental data,phase diagrams and density-composition diagrams were constructed.The two phase diagrams were simple co-saturation type,each having an invariant point,two univariant curves and two crystallization regions.The equilibrium solid phases in the ternary system KBr-K2B4O7-H2O are potassium bromide (KBr) and potassium tetraborate tetrahydrate (K2B4O7·4H2O),and those in the ternary system KCl-K2B4O7-H2O are potassium chloride (KCl) and potassium tetraborate tetrahydrate (K2B4O7·4H2O).Comparisons of the phase diagrams of the two systems at different temperatures show that there is no change in the crystallization phases,but there are changes in the size of the crystallization regions.As temperature increases,the solubility of K2B4O7·4H2O increases rapidly,so the crystallization field of K2B4O7·4H2O becomes smaller.  相似文献   

5.
Zabuye Salt Lake in Tibet, China is a carbonate-type salt lake, which has some unique characteristics that make it different from other types of salt lakes. The lake is at the latter period in its evolution and contains liquid and solid resources. Its brine is rich in Li, B, K and other useful minor elements that are of great economic value. We studied the concentration behavior of these elements and the crystallization paths of salts during isothermal evaporation of brine at 15°C and 25°C. The crystallization sequence of the primary salts from the brine at 25°C is halite (NaCl) → aphthitalite (3K2SO4·Na2SO4) → zabuyelite (Li2CO3)→ trona (Na2CO3·NaHCO3·2H2O) → thermonatrite (Na2CO3·H2O) → sylvite (KCl), while the sequence is halite (NaCl) → sylvite (KCl) → trona (Na2CO3·NaHCO3·2H2O) → zabuyelite (Li2CO3) → thermonatrite (Na2CO3·H2O) → aphthitalite (3K2SO4·Na2SO4) at 15°C. They are in accordance with the metastable phase diagram of the Na+, K+-Cl?, CO32?, SO42?-H2O quinary system at 25°C, except for Na2CO3·7H2O which is replaced by trona and thermonatrite. In the 25°C experiment, zabuyelite (Li2CO3) was precipitated in the early stage because Li2CO3 is supersaturated in the brine at 25°C, in contrast with that at 15°C, it precipitated in the later stage. Potash was precipitated in the middle and late stages in both experiments, while boron was concentrated in the early and middle stages and precipitated in the late stage.  相似文献   

6.
彭芸  曾英  于旭东  张龙钦  吴祎  冯珊 《地质学报》2010,84(11):1697-1703
针对西藏扎布耶盐湖卤水组成,采用等温蒸发法分别研究了含钾四元体系Na+,K+//Cl-,B4O27--H2O308.15K、五元体系K+//Cl-,CO23-,SO42-,B4O72--H2O273.15K下的介稳相关系。分别测定了上述体系308.15K、273.15K时介稳平衡液相组成及密度、pH值。根据实验数据绘制了相应的介稳相图、水图。结果表明,本文研究的两个体系均为简单共饱型,无复盐和固溶体生成。其中,四元体系介稳相图由2个共饱点,5条单变量曲线,4个结晶区组成。平衡固相分别为Na2B4O7.10H2O、K2B4O7.4H2O、NaCl和KCl。对比四元体系308.15K和273.15K下的介稳相图发现,平衡固相盐的种类及结晶形式均没有发生变化,但结晶区大小产生变化:在308.15K下,Na2B4O7.10H2O结晶区变小,K2B4O7.4H2O结晶区变大。五元体系投影图中有1个共饱点、3条单变量曲线和3个结晶相区。结晶相区分别为K2CO3.3/2H2O、K2SO4和KCl。K2CO3.3/2H2O结晶区面积最小,K2SO4结晶区面积最大。K2CO3对KCl有较强的盐析作用。  相似文献   

7.
Mechanical disintegration by crystal growth of salts in pores is generally considered as an important mechanism of rock breakdown both on Earth and on Mars. Crystal growth is also a major cause of damage in porous building materials. Sodium sulfate is the most widely used salt in accelerated weathering tests of natural rocks and building materials. This paper provides an updated phase diagram of the Na2SO4-H2O system based on a careful review of the available thermodynamic data of aqueous sodium sulfate and the crystalline phases. The phase diagram includes both the stable phases thenardite, Na2SO4(V), and mirabilite, Na2SO4·10H2O, and, the metastable phases Na2SO4(III) and Na2SO4·7H2O. The phase diagram is used to discuss the crystallization pathways and the crystallization pressures generated by these solids in common laboratory weathering experiments and under field conditions. New crystallization experiments carried out at different temperatures are presented. A dilatometric technique is used to study the mechanical response of sandstone samples in typical wetting-drying experiments as in the standard salt crystallization test. Additional experiments with continuous immersion and evaporation were carried out with the same type of sandstone. Both, the theoretical treatment and the results of the crystallization experiments confirm that the crystallization of mirabilite from highly supersaturated solutions is the most important cause of damage of sodium sulfate in porous materials.  相似文献   

8.
基于相化学研究老挝万象钾镁盐矿床形成的机制   总被引:2,自引:0,他引:2  
老挝万象钾镁盐矿床是一个典型的海相碎屑盐缺硫酸盐型钾盐矿床, 该矿床形成于古近纪, 是古海水蒸发浓缩沉积形成。老挝万象钾镁盐矿床中缺乏硫酸盐和碳酸盐沉积物, 因此深入研究该矿床的形成机制很重要。本文研究探讨了该矿床形成时的古海水特点, 根据相化学, 分析成钾原始卤水的物理化学特性, 从矿体形成的化学基础来研究老挝钾镁盐矿床形成的机制。结果表明: 显生宙以来海水组分发生变化, 经海相非骨骼灰岩和钾盐蒸发岩矿物学研究, 发现这两种沉积岩长期以来连续变化, 在“文石海”是MgSO4型蒸发盐, 在“方解石海”是KCl型蒸发盐, 从白垩纪晚期、第三纪早期的底部石盐溴含量及矿物学特征表明, 此时处于“方解石海”, 古海水组分的特点是造成缺硫酸盐型钾盐矿床形成的物化基础; 通过NaCl-KCl-MgCl2-H2O和NaCl-KCl-MgCl2-CaCl2-H2O两个体系相图的分析认为, 当时所形成的成钾原始体系母液是高镁、低钾氯化物型的卤水, 在母液蒸发过程中, 由于原始海侵母液与残余高镁母液的掺杂作用, 致使结晶路线直接从氯化钠区到E点母液或光卤石与氯化钠共饱线上, 而没有通过氯化钠和氯化钾的共饱线, 因而在矿体中氯化钾相很少或几乎不存在, 由于外界CaCl2型水体的掺杂, 使成钾母液进入光卤石相区, 随着蒸发的进行, 最终形成溢晶石矿物。  相似文献   

9.
We report on the crystallization behavior and the salt weathering potential of Na2SO4, MgSO4 and an equimolar mixture of these salts in natural rock and porous stone. Geochemical modeling of the phase diagram of the ternary Na2SO4–MgSO4–H2O system was used to determine the equilibrium pathways during wetting (or deliquescence) of incongruently soluble minerals and evaporation of mixed electrolyte solutions. Model calculations include stable and metastable solubilities of the various hydrated states of the single salts and the double salts Na2Mg(SO4)2·4H2O (bloedite), Na2Mg(SO4)2·5H2O (konyaite), Na12Mg7(SO4)13·15H2O (loeweite) and Na6Mg(SO4)4 (vanthoffite). In situ Raman spectroscopy was used to study the phase transformations during wetting of pure MgSO4·H2O (kieserite) and of the incongruently soluble salts bloedite and konyaite. Dissolution of kieserite leads to high supersaturation resulting in crystallization of higher hydrated phases, i.e. MgSO4·7H2O (epsomite) and MgSO4·6H2O (hexahydrite). This confirms the high damage potential of magnesium sulfate in salt damage of building materials. The dissolution of the incongruently soluble double salts leads to supersaturation with respect to Na2SO4·10H2O (mirabilite). However, the supersaturation was insufficient for mirabilite nucleation. The damage potential of the two single salts and an equimolar salt mixture was tested in wetting–drying experiments with porous sandstone. While the high damage potential of the single salts is confirmed, it appears that the supersaturation achieved during wetting of the double salts at room temperature is not sufficient to generate high crystallization pressures. In contrast, very high damage potentials of the double salts were found in experiments at low temperature under high salt load.1  相似文献   

10.
Phase relations in the 6-component system Na-K-Mg-Ca-SO4-Cl-H2O have been calculated for halite saturation, 25°C and 1 atm pressure. Using a Jänecke projection with the apices Ca-Mg-K2-SO4, 27 stable invariant points have been located which are connected by 69 univariant curves. Polyhalite is the only quaternary solid, but anhydrite occupies the bulk of the interior tetrahedral space. Consequently, 24 of the invariant points lie very close to the Ca-free base, Mg-K2-SO4. The remaining three points involve tachyhydrite and/or antarcticite. All points but two (20,27) represent peritectic conditions. Metastable equilibria have been calculated for the Ca-free system and yield relations corresponding to the solar diagram.Seawater lies in the subspace anhydrite-halite-carnallite-kieserite-bischofite (point 20) and its evaporation has been discussed for conditions of equilibrium and fractional crystallization. After gypsum is converted to anhydrite, halite precipitates. The next phase, under equilibrium conditions, is glauberite, crystallizing at the expense of anhydrite. Continued evaporation leads to glauberite resorption and eventual replacement by polyhalite. Then follow the magnesium sulfates epsomite, hexahydrite and kieserite, which are joined by carnallite. Polyhalite is replaced by anhydrite and bischoflte is added at the final invariant condition. Kainite does not appear as a primary phase under equilibrium conditions, but it is an important phase during fractional crystallization, where Ca-phases are not allowed to back-react with the brine.Up to the appearance of glauberite, thickness ratios of halite: anhydrite couplets (equilibrium or fractionation) can vary from 0 to 7, the relative amount of halite increasing with more intense evaporation. During evaporation, the activity of H2O decreases from 0.98 (seawater) to 0.34 (final invariant brine). The data provided can be used to evaluate the effects of mineral precipitation, evaporation and brine mixing for a wide variety of natural brines.  相似文献   

11.
《Chemical Geology》2006,225(3-4):256-265
SeO42− ions can substitute for sulphate in the gypsum structure. In this work crystals of different Ca(SO4,SeO4)·2H2O solid solutions were precipitated by mixing a CaCl2 solution with solutions containing different ratios of Na2SO4 and Na2SeO4. The compositions of the precipitates were analysed by EDS and the cell parameters were determined by X-ray powder diffraction. Moreover, a comparative study on dehydration behaviour of selenate rich and sulfate rich Ca(SO4,SeO4)·2H2O solid solutions was carried out by thermogravimetry.The experimental results show that the Ca(SO4,SeO4)·2H2O solid solution presents a symmetric miscibility gap for compositions ranging from XCaSO4·2H2O = 0.23 to XCaSO4·2H2O = 0.77. By considering a regular solution model a Guggenheim parameter a0 = 2.238 was calculated. The solid phase activity coefficients obtained with this parameter were used to calculate a Lippmann diagram for the system Ca(SO4,SeO4)·2H2O–H2O.  相似文献   

12.
西藏扎布耶碳酸盐型盐湖卤水相化学研究   总被引:12,自引:0,他引:12  
中国盐湖资源丰富,且水化学类型齐全。西藏扎布耶盐湖位于西藏高原腹地,该湖卤水水化学类型为碳酸盐型,已处于盐湖演化晚期,是一个固液共存的盐湖矿床,具有很好的工业开发价值。笔者分别在15℃、25℃下对该卤水进行了等温蒸发实验,研究了在此两个温度下卤水中各元素富集行为和盐类矿物析出规律。并通过讨论其与国内外碳酸盐型和硫酸盐型锂盐湖的卤水蒸发路径和矿物析出异同,指出扎布耶盐湖具有其独特的卤水蒸发析盐路径。在本实验中低温有利于卤水中锂的富集,而高温有利于硼的富集,碳酸锂和钾盐交叉析出,低温时钾的矿物主要为钾石盐,高温时主要为钾芒硝,高温有利于获得高品位的碳酸锂混盐。  相似文献   

13.
于开宁 《地质与勘探》2022,58(4):895-904
为探究兰州市浅层地下水水质演化过程,通过对兰州市浅层地下水所取的40组水样进行分析测试,运用描述性统计、相关性分析、Piper三线图、Gibbs模型、离子比例系数方法对该区地下水特征进行分析,并运用PHREEQC软件反向模拟地下水演化规律。结果表明:兰州市地下水pH平均值为7.59,地下水呈弱碱性,地下水TDS值相对较高,其平均值为2353.21 mg/L ;SO42-和Na+分别是研究区地下水中优势阴、阳离子;SO4·Cl-Na·Mg和SO4·HCO3-Na·Ca型为主要地下水化学类型。研究区地下水化学组分主要受蒸发-浓缩作用影响;在两路径模拟中,均为方解石发生溶解,Na+将Ca2+发生阳离子交替吸附作用,白云石、岩盐、石膏均发生沉淀。  相似文献   

14.
Fly ash was used to prepare alumina and silica white, The 3 stages of the process are as follows: ammonium sulfate calcining, acid leaching and alkali dissolution. The optimum conditions for the experiments to determine are as follows: molar ratio of (NH4)2SO4/Al2O3 is 6, the calcining time is 2h, he H2SO4 concentration is 20%, the leaching temperature is 80℃ and dissolution duration is 2h, the ratio of solution and solid reaction material is 6 for ammonium sulfate calcining and acid leaching stage, reaction time 30min, ratio of liquid to ore 5∶1, alkali concentration 45% and reaction temperature 95 ℃for the alkali dissolution stage. Under these conditions, the total leaching efficiencies of Al2O3 and SiO2 are 78.86% and 95%, respectively. The quality of the main products alumina and silica white can meet the national standards of GB/T24487-2009 and GB10517-89, respectively.  相似文献   

15.
The effects of temperature on the crystal structure of a natural epidote [Ca1.925 Fe0.745Al2.265Ti0.004Si3.037O12(OH), a = 8.890(6), b = 5.630(4), c = 10.150(6) Å and β = 115.36(5)°, Sp. Gr. P21 /m] have been investigated by means of neutron single-crystal diffraction at 293 and 1,070 K. At room conditions, the structural refinement confirms the presence of Fe3+ at the M3 site [%Fe(M3) = 73.1(8)%] and all attempts to refine the amount of Fe at the M(1) site were unsuccessful. Only one independent proton site was located. Two possible hydrogen bonds, with O(2) and O(4) as acceptors [i.e. O(10)–H(1)···O(2) and O(10)–H(1)···O(4)], occur. However, the topological configuration of the bonds suggests that the O(10)–H(1)···O(4) is energetically more favourable, as H(1)···O(4) = 1.9731(28) Å, O(10)···O(4) = 2.9318(22) Å and O(10)–H(1)···O4 = 166.7(2)°, whereas H(1)···O(2) = 2.5921(23) Å, O(10)···O(2) = 2.8221(17) Å and O(10)–H(1)···O2 = 93.3(1)°. The O(10)–H(1) bond distance corrected for “riding motion” is 0.9943 Å. The diffraction data at 1,070 K show that epidote is stable within the T-range investigated, and that its crystallinity is maintained. A positive thermal expansion is observed along all the three crystallographic axes. At 1,070 K the structural refinement again shows that Fe3+ share the M(3) site along with Al3+ [%Fe(M3)1,070K = 74(2)%]. The refined amount of Fe3+ at the M(1) is not significant [%Fe(M1)1,070K = 1(2)%]. The tetrahedral and octahedral bond distances and angles show a slight distortion of the polyhedra at high-T, but a significant increase of the bond distances compared to those at room temperature is observed, especially for bond distances corrected for “rigid body motions”. The high-T conditions also affect the inter-polyhedral configurations: the bridging angle Si(2)–O(9)–Si(1) of the Si2O7 group increases significantly with T. The high-T structure refinement shows that no dehydration effect occurs at least within the T-range investigated. The configuration of the H-bonding is basically maintained with temperature. However, the hydrogen bond strength changes at 1,070 K, as the O(10)···O(4) and H(1)···O(4) distances are slightly longer than those at 293 K. The anisotropic displacement parameters of the proton site are significantly larger than those at room condition. Reasons for the thermal stability of epidote up to 1,070 K observed in this study, the absence of dehydration and/or non-convergent ordering of Al and Fe3+ between different octahedral sites and/or convergent ordering on M(3) are discussed.  相似文献   

16.
彭芸  曾英  周琳  李元波 《矿物岩石》2005,25(2):118-120
采用等温平衡溶解平衡法测定了三元体系NaVO3-H2NCONH2-H2O 298K下的溶解度及平衡液相物化性质(密度、电导率、pH值),绘制出了相应的溶解度等温图和物化性质一组成图。此三元体系等温溶解度图属简单共饱型,未产生新的复盐和固溶体。2个结晶区分别对应为盐NaVO3和H2NCONH2,无变量点平衡液相组成为:ω(NaVO3)3.99%,ω(H2NCONH2)40.17%,对应的平衡固相盐为NaVO3和H2NCONH2。  相似文献   

17.
《Applied Geochemistry》2001,16(7-8):947-961
During dry season baseflow conditions approximately 20% of the flow in Boulder Creek is comprised of acidic metals-bearing groundwater. Significant amounts of efflorescent salts accumulate around intermittent seeps and surface streams as a result of evaporation of acid rock drainage. Those salts include the Fe-sulfates — rhomboclase ((H3O)Fe3+(SO4)2·3H2O), ferricopiapite (Fe3+5(SO4)6O(OH)·20H2O), and bilinite (Fe2+Fe23+(SO4)4·22H2O); Al-sulfates — alunogen (Al2(SO4)3·17H2O) and kalinite (KAl(SO4)2·11H2O); and Ca- and Mg-sulfates — gypsum (CaSO4·2H2O), and hexahydrite (MgSO4·6H2O). The dissolution of evaporative sulfate salt accumulations during the first major storm of the wet season at Iron Mountain produces a characteristic hydrogeochemical response (so-called “rinse-out”) in surface waters that is subdued in later storms. Geochemical modeling shows that the solutes from relatively minor amounts of dissolved sulfate salts will maintain the pH of surface streams near 3.0 during a rainstorm. On a weight basis, Fe-sulfate salts are capable of producing more acidity than Al- or Mg-sulfate salts. The primary mechanism for the production of acidity from salts involves the hydrolysis of the dissolved dissolved metals, especially Fe3+. In addition to the lowering of pH values and providing dissolved Fe and Al to surface streams, the soluble salts appear to be a significant source of dissolved Cu, Zn, and other metals during the first significant storm of the season.  相似文献   

18.
Crystallisation of sodium sulfate: supersaturation and metastable phases   总被引:1,自引:0,他引:1  
Crystallisation of sodium sulfate solutions by evaporation under controlled climatic conditions has revealed the existence of crystalline hydrated sodium sulfate salts not previously reported. The sodium sulfate phase crystallising and the concentration of the solution at the point of crystallisation depends on the climatic conditions (temperature and evaporation rate). During the rehydration of the anhydrous sodium sulfate phase, thenardite, another previously unreported phase was formed prior to the nucleation of the stable phase, mirabilite Na2SO4 · 10H2O. The addition of organic inhibitors changes both the crystallisation and the rehydration behavior in this system.  相似文献   

19.
砷铜矾的发现与研究   总被引:4,自引:0,他引:4       下载免费PDF全文
砷铜矾(Pamauite)在1978年首次发现于美国,1984年笔者在广西德保矿区也发现了这种矿物,笔者发现在这种矿物有两种形态,即纤维状和薄片状。纤维状砷铜矾的化学成分为(%):CuO58.69,As2O517.41,SO36.54,FeO0.86,SiO20.08,(H2O17.70),其理想分子式为:Cu9(AsO4)2(SO4)(OH)10.7H2O,与美国产出的砷铜矾的化学成分基本一致,  相似文献   

20.
Anomalous geogenic arsenic occurs in drinking water from the Goose River crystalline ground-watershed in mid-coastal Maine. Isotope investigations were useful in understanding release areas of arsenic into affected water wells. The isotope composition of sulfate associated with probable arsenian pyrite oxidation is described. Correlation of '18OSO4 enrichment [+4.57 to +7.46‰ Vienna Standard Mean Ocean Water (VSMOW)] is discussed with specific and recurring areas of elevated arsenic (10-52 µg l-1). Although arsenic concentrations were highly variable over 2 years per well, '18OSO4 values were always consistent and suggested a specific and consistent risk for elevated arsenic occurrences for each well. The '18O values in the water molecule (-12.07 to -8.81‰ VSMOW) and the '18OSO4 values may serve as prospective indicators of prominent zones of aeration at depth in discrete fracture zones. The '18O values in the water molecule and sulfate ion appear to indicate that more than 60% of O2 incorporated into the SO42- ion are from dissolved oxygen and belong to distinct fractured areas. These aeration zones or oxidation fronts, as outlined by oxygen isotopes, are sentinels for high arsenic risk in groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号