首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对断裂带及附近区域地层精细结构的描述是理解地震孕育和发生过程的基础.不同板块或块体边界在构造或区域应力作用下,常常会形成速度间断面和低速的断裂带,间断面和低速带的存在会产生特殊的断裂带地震波,比如断裂带首波和围陷波,并会影响地震的物理过程、破裂速度和破裂方向等.本文主要利用2010年4月14日M_W6.9玉树地震后布设的流动地震台站,对沿着甘孜—玉树断裂带传播的断裂带首波进行识别和分析.分析结果表明,在甘孜—玉树断裂带的不同区域均观测到了断裂带首波,在西段的结隆拉张盆地附近的3个台站沿断裂带界面的平均纵波速度差异值在5%~8%,而其他区域的平均速度差异为1%~3%.通过台站位置分布和断裂带首波特征关系,初步分析了断裂带拉张盆地的结构,结果显示结隆盆地的长度为~40km,宽度为5.35~5.97km,深度不超过5km,在地表浅层形成了一个低速区,分别与巴颜喀拉块体(NE)和羌塘块体(SW)产生了两个物性差异界面,但没有延伸到主震和余震区震源深度.我们的结果表明结合密集台阵资料,通过断裂带首波特征分析可以为断裂带精细结构及几何特征提供一种新的技术方法和途径.  相似文献   

2.
Deep structure and material properties of faults can be understood by observing and simulating the particular phase in a fault fracture zone. This paper reviews the development of fault-zone seismic waves in the seismological domain. The present research status of fault-zone head wave and trapped wave are summarized systematically. Based on recent progress in this field, the paper discusses the prospect on the utilization of seismic wave in fault structure research.  相似文献   

3.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface.  相似文献   

4.
Introduction The study on deep crustal faults has been one of the most vigorous subjects in seismology. In the past, 3-D deep seismic sounding and 3-D seismic tomography were usually used for this pur-pose. But it is difficult to obtain the fine structures of the faults in deep crust by these methods. Recently, seismologists in the world pay more attention to the fault zone trapped waves. Since the fault-zone trapped waves arise from coherent multiple reflections at two boundaries of the fau…  相似文献   

5.
In this article, we review our previous research for spatial and temporal characterizations of the San Andreas Fault (SAF) at Parkfield, using the fault-zone trapped wave (FZTW) since the middle 1980s. Parkfield, California has been taken as a scientific seismic experimental site in the USA since the 1970s, and the SAF is the target fault to investigate earthquake physics and forecasting. More than ten types of field experiments (including seismic, geophysical, geochemical, geodetic and so on) have been carried out at this experimental site since then. In the fall of 2003, a pair of scientific wells were drilled at the San Andreas Fault Observatory at Depth (SAFOD) site; the main-hole (MH) passed a ~200-m-wide low-velocity zone (LVZ) with highly fractured rocks of the SAF at a depth of ~3.2 km below the wellhead on the ground level (Hickman et al., 2005; Zoback, 2007; Lockner et al., 2011). Borehole seismographs were installed in the SAFOD MH in 2004, which were located within the LVZ of the fault at ~3-km depth to probe the internal structure and physical properties of the SAF. On September 282004, a M6 earthquake occurred ~15 km southeast of the town of Parkfield. The data recorded in the field experiments before and after the 2004 M6 earthquake provided a unique opportunity to monitor the co-mainshock damage and post-seismic heal of the SAF associated with this strong earthquake. This retrospective review of the results from a sequence of our previous experiments at the Parkfield SAF, California, will be valuable for other researchers who are carrying out seismic experiments at the active faults to develop the community seismic wave velocity models, the fault models and the earthquake forecasting models in global seismogenic regions.  相似文献   

6.
The observation of the fault-zone trapped waves was conducted using a seismic line with dense receivers across surface rupture zone of the M=8.1 Kunlun Mountain earthquake. The fault zone trapped waves were separated from seismograms by numerical filtering and spectral analyzing. The results show that: a) Both explosion and earthquake sources can excite fault-zone trapped waves, as long as they locate in or near the fault zone; b) Most energy of the fault-zone trapped waves concentrates in the fault zone and the amplitudes strongly decay with the distance from observation point to the fault zone; c) Dominant frequencies of the fault-zone trapped waves are related to the width of the fault zone and the velocity of the media in it. The wider the fault zone or the lower the velocity is, the lower the dominant frequencies are; d) For fault zone trapped waves, there exist dispersions; e) Based on the fault zone trapped waves observed in Kunlun Mountain Pass region, the width of the rupture plane is deduced to be about 300 m and is greater than that on the surface. Foundation item: Joint Earthquake Science Foundation of China (201001). Contribution No. RCEG200305, Research Center of Exploration Geophysics, China Earthquake Administration.  相似文献   

7.
张群伟  朱守彪 《地球物理学报》2019,62(12):4706-4717
断层两侧介质物理性质的差异(bimaterial contrast)会对震源破裂过程产生重要影响,而地球介质的各向异性十分常见,但对于断层两侧材料的各向异性对断层破裂动力学过程有何影响,目前不甚了解,而国内外也未见相关研究报道.为此,研究中利用有限单元法,对断层两侧材料存在各向异性时的破裂行为进行模拟研究.计算结果表明,断层两侧材料的各向异性性质对断层破裂动力学过程有重要作用,并且材料性质与破裂之间的关系非常复杂.对于正交各向异性材料,当断层两侧各向异性材料主方向上的杨氏模量不同时,特别是当平行于断层走向的材料其一侧杨氏模量显著大于另一侧时,断层出现不对称的双侧破裂,成核中心一侧的位错显著大于另外一侧,破裂长度也是一侧显著大于另一侧(亦称单侧破裂).沿着断层走向的材料主轴方向上的杨氏模量对于破裂过程的影响大于垂直于断层走向的杨氏模量,但随着各向异性材料主轴方位的变化,这种影响也发生相应地改变.模拟结果表明材料主轴方向的变化对破裂过程的影响也很显著.此外,通过模拟还发现,若断层两侧材料为相同的各向异性介质时(即断层两侧为同样的各向异性材料),则不会影响断层破裂的空间对称性分布;而当其中一侧的各向异性材质主轴方位发生变化时,断层破裂的空间对称性会受到一定程度的影响,但其影响很小;然而,随着正交各向异性材料剪切模量的增加,断层破裂会被终止,无法产生特大地震.可见,本研究对于深入认识震源动力学过程及地震灾害评估等有重要的科学意义及实用价值.  相似文献   

8.
张路  谢新生  郭慧 《地震》2020,40(3):83-98
1830年河北磁县M71/2地震发生于磁县—大名断裂带西段, 该断裂地震破裂和活动性的研究受到地震研究者关注。前人研究着眼于1830年磁县大地震的地表破裂, 本文的研究重点是磁县—大名断裂带西段晚更新世以来的断层活动性。应用卫片、 航片解译和野外地震地质调查等方法开展研究, 重要地点进行探槽开挖或野外地质剖面剥落以及采样测年, 确定了断层各段落破裂事件的发生年代。该断裂西段分为3个断层段落: F2为磁县—峰峰段落, F3为东田井村—陶泉乡段落, F4为韩家沟村—甘泉村段落。F2断层段大部分隐伏, 为早中更新世断层。F3断层段东端在东田井村南断错距今22 ka地层, 为晚更新世活动断层; F3断层段在鼓山南山村一带为全新世断层, 从张家楼村到陶泉乡为推测全新世活动断层。F4断层段为全新世断层。F4断层段全部位于基岩山区, 可见多处基岩断面、 地震沟槽及断层眉脊等断层破裂; 一些破裂面发育地衣丽石黄衣[Xanthoria elegans (Link.) Th. Fr.], 使用地衣测年方法确定这些破裂面为1830年磁县大地震地表地震遗迹。磁县—大名断裂带终止于F4西端。综合分析断裂带各个分段的破裂事件, 得到磁县—大名断裂带西段活动事件时空分布, 估计磁县—大名断裂带西段的晚更新世地震复发周期在6000年左右。  相似文献   

9.
王华林  耿杰 《中国地震》1996,12(3):307-315
利用岩石碎裂数目的分形理论,分析,计算了沂沭断裂带及其西侧北西向断裂的断层泥粒度成分的分维值,讨论了断层泥粒度成分分维的地震地质意义,研究结果表明,沂沭断裂带内的断裂活动的强度大于北西向断裂活动强度;F2是沂沭断裂带中活动最强的一条断裂,断层泥粒度成分分维值可作为表征断裂活动时代,破裂形式和断层泥形成斫代等的参量;分维值还与断层泥的母岩,厚度,粘土矿物含量和所处的断裂部位等相关。  相似文献   

10.
老虎山断裂带的分段性研究   总被引:7,自引:0,他引:7       下载免费PDF全文
本文分析了老虎山断裂的基本特征,在此基础上运用活断层的自然分段、几何学特征分段、运动学分段及破裂分段等分段原则,对老虎山断裂带进行了分段研究,其中着重研究了破裂分段问题。老虎山断裂带可以分成4段,从东到西依次为喜集水段、老虎山段、草峡段和黑马圈河段。对断裂分段的研究可以为地震的中长期预报提供重要依据。  相似文献   

11.
闻学泽 《地震地质》2000,22(3):239-249
依据多种资料分层次剖析了川西鲜水河 -安宁河 -则木河断裂带的地震破裂分段性及其原因 ,并将该断裂带划分为 12个特征地震破裂段。断裂带上持久性和非持久性的破裂边界各占约 ;持久性及重要的破裂边界可依据断裂几何结构及活动习性标志进行判定 ,它们均以局部体积变化的方式来终止破裂的扩展 ;非持久性的破裂边界则可依据地震破裂与复发行为、断裂现今活动习性空间差异、松驰障碍体与较小尺度几何障碍的复合体等进行判定 ,其位置可随时间变化。地震破裂时间间隔短的 ,相邻破裂的重叠量较小 ;时间间隔长的 ,相邻破裂的重叠量则较  相似文献   

12.
Seismic measurements of the internal properties of fault zones   总被引:1,自引:0,他引:1  
The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites.  相似文献   

13.
A densely spaced gravity survey across the San andreas fault zone was conducted near Bear Valley, about 180 km south of San Francisco, along a cross-section where a detailed seismic reflection profile was previously made byMcEvilly (1981). WithFeng andMcEvilly's velocity structure (1983) of the fault zone at this cross-section as a constraint, the density structure of the fault zone is obtained through inversion of the gravity data by a method used byParker (1973) andOldenburg (1974). Although the resulting density picture cannot be unique, it is better constrained and contains more detailed information about the structure of the fault than was previously possible. The most striking feature of the resulting density structure is a deeply seated tongue of low-density material within the fault zone, probably representing a wedge of fault gouge between the two moving plates, which projects from the surface to the base of the seismogenic zone. From reasonable assumptions concerning the density of the solid grains and the state of saturation of the fault zone the average porosity of this low-density fault gouge is estimated as about 12%. Stress-induced cracks are not expected to create so much porosity under the pressures in the deep fault zone. Large-scaled removal of fault-zone material by hydrothermal alteration, dissolution, and subsequent fluid transport may have occurred to produce this pronounced density deficiency. In addition, a broad, funnel-shaped belt of low density appears about the upper part of the fault zone, which probably represents a belt of extensively shattered wall rocks.  相似文献   

14.
昆仑山断层围陷波的分析和研究   总被引:12,自引:2,他引:10       下载免费PDF全文
对2001年昆仑山口西Ms81级地震产生的断层带,布设了沿断层和横跨断层的两条人工地震测线.通过对观测资料的定量分析和处理,求得了昆仑山断层带内部的细结构.分析工作包括从S波震相开始的振幅谱计算、速度频散计算、群速度测量,并用面波频散方法反演S波速度结构,用振幅谱比的方法估计断层带的Q值.野外试验结果表明,S波震相与围陷波组的时间差随炮点与台站之间距离增大而增加,在断层带外的测点上观测到与断层带相关的场地效应.最后得出昆仑山断层带宽度为250m、速度结构为断层内低速的分层结构和Q值为15(断层内)和30(围岩).虽然昆仑山口西地震的震级比美国加州Landers地震的震级(Ms76)大,且地震产生的破裂带长度长得多,但是这两个地震断层带的宽度却相差不大.  相似文献   

15.
Living with disaster is an objective reality that human must face especially in China. A large number of earthquake case studies, such as the 2008 Wenchuan earthquake, 2010 Yushu earthquake, 2014 Ludian earthquake, have demonstrated that earthquake heavy damage and casualties stem from ground-faulting or rupturing along seismogenic active fault, near-fault high ground accelerations and building catastrophic structural failure. Accordingly, avoidance of active faults may be an important measure to effectively reduce earthquake hazard, which may encounter in the future, but how to avoid an active fault and how much a setback distance from the active fault is required to ensure that the ground faulting and rupturing has no any direct impact on buildings. This has been the focus of debate both for domestic and foreign scholars. This paper, first of all, introduces the definition of active fault. Then, quantitative analyses are done of the high localization of earthquake surface ruptures and relationship between the localized feature of the coseismic surface ruptures and building damages associated with the measured widths of the historical earthquake surface rupture zones, and an average sstatistic width is obtained to be 30m both for the earthquake surface rupture zones and heavy damage zones along the seismogenic fault. Besides, the widths of the surface rupture zones and spatial distribution of the building damages of the 1999 Chi-Chi earthquake and 2008 Wenchuan earthquake have also been analyzed to reveal a hanging-wall effect:Width of surface rupture zone or building damage zone on the hanging-wall is 2 or 3 times wider than that on its foot-wall for a dip-slip fault. Based on these latest knowledge learnt above, issues on avoidance object, minimum setback distance, location requirement of active fault for avoidance, and anti-faulting design for buildings in the surface rupture zone are further discussed. Finally, we call for national and local legislatures to accelerate the legislation for active fault survey and avoidance to normalize fault hazard zoning for general land-use planning and building construction. This preventive measure is significantly important to improve our capability of earthquake disaster reduction.  相似文献   

16.
We present new in situ observations of systematic asymmetry in the pattern of damage expressed by fault zone rocks along sections of the San Andreas, San Jacinto, and Punchbowl faults in southern California. The observed structural asymmetry has consistent manifestations at a fault core scale of millimeters to meters, a fault zone scale of meters to tens of meters and related geomorphologic features. The observed asymmetric signals are in agreement with other geological and geophysical observations of structural asymmetry in a damage zone scale of tens to hundreds of meters. In all of those scales, more damage is found on the side of the fault with faster seismic velocities at seismogenic depths. The observed correlation between the damage asymmetry and local seismic velocity structure is compatible with theoretical predictions associated with preferred propagation direction of earthquake ruptures along faults that separate different crustal blocks. The data are consistent with a preferred northwestward propagation direction for ruptures on all three faults. If our results are supported by additional observations, asymmetry of structural properties determined in field studies can be utilized to infer preferred propagation direction of large earthquake ruptures along a given fault section. The property of a preferred rupture direction can explain anomalous behavior of historic rupture events, and may have profound implications for many aspects of earthquake physics on large faults.  相似文献   

17.
In this work,the fractal dimension of granulometric composition in the fault gouge from the Yishu fault zone and northwest-trending faults on its west side is calculated and studied based on the fractal theory of rock fragmentation.The seismo-geological implications of the fractal dimension of granulometric composition in fault gouges are also discussed.The results show that the Yishu fault zone is more active than the northwest-trending faults and the Anqiu-Juxian fault is the most active in the Yishu fault zone.The fractal dimension of fault gouge is a parameter describing the relative active age and rupture mode of the fault and forming age of the fault gouge.The fractal dimension value is also related to the parent rock,thickness,structural position,and clay content of the fault gouge.  相似文献   

18.
断裂带中的流体活动及其作用   总被引:2,自引:2,他引:2       下载免费PDF全文
大量证据表明活动断裂带中存在大量流体,不仅可以造成断裂带强度的变化,而且可以导致有效正应力减小,进而诱发地震。在野外观察与模拟的基础上,许多模式被用来解释这一现象。本文简要介绍了有关断裂带特征和分类、流体的来源和运动,以及流体对断裂带的影响和对地震的触发作用等方面的研究进展。  相似文献   

19.
阿尔金断裂带东段地表破裂分段研究   总被引:6,自引:10,他引:6       下载免费PDF全文
对活动断层进行正确的分段有助于我们对地震造成断层的发生、发展过程有一个正确的认识。阿尔金断裂带是青藏高原北部的巨型左旋走滑断裂带 ,将青藏高原和塔里木盆地两大构造单元截然分开。通过对阿尔金断裂带东部青崖子—宽滩山的Spot数字化卫星影像资料进行详细的分析 ,结合研究区内的断错地貌和前人的古地震研究成果 ,对阿尔金断裂带东段进行了地表破裂性分段。将阿尔金断裂带东段青崖子—宽滩山分为 3段 :青崖子—芦草湾为阿克塞破裂段 ;芦草湾—北祁连山逆断裂为疏勒河破裂段 ;北祁连山逆断裂—宽滩山为宽滩山破裂段。其中阿克塞破裂段的最后破裂时间晚于 (5 2 4± 0 4 0 )kaB .P .,疏勒河破裂段最后破裂时间早于 (6 97± 0 5 3)kaB .P .,而宽滩山段的最后破裂时间估计晚于 5kaB  相似文献   

20.
The rupture process of the May 12,2008 MS8.0 Wenchuan earthquake was very complex. To study the rupture zones generated by this earthquake,four dense temporary seismic arrays across the two surface breaking traces of the main-shock were deployed in July and recorded a great amount of aftershocks. This paper focuses on the data interpretation of two arrays across the central main fault,the northern array line 1 and southern array line 3. The fault zone trapped waves recorded by the two arrays were used to st...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号