首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A layer of a few hundred meters thickness with suspended matter (a nepheloid zone) was discovered byEwing andThorndike [4]3) near the bottom on the continental slope of the North Atlantic. A downward pressure gradient is produced in this layer due to increment of water density with suspensoid. When only the Coriolis force balances with this pressure gradient, a bottom nepheloid current flows southwestward parallel to the depth contours with a velocity of about 10 (cm/sec) for a slope of one degree. The pressure gradient for fluid with locally variable density above a sloping bottom is treated and an extra term due to density gradient along the slope is derived. The vertical profiles of the nepheloid current with an effect on the vertical eddy viscosity are computed. Two kinds of vertical distributions of eddy viscosity are determined from the observed nepheloid distributions and used in the calculations: constant but different values at two layers and those increasing with height. The effect of the change of density along the bottom is treated by introducing dimensionless variables. Rossby number of the nepheloid current becomes about 10–2 indicating inertia terms to be negligible. Rossby number of turbidity currents ranges from 2 (in a decaying area) to 5 (developing area), suggesting that inertia terms are more important than Coriolis terms. The trajectories of turbidity currents are computed from motion of a mass of mud under the Coriolis force and friction, and the results are applied to those inferred byHand andEmery [6] in the San Diego Through off California.LGO Contribution Number 925.  相似文献   

2.
Permeability exerts significant control over the development of pore pressure excess in the crust, and it is a physical quantity sensitively dependent on the pore structure and stress state. In many applications, the relation between permeability and effective mean stress is assumed to be exponential and that between permeability and porosity is assumed to be a power law, so that the pressure sensitivity of permeability is characterized by the coefficient and the porosity sensitivity by the exponent . In this study, we investigate experimentally the dependence of permeability on pressure and porosity in five sandstones with porosities ranging from 14% to 35% and we review published experimental data on intact rocks, unconsolidated materials and rock fractures. The laboratory data show that the pressure and porosity sensitivities differ significantly for different compaction mechanisms, but for a given compaction mechanism, the data can often be approximated by the empirical relations. The permeabilities of tight rocks and rock joints show relatively high pressure sensitivity and low porosity sensitivity. A wide range of values for and have been observed in relation to the mechanical compaction of porous rocks, sand and fault gouge, whereas the porosity sensitivity for chemical compaction processes is often observed to be given by 3. We show that since the ratio / corresponds to the pore compressibility, the different dependences of permeability on porosity and pressure are related to the pore structure and its compressibility. Guided by the laboratory data, we conduct numerical simulations on the development of pore pressure in crustal tectonic settings according to the models ofWalder andNur (1984) andRice (1992). Laboratory data suggest that the pressure sensitivity of fault gouge is relatively low, and to maintain pore pressure at close to the lithostatic value in the Rice model, a relatively high influx of fluid from below the seismogenic layer is necessary. The fluid may be injected as vertically propagating pressure pulses into the seismogenic system, andRice's (1992) critical condition for the existence of solitary wave is shown to be equivalent to >1, which is satisfied by most geologic materials in the laboratory. Laboratory data suggest that the porosity sensitivity is relatively high when the permeability is reduced by a coupled mechanical and chemical compaction process. This implies that in a crustal layer, pore pressure may be generated more efficiently than cases studied byWalder andNur (1984) who assumed a relatively low porosity sensitivity of =2.  相似文献   

3.
Fault gouges have been observed in the surface outcrops, in shallow excavations, and in deep (300 meters below the surface) tunnels and mines in fault zones. The 2-microns fractions in these fault gouges may compose a few percent to more than fifty percent of the total mass in the outcrops, and the mineralogy of the 2-microns fractions consists of a variety of clays (the common ones are montmorillonite, illite, kaolinite, chlorite, vermiculite and mixed-layer clays) and some quartz, feldspars, etc.Although we cannot yet conclude directly from the studies of gouges that similar gouges exist at depths where many large shallow earthquakes are generated, there is a strong possibility that they do, based on (1) available equilibrium data on various clays — for example, kaolinite has been found to exist at 4 kb and 375°C (±15°C) (Thompson, 1970) and montmorillonite + kaolite has been found to exist at 450°C and 4 kb (Velde, 1969); (2) the compatibility of laboratory velocity data in gouge (Wang et al., 1977) with those in a model for central California (Healy andPeake, 1975); (3) the capability of clays to undergo sudden earthquake-like displacements (Summers andByerlee, 1977); (4) the petrology of intrafault cataclastic rocks in old fault zones (Kasza, 1977); and (5) the compatibility of gouge mineralogy with the mineralogy of hydrothermal clay deposits.If clay gouges are indeed significant components of the fault zone at depth, then the mechanical properties of clays under confining pressures up to 4 kb are important in the behavior of faults. Very few experiments have been performed under such high pressures. But from the physical makeup of clays, we can infer that (1) the range of possible behavior includes stable sliding with vermiculite and montmorillonite (asByerlee andSummers, 1977, have proven) to stick-slip-like behavior with kaolinite, chlorite, etc.; (2) the absence or presence of water will greatly affect the strengths of gouges — it is possible that water may reduce the strength of gouge to a fairly small value.  相似文献   

4.
5.
In recent years, strong earthquakes of MS8.0 Wenchuan and MS7.0 Lushan occurred in the central-southern part of Longmenshan fault zone. The distance between the two earthquakes is less than 80 kilometers. So if we can obtain the inner structure of the crust and upper mantle, it will benefit us to understand the mechanism of the two earthquakes. Based on the high resolution dataset of Bouguer gravity anomaly data and the initial model constrained by three-dimensional tomography results of P-wave velocity in Sichuan-Yunnan region, with the help of the preconditioned conjugate gradient(PCG)inversion method, we established the three dimensional density structure model of the crust and upper mantle of the central-southern segment of Longmenshan, the spatial interval of which is 10 kilometers along the horizontal direction and 5 kilometers along the depth which is limited to 0~65km, respectively. This model also provides a new geophysical model for studying the crustal structure of western Sichuan plateau and Sichuan Basin. The results show obvious differences in the crustal density structure on both sides(Songpan-Ganzê block and Sichuan Basin)of Longmenshan fault zone which is a boundary fault and controls the inner crustal structure. In Sichuan Basin, the sedimentary layer is represented as low density structure which is about 10km thick. In contrast, the upper crust of Songpan-Ganzê block shows a thinner sedimentary layer and higher density structure where bedrock is exposed. Furthermore, there is a wide scale low density layer in the middle crust of the Songpan-Ganzê block. Based on this, we inferred that the medium intensity of the Songpan-Ganzê block is significantly lower than that of Sichuan Basin. As a result, the eastward movement of material of the Qinghai-Tibet plateau, blocked by the Sichuan Basin, is inevitably impacted, resulting in compressional deformation and uplift, forming the Longmenshan thrust-nappe tectonic belt at the same time. The result also presents that the crustal structure has a distinct segmental feature along the Longmenshan fault zone, which is characterized by obviously discontinuous changes in crustal density. Moreover, a lot of high- and low-density structures appear around the epicenters of Wenchuan and Lushan earthquakes. Combining with the projection of the precise locating earthquake results, it is found that Longmenshan fault zone in the upper crust shows obvious segmentation, both Wenchuan and Lushan earthquake occurred in the high density side of the density gradient zone. Wenchuan earthquake and its aftershocks are mainly distributed in the west of central Longmenshan fault zone. In the south of Maoxian-Beichuan, its aftershocks occurred in high density area and the majority of them are thrust earthquake. In the north of Maoxian-Beichuan, its aftershocks occurred in the low density area and the majority of them are strike-slip earthquake. The Lushan earthquake and its aftershocks are concentrated near the gradient zone of crustal density and tend to the side of the high density zone. The aftershocks of Lushan earthquake ended at the edge of low-density zone which is in EW direction in the north Baoxing. The leading edge of Sichuan Basin, which has high density in the lower crust, expands toward the Qinghai-Tibet Plateau with the increase of depth, and is close to the west of the Longmenshan fault zone at the top of upper mantle. Our results show that there are a lot of low density bodies in the middle and lower crust of Songpan-Ganzê Block. With the increase of the depth, the low density bodies are moving to the south and its direction changed. This phenomenon shows that the depth and surface structure of Songpan-Ganzê Block are not consistent, suggesting that the crust and upper mantle are decoupled. Although a certain scale of low-density bodies are distributed in the middle and lower crust of Songpan-Ganzê, their connectivity is poor. There are some low-density anomalies in the floor plan. It is hard to give clear evidence to prove whether the lower crust flow exists.  相似文献   

6.
Measurements were made of the amounts of D,18O, and H2O+ in fault gouge collected over a depth of 400 m in the San Andreas fault of California. The amounts and isotopic compositions of the pore fluids, also analyzed, suggest that formation waters from adjacent Franciscan rocks have migrated into the gouge and mixed with local meteoric water. Thus the gouge is an open system permeable to fluid flow. This permeability has important implications concerning heat flow along the fault zone.Analyses of the fault gouge itself give information on the amounts, timing, and conditions of formation of the clay minerals.Stable-isotope analyses of materials from fault zones are good indicators of water-rock interactions that bear importantly on processes taking place in seismically active regions.  相似文献   

7.
This paper introduces the scale-depth law of multi-scale wavelet analysis for regional gravity data processing, and presents the results of its application to Central Asia for computation of the 3D crustal density structures. The wavelet analysis method is applied for characterizing 3D crustal density structure, producing five maps of density disturbance corresponding to different depths of equivalent layers in the crust. The results provide important evidence for the study of crustal structures and mass movement in Central Asia: (i) the small-scale and intensive linear density disturbances in the upper crust indicate Phanerozoic orogenic belts; (ii) there exists a horseshoe-shaped low-density belt in the middle crust coinciding with the Kazakhstan orocline; (iii) there is a very low density zone in the lower crust, extending from western Kunlun to Tianshan, probably indicating a lower-crust flow; (iv) there are a few lowdensity spots in the middle crust, which might be caused by low-density mass squeezing upward from the lower crust flows.  相似文献   

8.
To research the faults distribution and deep structures in the southern segment of Tan-Lu fault zone(TLFZ) and its adjacent area, this paper collects the Bouguer gravity data and makes separation by the multi-scale wavelet analysis method to analyze the crustal transverse structure of different depths. Meanwhile Moho interface is inversed by Parker variable density model. Research indicates that the southern segment of TLFZ behaves as a NNE-directed large-scale regional field gravity gradient zone, which separates the west North China-Dabie orogen block and the east Yangtze block, cutting the whole crust and lithosphere mantle. There are quite differences of density structures and tectonic features between both sides of this gradient belt. The sedimentary and upper crustal density structure is complex. The two east branches of TLFZ behave as linear gravity anomalous belt throughout the region, whereas the two west branches of TLFZ continue to extend after truncating the EW-trending gravity anomaly body. The lower crustal density structure is relatively simple. TLFZ behaves as a broad and gentle low abnormal belt, which reflects the Cretaceous-Paleogene extension environment caused graben structure. The two west branches of TLFZ, running through Hefei city, extend southward along the west margin of Feidong depression and pinch out in Shucheng area due to the high density trap occlusions in the south of Shucheng. The Feizhong Fault, Liu'an-Hefei Fault, and Feixi-Hanbaidu Fault intersect the two west branch faults of TLFZ without extending to the east. Recent epicenters are mainly located in conversion zones between the high-density and the low-density anomaly, especially in TLFZ and the junction of the faults, where earthquakes frequently occurred in the upper and middle crust. As strong earthquakes rarely occur in the southern segment of TLFZ, considering its deep feature of abrupt change of the Moho and intersections with many EW-trending faults, the hazard of strong earthquake cannot be ignored.  相似文献   

9.
Most large earthquakes of magnitude 6.0 in California during 1852–1987 appear to show a southeast-to-northwest tendency of epicenter migration. This finding is consistent with earlier findings ofSavage (1971) for a relatively few large earthquakes along the west coast of North America, and ofWood andAllen (1973) for smaller events along the San Andreas fault in central California. The average speed of migration is approximately 130 km/yr, which is within the range of speeds observed for other major seismic zones in the world. The epicenter migration in California may be the result of some small but broad-scaled episodic strain changes associated with creep waves induced by magma injections at the East Pacific Rise and propagating northwestwardly along a broad transform boundary between the Pacific and North American plates at subseismogenic depths as proposed bySavage (1971).  相似文献   

10.
Detailed observation of the microstructural features of 11 fault gouge and 3 fault breccia samples collected from Tianjingshan-Xiangshan fault zone has revealed that fault gouge can be classified into 3 types: flow banded granular gouge, foliated gouge and massive gouge. The determination of the shape preferred orientation (SPO) of survivor grains in fault gouges indicates that the foliated gouge displays a profound SPO inclined to the shear zone boundary, similar to theP-foliation; flow banded granular gouge displays a SPO parallel to the shear zone boundary, while massive fault gouge and fault breccia display a random SPO. All these fault gouges fall in different fields of shear rate ternary diagram.  相似文献   

11.
This paper reports internal structures of a bedding-parallel fault in Permian limestone at Xiaojiaqiao outcrop that was moved by about 0.5 m during the 2008 MW7.9 Wenchuan earthquake. The fault is located about 3 km to the south from the middle part of Yingxiu-Beichuan fault, a major fault in the Longmenshan fault system that was moved during the earthquake. The outcrop is also located at Anxian transfer zone between the northern and central segments of Yingxiu-Beichuan fault where fault system is complex. Thus the fault is an example of subsidiary faults activated by Wenchuan earthquake. The fault has a strike of 243° or N63°E and a dip of 38°NW and is nearly optimally oriented for thrust motion, in contrast to high-angle coseismic faults at most places. Surface outcrop and two shallow drilling studies reveal that the fault zone is several centimeters wide at most and that the coseismic slip zone during Wenchuan earthquake is about 1 mm thick. Fault zone contains foliated cataclasite, fault breccia, black gouge and yellowish gouge. Many clasts of foliated cataclasite and black gouge contained in fault breccia indicate multiple slip events along this fault. But fossils on both sides of fault do not indicate clear age difference and overall displacement along this fault should not be large. We also report results from high-velocity friction experiments conducted on yellowish gouge from the fault zone using a rotary shear low to high-velocity frictional testing apparatus. Dry experiments at normal stresses of 0.4 to 1.8 MPa and at slip rates of 0.08 to 1.35 m/s reveal dramatic slip weakening from the peak friction coefficient of around 0.6 to very low steady-state friction coefficient of 0.1-0.2. Slip weakening parameters of this carbonate fault zone are similar to those of clayey fault gouge from Yingxiu-Beichuan fault at Hongkou outcrop and from Pingxi fault zone. Our experimental result will provide a condition for triggering movement of subsidiary faults or off-fault damage during a large earthquake.  相似文献   

12.
Summary The paper presents some mathematic patterns by using the linear programming. These patterns are making up a simple method of gravimetric data transformation, solvable with the help of digital computers. Some methods of differentiating the regional and local anomalies, of effectuating the calculus of some gravity derivatives and of establishing the shape of bidimensional bodies, are shown. This work was aimed to enlarge the field of the linear programming appliableness within geophysics. Former studies on the scope were undertaken byShalaev [7]3), [8], as well as byDougerty andSmith [3].  相似文献   

13.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

14.
Summary Regional variations have been indicated in the slope of theP travel-time curve in the shadow zone of the earth's core. Further study is needed since the uncertainties of the slope are large, especially for the observations from North American stations. There is no significant difference between themean slope of theP travel-time curve in the 95°102.9 range and those obtained byJeffreys, andJeffreys andBullen. However, there is a significant difference between themean slope in the 103° to 135° range as obtained in this study, and those obtained byJeffreys andBullen, and in a later revision byJeffreys. Themean travel-time curve ofP in the shadow zone of the earth's core should be lowered. A trial travel-time table is given with amean slope of 4.41 sec/deg. This table is in close agreement with the times obtained byGutenberg andRichter, and with the trial travel-times ofLehmann. Under the assumption of diffraction the longitudinal wave velocity has been determined to be 13.7 km/sec at the core-mantle boundary.This paper was presented at the Annual Meeting of the Seismological Society of America Reno, Nevada, 1966.  相似文献   

15.
The particle size distributions of fault gouge from the San Andreas, the San Gabriel, and the Lopez Canyon faults in Southern California were measured using sieving and Coulter-Counter techniques over a range of particle sizes from 2 m to 16 mm. The distributions were found to be power law (fractal) for the smaller fragments and log-normal by mass for sizes near and above the peak size. The apparent fractal dimensionD of the smaller particles in gouge samples from the San Andreas fault, the San Gabriel fault and the Lopez Canyon gouge were 2.4–3.6, 2.6–2.9 and 2.4–3.0, respectively. The averageD for the Lopez Canyon gouge was 2.7±0.2, which is in agreement with earlier studies of this gouge using planar 2-D sections. The fractal dimension of the finer fragments from all three faults is observed to be correlated with the peak fragment size, with finer gouges tending to have a largerD. A computer automaton is used to show that this observation may be explained as resulting from a fragmentation process which has a grinding limit at which particle reduction stops.  相似文献   

16.
5.12汶川地震同震地表破裂带在虹口八角-深溪沟一带主要出露于三叠系须家河组的炭质泥岩中,同震断层泥在颜色、结构上与老断层泥和围岩类似。通过开挖探槽,系统采样,采用粉晶X射线衍射定量分析方法,研究了同震地表破裂带的围岩、断层角砾岩、老断层泥和新断层泥的矿物成分特征。同震断层泥的主要成分为石英和黏土矿物,含微量长石和白云石;断层泥的显著特征为高黏土矿物含量,从同震断层泥、老断层泥、角砾岩到围岩黏土矿物含量依次降低,黏土矿物以伊利石和伊蒙混层为主,含微量绿泥石和高岭石,矿物组成明显比地表破裂带北段同震断层泥简单。不同颜色的同震断层泥成分略有不同,黑色断层泥中伊利石含量明显高于白色断层泥;老断层泥中含有方解石和白云石,而同震断层泥不含方解石,只含微量白云石。同震断层泥中伊蒙混层高含量表明,在本次地震错动中有富含K的流体参与。  相似文献   

17.
Seismic measurements of the internal properties of fault zones   总被引:1,自引:0,他引:1  
The internal properties within and adjacent to fault zones are reviewed, principally on the basis of laboratory, borehole, and seismic refraction and reflection data. The deformation of rocks by faulting ranges from intragrain microcracking to severe alteration. Saturated microcracked and mildly fractured rocks do not exhibit a significant reduction in velocity, but, from borehole measurements, densely fractured rocks do show significantly reduced velocities, the amount of reduction generally proportional to the fracture density. Highly fractured rock and thick fault gouge along the creeping portion of the San Andreas fault are evidenced by a pronounced seismic low-velocity zone (LVZ), which is either very thin or absent along locked portions of the fault. Thus there is a correlation between fault slip behavior and seismic velocity structure within the fault zone; high pore pressure within the pronounced LVZ may be conductive to fault creep. Deep seismic reflection data indicate that crustal faults sometimes extend through the entire crust. Models of these data and geologic evidence are consistent with a composition of deep faults consisting of highly foliated, seismically anisotropic mylonites.  相似文献   

18.
阿尔金北缘断裂带东北段第四纪构造活动与地震   总被引:2,自引:0,他引:2       下载免费PDF全文
本文概述了阿尔金北缘断裂带东北段(甘肃境内)的地质背景和新构造运动,讨论了断层特性、断层几何学、形变图象及一些特殊走滑运动地貌等问题。根据第四纪后期不同时代的地貌单元被水平左旋错移的幅度,结合C~(14)年代测定,求出5个不同时代至今的平均滑动速率,并分析了断层活动的一些时空特点。文章还探讨了古地震现象,现代地震活动与断裂的关系及地震危险性,较详细地研究了新发现的芦草沟古地震形变带。  相似文献   

19.
Summary This study presents the focal mechanism solutions of four South American earth-quakes. These solutions have been determined using the sign of the initial motion ofP wave, and the polarization angle ofS wave. A regional study of the strike of the fault plane, the direction of motion, and the regional stress pattern has been made in which the focal mechanism solutions determined byStauder andBollinger were also used.  相似文献   

20.
-- In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by Dieterich and Kilgore (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance Dc on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号