首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
On the 27 June 2015, at 15:34:03 UTC, a moderate-sized earthquake of M w 5.0 occurred in the Gulf of Aqaba. Using teleseismic P waves, the focal mechanism of the mainshock was investigated by two techniques. The first technique used the polarities of the first P wave onsets, and the second technique was based on the normalized waveform modeling technique. The results showed that the extension stress has a NE orientation with a shallow southward plunge while the compression stress has a NW trend with a nearly shallow westward plunge, obtaining a strike-slip mechanism. This result agrees well with the typical consequence of crustal deformation resulting from the ongoing extensional to shear stress regime in the Gulf of Aqaba (NE-SW extension and NW-SE compression). The grid search method over a range of focal depths indicates an optimum solution at 15 ± 1 km. To identify the causative fault plane, the aftershock hypocenters were relocated using the local waveform data and the double-difference technique. Considering the fault trends, the spatial distribution of relocated aftershocks demarcated a NS-oriented causative fault, in consistence with one of the nodal planes of the focal mechanism solution, emphasizing the dominant stress regime in the region. Following the Brune model, the estimates of source parameters exhibited fault lengths of 0.29 ≤ L ≤ 2.48 km, moment magnitudes of 3.0 ≤ M w ≤ 5.0, and stress drops of 0.14 ≤ Δσ < 1.14 MPa, indicating a source scaling similar to the tectonic earthquakes related to plate boundaries.  相似文献   

2.
We analyzed the broadband body waves of the 1992 Nicaragua earthquake to determine the nature of rupture. The rupture propagation was represented by the distribution of point sources with moment-rate functions at 9 grid points with uniform spacing of 20 km along the fault strike. The moment-rate functions were then parameterized, and the parameters were determined with the least squares method with some constraints. The centroid times of the individual moment-rate functions indicate slow and smooth rupture propagation at a velocity of 1.5 km/s toward NW and 1.0 km/s toward SE. Including a small initial break which precedes the main rupture by about 10 s, we obtained a total source duration of 110 s. The total seismic moment isM o =3.4×1020 Nm, which is consistent with the value determined from long-period surface waves,M o =3.7×1020 Nm. The average rise time of dislocation is determined to be 10 s. The major moment release occurred along a fault length of 160 km. With the assumption of a fault widthW=50 km, we obtained the dislocationD=1.3 m. From andD the dislocation velocity isD=D/0.1 m/s, significantly smaller than the typical value for ordinary earthquakes. The stress drop =1.1 MPa is also less than the typical value for subduction zone earthquakes by a factor of 2–3. On the other hand, the apparent stress defined by 2E s /M o , where andE s are respectively the rigidity and the seismic wave energy, is 0.037 MPa, more than an order of magnitude smaller than . The Nicaragua tsunami earthquake is characterized by the following three properties: 1) slow rupture propagation; 2) smooth rupture; 3) slow dislocation motion.  相似文献   

3.
The Adriatic foreland of the Apennines comes ashore only in Apulia (easternmost Italy). Its southern part, our study area, lacks any structural analysis devoted to define its recent-to-active tectonics. Throughout the Quaternary, this region was affected by mild brittle deformation with rare faults, characterized by small displacement, and widespread extension joints, frequently organized in sets. Therefore, we conducted a quantitative and systematic analysis of the joint sets affecting Quaternary deposits, by applying an inversion technique ad hoc to infer the orientation and ratio of the principal stress axes, R = (σ2 ? σ3)/(σ1 ? σ3). Within a general extensional regime, we recognized three deformational events of regional significance. The oldest event, constrained to the early and middle part of the Middle Pleistocene, is characterized by variable direction of extension and R between 0.64 and 0.99. The penultimate event, dated late Middle Pleistocene, is characterized by an almost uniaxial tension, with a horizontal σ3 striking ~N43°E; R is high, between 0.85 and 0.99. The most recent event is characterized by the lowermost R values, that never exceed 0.47 and are frequently <0.30, indicating a sort of horizontal ‘radial’ extension. This event is not older than the Late Pleistocene and possibly reflects the active stress field still dominating the entire study area.  相似文献   

4.
The points with normal, anomalously low, and anomalously high shaking intensities are recognized in the spatial distribution of macroseismic effects from the 1991 Racha earthquake, Greater Caucasus. Distribution of these points in the epicentral area is not random. Comparison between this distribution and the results of local tomography reveals that seismic wave velocities do not increase in the upper layers (from 0 to 3 km) beneath the points with anomalously high intensity, while a sharp increase in velocity is observed in the depth interval from 6 to 9 km. An original method of b-value mapping is suggested. Application of the method demonstrates that anomalously low intensities correlate to high b-values. This likely reflects higher intensity attenuation associated with higher b-value.  相似文献   

5.
The Pannonian Basin is a deep intra-continental basin that formed as part of the Alpine orogeny. In order to study the nature of the crustal basement we used the long-wavelength magnetic anomalies acquired by the CHAMP satellite. The anomalies were distributed in a spherical shell, some 107,927 data recorded between January 1 and December 31 of 2008. They covered the Pannonian Basin and its vicinity. These anomaly data were interpolated into a spherical grid of 0.5° × 0.5°, at the elevation of 324 km by the Gaussian weight function. The vertical gradient of these total magnetic anomalies was also computed and mapped to the surface of a sphere at 324 km elevation. The former spherical anomaly data at 425 km altitude continued downward to 324 km. To interpret these data at the elevation of 324 km we used an inversion method. A polygonal prism forward model was used for the inversion. The minimum problem was solved numerically by the Simplex and Simulated annealing methods; a L2 norm in the case of Gaussian distribution parameters and a L1 norm was used in the case of Laplace distribution parameters. We interpret that the magnetic anomaly was produced by several sources and the effect of the sable magnetization of the exsolution of hemo-ilmenite minerals in the upper crustal metamorphic rocks.  相似文献   

6.
立足于辽宁省烈度速报的实际需求,在多种地震烈度算法的研究基础上,结合震害实际,从滤波、场地校正、网格计算、烈度计算、已知震源计算等方面进行探索和试验,提出一种新的实时地震烈度计算的方法,并在辽阳灯塔5.1级地震中得到实际检验。  相似文献   

7.
This study analyzes the S-wave envelope broadening characteristics of 290 earthquakes recorded by 14 stations of the Spanish National Seismograph Network in the Canary Islands region. The S-wave peak delay time (t p ) and envelope duration (t q ) parameters are evaluated phenomenologically to infer the strength of velocity inhomogeneities of the medium along each seismic ray path. Crustal (0?≤?h?≤?18 km) and upper mantle (18?<?h?≤?80 km) events are analyzed separately. Results in the frequency range 1 to 12 Hz for hypocentral distances from 30 to 600 km show that both t p and t q increase according to a power of hypocentral distance and they are independent of frequency. The spatial distribution of the peak delay time reveals weak strength of heterogeneity in most of the region at shallow depths. Relatively strong inhomogeneous zones are generated under the island of Tenerife and Gran Canaria at depths of 11–22 km.  相似文献   

8.
文中叙述了大同—阳高地震区的烈度划分原则、烈度分布范围、烈度异常情况,给出了宏观地震参数(h=11.2km,震级5.8M_L),指出宏观调查的烈度值与强震仪记录的强余震加速度基本一致。  相似文献   

9.
Phase folding algorithms are conventionally used in periodicity analyses using X-ray astronomy pulsar. These allow for accurate identification of the cycle and phase characteristics of the physical parameters of the periodic variation. Although periodic variations in earthquake activity have long been studied, this paper is the first to apply the phase folding algorithm to the analysis of shallow (<70 km) seismic data for the period 1973–2010. The goal is to study the phase distribution characteristics of earthquake frequencies and we see a connection between earthquake occurrence and solar and lunar cycles. First, the rotation of the Sun may play a significant role in impacting on the occurrence time of earthquakes with magnitudes of less than 6.0. This may be especially pertinent for earthquakes with magnitudes between 5.0 and 6.0, when the modulation ratio reaches 12 %. The Moon’s gravity, which is generally thought to have the greatest influence on the global environment, may actually play less of a role on earthquake timing than the rotation of the Sun. Second, when we consider the world to be divided into 72 local regions based on latitude and longitude, we can see that there are more than a dozen regions with significant non-uniform distributions of earthquake occurrence time. In these regions, the ratio of χ 2 to the number of degrees of freedom far exceeds five. As a result, we posit that some factors associated with the Sun–Earth–Moon relationship may trigger earthquake activity under certain temporal and spatial conditions.  相似文献   

10.
Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo-spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modeling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio.Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5–Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s.The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 3–4 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 6 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to a Mw7.2 scenario earthquake.  相似文献   

11.

The great Tancheng earthquake of M8? occurred in 1668 was the largest seismic event ever recorded in history in eastern China. This study determines the fault geometry of this earthquake by inverting seismological data of present-day moderate-small earthquakes in the focal area. We relocated those earthquakes with the double-difference method and found focal mechanism solutions using gird test method. The inversion results are as follows: the strike is 21.6°, the dip angle is 89.5°, the slip angle is 170°, the fault length is about 160 km, the lower-boundary depth is about 32 km and the buried depth of upper boundary is about 4 km. This shows that the seismic fault is a NNE-trending upright right-lateral strike-slip fault and has cut through the crust. Moreover, the surface seismic fault, intensity distribution of the earthquake, earthquake-depth distribution and seismic-wave velocity profile in the focal area all verified our study result.

  相似文献   

12.
The rupture processes of any heterogeneous material constitute a complex physical problem. Earthquake aftershocks show temporal and spatial behaviors which are consequence of the heterogeneous stress distribution and multiple rupturing following the main shock. This process is difficult to model deterministically due to the number of parameters and physical conditions, which are largely unknown. In order to shed light on the minimum requirements for the generation of aftershock clusters, in this study, we perform a simulation of the main features of such a complex process by means of a fiber bundle (FB) type model. The FB model has been widely used to analyze the fracture process in heterogeneous materials. It is a simple but powerful tool that allows modeling the main characteristics of a medium such as the brittle shallow crust of the earth. In this work, we incorporate spatial properties, such as the Coulomb stress change pattern, which help simulate observed characteristics of aftershock sequences. In particular, we introduce a parameter (P) that controls the probability of spatial distribution of initial loads. Also, we use a “conservation” parameter (π), which accounts for the load dissipation of the system, and demonstrate its influence on the simulated spatio-temporal patterns. Based on numerical results, we find that P has to be in the range 0.06 < P < 0.30, whilst π needs to be limited by a very narrow range (0.60 < π < 0.66) in order to reproduce aftershocks pattern characteristics which resemble those of observed sequences. This means that the system requires a small difference in the spatial distribution of initial stress, and a very particular fraction of load transfer in order to generate realistic aftershocks.  相似文献   

13.
On March 20, 2006, a moderate-magnitude earthquake of Mw 5.2 hit the region of the Babors mountains, a region located two hundred km east of Algiers (capital of Algeria). More precisely, the epicentre occurred 40 km south-east of Béjaïa, the second most important city in the Kabylian region. The earthquake impacted an area with a radius of about 70 km and caused the death of four persons and injured 68. Damage was mainly observed in Lâalam village (district of Kherrata) where some buildings and old houses were affected. Damage was mainly due to a moderate landslide triggered by the earthquake. Rock falls were also observed near the main cliffs. The maximum observed intensity I0 was estimated to VII (EMS-98 scale). According to the main shock focal mechanism solution and the spatial distribution of aftershocks, the main shock was reliably found to have been generated by an NS sinistral strike-slip fault. The compressive stress axis σ1, oriented N325, is in agreement with the direction of convergence between Eurasia and Africa.  相似文献   

14.
Spain is a low-to-moderate seismicity area with relatively low seismic hazard. However, several strong shallow earthquakes have shaken the country causing casualties and extensive damage. Regional seismicity is monitored and surveyed by means of the Spanish National Seismic Network, maintenance and control of which are entrusted to the Instituto Geográfico Nacional. This array currently comprises 120 seismic stations distributed throughout Spanish territory (mainland and islands). Basically, we are interested in checking the noise conditions, reliability, and seismic detection capability of the Spanish network by analyzing the background noise level affecting the array stations, errors in hypocentral location, and detection threshold, which provides knowledge about network performance. It also enables testing of the suitability of the velocity model used in the routine process of earthquake location. To perform this study we use a method that relies on P and S wave travel times, which are computed by simulation of seismic rays from virtual seismic sources placed at the nodes of a regular grid covering the study area. Given the characteristics of the seismicity of Spain, we drew maps for M L magnitudes 2.0, 2.5, and 3.0, at a focal depth of 10 km and a confidence level 95 %. The results relate to the number of stations involved in the hypocentral location process, how these stations are distributed spatially, and the uncertainties of focal data (errors in origin time, longitude, latitude, and depth). To assess the extent to which principal seismogenic areas are well monitored by the network, we estimated the average error in the location of a seismic source from the semiaxes of the ellipsoid of confidence by calculating the radius of the equivalent sphere. Finally, the detection threshold was determined as the magnitude of the smallest seismic event detected at least by four stations. The northwest of the peninsula, the Pyrenees, especially the westernmost segment, the Betic Cordillera, and Tenerife Island are the best-monitored zones. Origin time and focal depth are data that are far from being constrained by regional events. The two Iberian areas with moderate seismicity and the highest seismic hazard, the Pyrenees and Betic Cordillera, and the northwestern quadrant of the peninsula, are the areas wherein the focus of an earthquake is determined with an approximate error of 3 km. For M L 2.5 and M L 3.0 this error is common for almost the whole peninsula and the Canary Islands. In general, errors in epicenter latitude and longitude are small for near-surface earthquakes, increasing gradually as the depth increases, but remaining close to 5 km even at a depth of 60 km. The hypocentral depth seems to be well constrained to a depth of 40 km beneath the zones with the highest density of stations, with an error of less than 5 km. The M L magnitude detection threshold of the network is approximately 2.0 for most of Spain and still less, almost 1.0, for the western sector of the Pyrenean region and the Canary Islands.  相似文献   

15.
Total magnetic intensity contour maps for the study region (between 2°E to 10°E and 56°N to 60°N) were digitized and converted to a regular grid of 285 × 285 points. The study area measures approximately 444 km × 444 km and the grid spacing is thus 1. 56 km. The International Geomagnetic Reference Field for 1975 was gridded for the above-used net, and from the two data sets a further grid of the ?T field was generated. A large number of profiles were constructed which were suitable for depth determinations. The regular grid ?T data is also convenient for the computation of the second vertical derivative. Using the method of vertical prisms of Vacquier et al. (1963), a large suite of curvature-depth indices was measured to complement the depths obtained from the intensity slopes and from boreholes which reach the crystalline basement. The depth to the magnetic basement has been contoured, and the resulting map is shown to be in good agreement with what is known about the deeper geology of the study area. The work reported here is part of a research project supported by Amoco Norway, BP Petroleum Development Ltd, Elf Aquitaine, Esso Exploration and Production, Norwegian Gulf, Norsk Hydro, Mobil Exploration Norway, Norwegian Petroleum Directorate, Royal Norwegian Council for Scientific and Industrial Research (NTNF), Norske Shell, and Statoil.  相似文献   

16.
This study constructs a preliminary inventory of landslides triggered by the MS 6.8 Luding earthquake based on field investigation and human-computer interaction visual interpretation on optical satellite images. The results show that this earthquake triggered at least 5 007 landslides, with a total landslide area of 17.36 ?km2, of which the smallest landslide area is 65 ?m2 and the largest landslide area reaches 120 747 ?m2, with an average landslide area of about 3 500 ?m2. The obtained landslides are concentrated in the IX intensity zone and the northeast side of the seismogenic fault, and the area density and point density of landslides are 13.8%, and 35.73 ?km?2 peaks with 2 ?km as the search radius. It should be noted that the number of landslides obtained in this paper will be lower than the actual situation because some areas are covered by clouds and there are no available post-earthquake remote sensing images. Based on the available post-earthquake remote sensing images, the number of landslides triggered by this earthquake is roughly estimated to be up to 10 000. This study can be used to support further research on the distribution pattern and risk evaluation of the coseismic landslides in the region, and the prevention and control of landslide hazards in the seismic area.  相似文献   

17.
Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the “Cut-and-Paste” (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13–15 km on a plane dipping 40–47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.  相似文献   

18.
Precursor and coda portions of short-period PcP waves (reflected P wave from the core-mantle boundary, CMB) recorded at J-array stations in Japan were analyzed in order to extract weak scattered signals originating from small-scale heterogeneities in the lowermost mantle beneath northeastern China. Two nuclear explosions at Lop Nor in China detonated on 21 May 1992 (Mb=6.5) and 8 June 1996 (Mb=5.9) were used for our analysis.Three-dimensional grids above the CMB were defined in the area around the PcP bounce points beneath northeastern China to calculate theoretical travel times of scattered waves which propagate from the sources to each grid point and arrive at each station based on the IASP91 model. Subsequently the waveforms were aligned with respect to the theoretical travel times and the semblance (an amplitude dependent measure of coherency) was calculated for each grid point. In order to obtain a more accurate travel time correction, we applied a cross correlation method to PcP waveforms in order to reduce picking error of the PcP onset time. A cross convolution method was also applied so that the two events could be analyzed simultaneously without using unstable deconvolutions.We could identify regions with relative high semblance values in semblance contour maps at about 200 and 375 km above the CMB. Stacking waveforms with respect to the theoretical travel times for the grid points with relative high semblance values indicate coherent wavelets originating at those grid points, that is, they correspond to scattered waves originating from small-scale heterogeneities in the lowermost mantle. Our results indicate the existence of small-scale scattering objects in the D″ layer, especially in the depth range of 200 and 375 km above the CMB beneath northeastern China. Considering recent tomographic images of high velocity anomalies in this area, these scattering objects could be fragments of old oceanic crusts which have subducted through the lower mantle and have accumulated in the D″ layer beneath northeastern China.  相似文献   

19.
The MW7.4 Maduo earthquake occurred on 22 May 2021 at 02:04 CST with a large-expansion surface rupture. This earthquake was located in the Bayan Har block at the eastern Tibetan Plateau, where eight earthquakes of MS >7.0 have occurred in the past 25 years. Here, we combined interferometric synthetic aperture radar, GPS, and teleseismic data to study the coseismic slip distribution, fault geometry, and dynamic source rupture process of the Maduo earthquake. We found that the overall coseismic deformation field of the Maduo earthquake is distributed in the NWW-SEE direction along 285°. There was slight bending at the western end and two branches at the eastern end. The maximum slip is located near the eastern bending area on the northern branch of the fault system. The rupture nucleated on the Jiangcuo fault and propagated approximately 160 km along-strike in both the NWW and SEE directions. The characteristic source rupture process of the Maduo earthquake is similar to that of the 2010 MW6.8 Yushu earthquake, indicating that similar earthquakes with large-expansion surface ruptures and small shallow slip deficits can occur on both the internal fault and boundary fault of the Bayan Har block.  相似文献   

20.
The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号