首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
城市山洪灾害多目标评估方法探讨   总被引:3,自引:1,他引:2  
本文针对目前城市山洪灾害的突出问题, 分析了国内外研究状况和发展趋势; 探讨了城市 山洪灾害多目标评估系统方法,包括山洪灾害泛滥范围的危险区划、城市易损性分析、城市山洪 灾害损失评估和风险评价四个主要内容。关于山洪孕灾环境、致灾因子和承灾体的社会经济状 况, 本研究提出一套基于GIS 的从数据采集→空间属性数据库建立→评价指标体系选择→预测 评价分析→山洪灾害危险性评价与风险区划的技术路线和方法体系。山洪灾害危险区划采用地 貌学和数值模拟方法; 以高分辨率遥感卫星影像为数据源, 分析了城市土地覆盖类型, 应用GIS 进行了山洪灾害损失评估和风险评价。山洪灾害多目标评估可用于指导城市洪泛区不同危险、风 险地带的土地利用规划与决策, 从而达到规避风险和减灾的目的, 并为山洪灾害影响区的居民提 供灾害风险信息, 以作为避难和防洪的依据。  相似文献   

2.
城市山洪灾害风险评价——以云南省文山县城为例   总被引:1,自引:1,他引:1  
朱静 《地理研究》2010,29(4):655-664
山洪灾害风险评价对于减灾防灾决策和管理非常重要。本文介绍基于遥感和GIS方法的应用,探讨一种快速、简便而且较为准确的城市山洪灾害风险评价方法。以发生于1998年7月26日文山城20年一遇山洪灾害为实例,将GIS的数字高程模型与实测的山洪水位和洪峰流量结合进行淹没分析,研究表明采用该方法可以模拟准确山洪泛滥范围,并计算淹没水深分布。根据不同水深指标,应用GIS工具完成了山洪灾害危险分区。本研究利用高分辨率遥感影像提供承灾体类型的可靠和准确数据用于易损性分析和期望损失评估的价值计算。根据典型区财产损失的抽样调查,建立了不同承灾体类型与水深的关系,并确定其损失率;应用GIS空间数据处理和分析的集成方法完成了复杂的损失评估。在此基础上,按期望损失程度进行分区划分而完成山洪风险评价。研究结果表明基于GIS和RS方法进行山洪风险评价效果良好,值得推广应用于其他洪水泛滥区。  相似文献   

3.
天津市滨海地区地面沉降灾害风险评估与区划   总被引:8,自引:2,他引:6  
文章对1985~2006年累计地面沉降量及近几年地面沉降速率进行分析和叠加评价,完成天津市滨海地区地面沉降灾害危险性分区图;以人口密度和单位面积GDP为指标进行易损性分析;从每km2水准测量km数和地下水压采量占开采量百分比两方面考虑防灾减灾能力;在此基础上,借助GIS空间分析方法,将危险性分区图、易损性分区图和防灾减灾能力分区图进行叠加分析,完成天津市滨海地区地面沉降灾害风险区划图,分为低风险区、较低风险区、中等风险区、较高风险区、高风险区5等。  相似文献   

4.
基于GIS的黑龙江省水稻低温灾害风险等级区划   总被引:1,自引:0,他引:1  
根据风险评估理论,以灾害发生概率、种植面积和单产减产率分别作为危险性、暴露性和易损性指标,对黑龙江省水稻低温灾害风险进行评估。选取28个地面气象站1971—2012年气温资料和11个地市1986—2011年水稻单产和种植面积数据,运用自然灾害风险指数法、概率统计等方法,建立以危险性、暴露性、易损性为风险构成因素的风险评价模型,计算3个因素的大小并绘制危险性和易损性区划图。运用GIS技术计算黑龙江省水稻低温灾害综合风险等级,绘制低温灾害风险区划图。大兴安岭地区、黑河西北部、齐齐哈尔、伊春、双鸭山、哈尔滨为轻微风险区,南部、西北、东北为低风险区,中部、北部、绥化为中风险区,鸡西、佳木斯、鹤岗的部分区域为高风险区。评价结果对于正确认识黑龙江省水稻低温冷害的风险水平及制定水稻种植规划和防灾减灾有参考意义。  相似文献   

5.
探究河西走廊山洪灾害危险性分布特征,可为该地区山洪灾害监测、预警和防治工程规划提供科学支持,对保障地区人民生命财产安全具有重要的社会意义。从河西走廊山洪灾害防治及预警角度出发,根据河西走廊山洪灾害发生的机制,选取高程标准差、坡度、植被覆盖度、降水、河网密度、泥石流沟密度6个影响因子,以Arc GIS和IDRISI为平台,构建河西走廊山洪灾害危险度区划多准则决策支持模型,完成了河西走廊山洪灾害危险度区划图。结果表明:河西走廊山洪灾害危险度与6个危险因子是函数关系。其中,高程标准差、坡度和植被覆盖度与危险度呈多项式分布,降水、河网密度和泥石流沟密度则与危险度成正相关性;河西走廊山洪灾害极高度危险区460 km~2,占研究区总面积的3.12%;高度危险区1383.76 km~2,占研究区总面积的7.54%;中度危险区2166.85 km~2,占研究区总面积的11.26%;低度危险区154 787.63 km~2,占研究区总面积的65.01%;极低度危险区33 847.89 km~2,占研究区总面积的13.07%。  相似文献   

6.
对横断山区山地灾害进行科学的动态风险评价,可为区域防灾减灾工作提供重要的科学依据,同时对该区域的社会和谐稳定、经济稳步发展具有重要的现实意义。本文以横断山区为研究区,以五年年际变化为动态变化时间尺度,构建了山地灾害风险动态评价模型。首先选取发育山地灾害的本底因子作为静态危险度评价因子,采用频率比法计算了静态危险度,采用因子叠加法实现了横断山区山地灾害的动态危险性评价;然后选取人口密度、GDP密度和土地利用类型作为动态易损性评价指标,通过简化模型完成了动态易损性评价;最后根据风险评价模型结合动态危险性和动态易损性评价结果,得到了横断山区山地灾害不同年份的风险区划图并完成了动态风险评价。主要结果分述如下:(1)横断山区北部、西北部危险性低,为低和中危险性集中区;南部、东南部危险性高,为高和极高危险性集中区;(2)位于横断山区南部及东北部的高和极高危险区的地区人口较为密集,经济活动性较强,其易损性等级比较高,相应的风险级别同样较高;(3)横断山区受强降雨次数、人口密度、GDP密度和土地利用的动态变化的影响,各年山地灾害的风险性的空间分布范围具有比较明显的差异,横断山区的风险性随时间动态变化。  相似文献   

7.
江西省是我国山洪灾害严重的省份之一,但目前缺乏对该省山洪灾害时空格局和驱动因子全面系统的研究.该文根据全国山洪灾害调查项目江西省1950-2015年山洪灾害数据集,对江西省山洪灾害时间分布特征、空间分布规律、主要影响因子分布趋势与灾害重心迁移格局进行挖掘;在此基础上,运用参数最优地理探测器对降雨和地形两种连续型因子生成最优离散化因子,分别探测江西省全域范围和流域范围山洪灾害的主要驱动因子及作用机制.结果表明:全域范围江西省降雨因子解释力明显强于地形因子,其中历时短、重现期长的10 min强降雨对山洪灾害的解释力最强,且在特定地形条件与降雨交互作用后呈非线性增强;流域范围降雨多为山洪灾害的主导因子,但各流域的降雨主导因子差异明显,地形因子解释力更强,多数流域最大交互作用的双因子为降雨与地形因子,表明流域内因降雨和地形产生明显的山洪灾害空间分异特征.研究结果可为山洪灾害区划、防治等研究提供科学依据.  相似文献   

8.
由于受山区特殊的地貌特征控制,山洪的空间分布广泛而又相对分散,具有发灾突然、空间尺度小、分布数量多、成灾迅速等特点,要在空间上正确表达区域性的山洪泛滥可能的影响范围有相当大的难度。以云南省为例,探讨了以地貌学法为出发点,借助GIS工具提取山洪易泛区范围信息的可行性。山洪易泛范围的判识方法可为区域规划和建设规划人员和工程人员提供有价值的工具。  相似文献   

9.
沿淮湖泊洼地区域暴雨洪涝风险评估   总被引:7,自引:6,他引:1  
根据自然灾害风险评估基本原理,从暴雨洪涝致灾因子危险性及承灾体易损性出发,以沿淮湖泊洼地区域为示范研究区,综合考虑降水量、径流量、地形与河网密度、土地利用数据、人口及经济数据等指标,利用GIS的数据处理功能,运用标准化方法对相关指标进行标准化处理,得到标准化的多源栅格数据;基于层次分析法确定各影响指标因子权重,采用ARCGIS9.2的ModelBuilder建模工具建立暴雨洪涝灾害风险评估模型;通过地理信息系统的地图代数功能及综合指数法,得出洪水灾害综合风险等级评价图;并利用2003年沿淮湖泊洼地区域暴雨洪涝淹没面积数据验证暴雨灾害综合风险评估结果;统计分析发现,洪涝淹没区有60.66%位于高风险区,33.29%位于中高风险区,6.05%位于中风险区;结果表明,沿淮湖泊洼地区域暴雨洪涝中高风险及高风险区的准确度达93.95%,洪涝灾害风险评估结果基本符合实际情况,风险评估精度较高。模型的建立及风险区划图的制作,对暴雨洪涝灾害宏观决策具有重要的参考价值。  相似文献   

10.
福建省山洪灾害危险性评价   总被引:1,自引:0,他引:1  
福建省山洪灾害频发,造成的损失十分严重,开展山洪灾害危险性评价,对于防灾减灾具有重要意义。本文结合福建省山洪灾害的时空分布特征,从致灾因子和孕灾环境出发,选取多年年均降雨量、坡度、NDVI、土壤类型、土地利用类型等10类影响因子。利用CF模型和Logistic回归模型确定各因子与其分类级别的权重,应用皮尔逊相关系数法对因子间独立性进行检验。并利用历史山洪点与ROC曲线对评价结果进行验证。研究结果表明:(1) 100年一遇最大24 h降雨量、土地利用类型及地形起伏度是影响福建省山洪灾害的三个主要因素;(2)极低危险区、低危险区、中危险区、高危险区、极高危险区占全省总面积的比例分别为63. 1%、14. 2%、4. 5%、5. 9%、12. 3%;(3)福建省东部、南部、东南部的沿海地区以及北部、西部的个别低山地区处于高危险或极高危险区;(4)在仅占研究区面积12. 3%的"极高危险区"的较小范围内,实际发生山洪点数占山洪点总数的比例高达65. 8%,训练样本和验证样本的ROC曲线下面积AUC值也分别达到0. 876和0. 891,两种方式都说明山洪危险性评价结果较好。可为福建省山洪灾害防治提供科学依据和支持。  相似文献   

11.
基于GIS的山洪灾害风险区划   总被引:1,自引:0,他引:1  
1 Introduction Torrent is sudden surface runoff with sharp rises or falls (Tang, 1994; Zhao, 1996), resulting from rainfall in small basins of mountainous areas. It has features of violent coming force, rapid formation and strong destructivity which rende…  相似文献   

12.
TANG Chuan  ZHU Jing 《地理学报》2006,16(4):479-486
This paper explores the methodology for compiling the torrent hazard and risk zonation map by means of GIS technique for the Red River Basin in Yunnan province of China, where is prone to torrent. Based on a 1:250,000 scale digital map, six factors including slope angle, rainstorm days, buffer of river channels, maximum runoff discharge of standard area, debris flow distribution density and flood disaster history were analyzed and superimposed to create the torrent risk evaluation map. Population density, farmland percentage, house property, and GDP as indexes accounting for torrent hazards were analyzed in terms of vulnerability mapping. Torrent risk zonation by means of GIS was overlaid on the two data layers of hazard and vulnerability. Then each grid unit with a resolution of 500 m × 500 m was divided into four categories of the risk: extremely high, high, moderate and low. Finally the same level risk was combined into a confirmed zone, which represents torrent risk of the study area. The risk evaluation result in the upper Red River Basin shows that the extremely high risk area of 13,150 km2 takes up 17.9% of the total inundated area, the high risk area of 33,783 km2 is 45.9%, the moderate risk area of 18,563 km2 is 25.2% and the low risk area of 8115 km2 is 11.0%.  相似文献   

13.
气候变暖背景下黄河流域干旱灾害风险空间特征   总被引:3,自引:1,他引:2  
黄河流域是中国重要的经济带和经济增长极,也是人口密集暴露、特色农业种植和重点生态承载区。在全球变暖和极端降水事件频发的气候背景下,近年来黄河流域干旱灾害变化特征异常突出,新形势下该流域的干旱灾害风险及其对气候变化的响应机制需进一步深入认识。本文利用1960年以来黄河流域122个国家气象站逐日气象数据,结合遥感、社会统计和地理信息数据与技术,基于灾害风险理论,建立致灾因子危险性、孕灾环境脆弱性、承灾体易损性和防灾减灾能力可靠性4个因子的干旱灾害风险指标体系和模型,详细分析了黄河流域干旱灾害风险变化特征和区域差异性及其气候变化的影响机制。结果表明:黄河流域干旱灾害风险分布格局具有明显的地带性和复杂性,流域区域差异显著,总体是中下游风险高于上游,高风险区主要位于黄河流域中下游,致灾因子危险性是黄河流域干旱灾害风险的主导因子,其次是孕灾环境脆弱性和防灾减灾能力可靠性,而承灾体易损性贡献量相对最小。干旱灾害风险影响机制的区域差异也很显著,上游是孕灾环境脆弱性和防灾减灾能力可靠性的影响大于致灾因子和易损性,中游则是致灾因子、易损性和防灾减灾能力对干旱灾害风险的贡献度大,下游是干旱致灾因子起主导作用,致灾因子危险性和承灾体易损性控制了风险总体格局。黄河流域干旱灾害风险变化规律以及对气候变化的响应异常复杂,流域干旱灾害风险主要受季风气候和复杂地形的影响,还受社会经济发展水平、人口暴露度和水资源供需矛盾等多种要素的影响。该研究对黄河流域生态文明建设,粮食安全保障和国家发展战略具有重要意义。  相似文献   

14.
金沙江流域(云南境内)山地灾害危险性评价   总被引:14,自引:1,他引:14  
唐川 《山地学报》2004,22(4):451-460
云南境内的金沙江流域是斜坡不稳定的敏感区,根据1988-2000年的区域调查和统计,区内发育山地灾害点1697处,其中流域面积大于1km2的泥石流沟808条,体积大于1×104m3的滑坡580处,体积大于1000m3的崩塌309处。用于山地灾害危险性评价的主要敏感因子包括岩土体类型、山坡坡度、降雨、土地利用、地震烈度和人类活动。在对这些因子进行了敏感性评价的基础上,应用GIS对敏感因子集成评价而产生了云南金沙江流域山地灾害危险性评价图。评价结果表明:高危险区面积占全区面积6464km2的8 77%,中危险区占全区总面积的41 51%,低危险区占41 12%,无危险区占8 60%。山地灾害危险性评价图可以帮助规划者或工程师在土地发展规划中选择最佳建设场所,以减轻灾害的影响。  相似文献   

15.
The purpose of the present study is the analysis of landslide risk for roads and buildings in a small test site (20 km2) in the area north of Lisbon (Portugal). For this purpose, an evaluation is performed integrating into a GIS information obtained from multiple sources: (i) landslide hazard; (ii) elements at risk; and (iii) vulnerability. Landslide hazard is assessed on a probabilistic basis for three different types of slope movement (shallow translational slides, translational slides and rotational slides), based on some assumptions such as: (i) the likelihood of future landslide occurrence can be measured through statistical relationships between past landslide distribution and specified spatial data sets considered as landslide predisposing factors; and (ii) the rainfall combination (amount–duration) responsible for past slope instability within the test site will produce the same effects (i.e. same type of landslides and similar total affected area), each time they occur in the future. When the return period of rainfall triggering events is known, different scenarios can be modelled, each one ascribed to a specific return period. Therefore, landslide hazard is quantitatively assessed on a raster basis, and is expressed as the probability for each pixel (25 m2) to be affected by a future landslide, considering a rainfall triggering scenario with a specific return period. Elements at risk within the test site include 2561 buildings and roads amounting to 169 km. Values attributed to elements at risk were defined considering reconstruction costs, following the guidelines of the Portuguese Insurance Institute. Vulnerability is considered as the degree of loss to a given element resulting from the occurrence of a landslide of a given magnitude. Vulnerability depends not only on structural properties of exposed elements, but also on the type of process, and its magnitude; i.e., vulnerability cannot be defined in absolute terms, but only with respect to a specific process (e.g. vulnerability to shallow translational slides). Therefore, vulnerability was classified for the three landslide groups considered on hazard assessment, taking into account: (i) landslide magnitude (mean depth, volume, velocity); (ii) damage levels produced by past landslide events in the study area; and (iii) literature. Finally, a landslide risk analysis considering direct costs was made in an automatic way crossing the following three layers: (i) Probabilistic hazard map for a landslide type Z, considering a particular rainfall triggering scenario whose return period is known; (ii) Vulnerability map (values from 0 to 1) of the exposed elements to landslide type Z; and (iii) Value map of the exposed elements, considering reconstruction costs.  相似文献   

16.
Glacial lakes and glaciers are sensitive indicators of recent climate change. In the Poiqu River basin of southern Tibet, 60–100 km NW of Mt. Everest, Landsat imagery defines post-1986 changes in the size and distribution of both glacial lakes and glaciers. Total area of glaciers in the 229-km2 drainage area has decreased by 20%. The number of glacial lakes with areas in excess of 0.020 km2 has increased by 11%, and the total area of glacial lakes has increased by 47%. The areas of typical large glacial lakes of the area (Galongco, Gangxico, and Cirenmaco) have increased by 104, 118, and 156%, respectively, and these increases are confirmed by field investigations.Comparing the 1986 data, the area of glaciers in the basin headwaters has decreased by 46.18 km2 to a present total area of 183.12 km2, an annual rate of change of 3.30 km2/year. Trends indicate that the total area of glaciers will continue to decrease and that both the numbers and areas of glacial lakes will continue to increase. Accompanying these trends will be an increased risk of debris flows, formed by entrainment of sediment in glacial-outburst floods and in surges from both failure and avalanche- and landslide-induced overtopping of moraine dams. Based on both the local and world-wide history of catastrophes from flows of these origins, disaster mitigation must be planned and appropriate engineering countermeasures put in place as soon as possible.  相似文献   

17.
Accurate and realistic characterizations of flood hazards on desert piedmonts and playas are increasingly important given the rapid urbanization of arid regions. Flood behavior in arid fluvial systems differs greatly from that of the perennial rivers upon which most conventional flood hazard assessment methods are based. Additionally, hazard assessments may vary widely between studies or even contradict other maps. This study's chief objective was to compare and evaluate landscape interpretation and hazard assessment between types of maps depicting assessments of flood risk in Ivanpah Valley, NV, as a case study. As a secondary goal, we explain likely causes of discrepancy between data sets to ameliorate confusion for map users. Four maps, including three different flood hazard assessments of Ivanpah Valley, NV, were compared: (i) a regulatory map prepared by FEMA, (ii) a soil survey map prepared by NRCS, (iii) a surficial geologic map, and (iv) a flood hazard map derived from the surficial geologic map, both of which were prepared by NBMG. GIS comparisons revealed that only 3.4% (33.9 km2) of Ivanpah Valley was found to lie within a FEMA floodplain, while the geologic flood hazard map indicated that ~ 44% of Ivanpah Valley runs some risk of flooding (Fig. 2D). Due to differences in mapping methodology and scale, NRCS data could not be quantitatively compared, and other comparisons were complicated by differences in flood hazard class criteria and terminology between maps. Owing to its scale and scope of attribute data, the surficial geologic map provides the most useful information on flood hazards for land-use planning. This research has implications for future soil geomorphic mapping and flood risk mitigation on desert piedmonts and playas. The Ivanpah Valley study area also includes the location of a planned new international airport, thus this study has immediate implications for urban development and land-use planning near Las Vegas, NV.  相似文献   

18.
青藏高原东北部河湟谷地1726 年耕地格局重建   总被引:4,自引:0,他引:4  
罗静  张镱锂  刘峰贵  陈琼  周强  张海峰 《地理研究》2014,33(7):1285-1296
整理、校正了1726 年(雍正四年)河湟谷地历史文献中的田亩数据,并在GIS技术的支持下建立了该区1726 年具有空间属性(2 km×2 km)的耕地分布格局。结果显示:1726 年河湟谷地耕地总面积为1.427×103 km2,其中番地占64.7%,屯科秋站垦地占35.3%。河湟谷地虽然面积较大,但受自然环境条件的限制,可耕之地较少,该区仅有47%的网格具有耕地分布,耕地集中分布在湟水河干流区及大通河中游地区和龙羊峡以下的黄河谷地。从耕地垦殖强度分析,受自然环境条件和政治格局的双重影响,1726 年该区整体垦殖率较低,全区仅有1.4%的耕地网格垦殖率在40%以上,而68.3%的耕地网格垦殖率在10%以下,正处在广泛的开荒垦殖阶段。垦殖强度在空间分布上也存在明显差异,其中西宁县整体垦殖率水平最高,其耕地网格平均垦殖率达到了13.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号